0
0
Fork 0
mirror of https://github.com/bitcoin/bitcoin.git synced 2025-02-06 10:18:44 -05:00
bitcoin-bitcoin-core/src/test/fuzz/util.cpp

605 lines
23 KiB
C++
Raw Normal View History

// Copyright (c) 2021 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <consensus/amount.h>
2021-11-22 17:43:38 +01:00
#include <net_processing.h>
#include <netmessagemaker.h>
#include <pubkey.h>
#include <test/fuzz/util.h>
2021-01-14 21:26:19 +01:00
#include <test/util/script.h>
#include <util/overflow.h>
2021-01-14 21:26:19 +01:00
#include <util/rbf.h>
#include <util/time.h>
#include <version.h>
#include <memory>
FuzzedSock::FuzzedSock(FuzzedDataProvider& fuzzed_data_provider)
: m_fuzzed_data_provider{fuzzed_data_provider}
{
m_socket = fuzzed_data_provider.ConsumeIntegralInRange<SOCKET>(INVALID_SOCKET - 1, INVALID_SOCKET);
}
FuzzedSock::~FuzzedSock()
{
// Sock::~Sock() will be called after FuzzedSock::~FuzzedSock() and it will call
// Sock::Reset() (not FuzzedSock::Reset()!) which will call CloseSocket(m_socket).
// Avoid closing an arbitrary file descriptor (m_socket is just a random very high number which
// theoretically may concide with a real opened file descriptor).
Reset();
}
FuzzedSock& FuzzedSock::operator=(Sock&& other)
{
assert(false && "Move of Sock into FuzzedSock not allowed.");
return *this;
}
void FuzzedSock::Reset()
{
m_socket = INVALID_SOCKET;
}
ssize_t FuzzedSock::Send(const void* data, size_t len, int flags) const
{
constexpr std::array send_errnos{
EACCES,
EAGAIN,
EALREADY,
EBADF,
ECONNRESET,
EDESTADDRREQ,
EFAULT,
EINTR,
EINVAL,
EISCONN,
EMSGSIZE,
ENOBUFS,
ENOMEM,
ENOTCONN,
ENOTSOCK,
EOPNOTSUPP,
EPIPE,
EWOULDBLOCK,
};
if (m_fuzzed_data_provider.ConsumeBool()) {
return len;
}
const ssize_t r = m_fuzzed_data_provider.ConsumeIntegralInRange<ssize_t>(-1, len);
if (r == -1) {
SetFuzzedErrNo(m_fuzzed_data_provider, send_errnos);
}
return r;
}
ssize_t FuzzedSock::Recv(void* buf, size_t len, int flags) const
{
// Have a permanent error at recv_errnos[0] because when the fuzzed data is exhausted
// SetFuzzedErrNo() will always return the first element and we want to avoid Recv()
// returning -1 and setting errno to EAGAIN repeatedly.
constexpr std::array recv_errnos{
ECONNREFUSED,
EAGAIN,
EBADF,
EFAULT,
EINTR,
EINVAL,
ENOMEM,
ENOTCONN,
ENOTSOCK,
EWOULDBLOCK,
};
assert(buf != nullptr || len == 0);
if (len == 0 || m_fuzzed_data_provider.ConsumeBool()) {
const ssize_t r = m_fuzzed_data_provider.ConsumeBool() ? 0 : -1;
if (r == -1) {
SetFuzzedErrNo(m_fuzzed_data_provider, recv_errnos);
}
return r;
}
std::vector<uint8_t> random_bytes;
bool pad_to_len_bytes{m_fuzzed_data_provider.ConsumeBool()};
if (m_peek_data.has_value()) {
// `MSG_PEEK` was used in the preceding `Recv()` call, return `m_peek_data`.
random_bytes.assign({m_peek_data.value()});
if ((flags & MSG_PEEK) == 0) {
m_peek_data.reset();
}
pad_to_len_bytes = false;
} else if ((flags & MSG_PEEK) != 0) {
// New call with `MSG_PEEK`.
random_bytes = m_fuzzed_data_provider.ConsumeBytes<uint8_t>(1);
if (!random_bytes.empty()) {
m_peek_data = random_bytes[0];
pad_to_len_bytes = false;
}
} else {
random_bytes = m_fuzzed_data_provider.ConsumeBytes<uint8_t>(
m_fuzzed_data_provider.ConsumeIntegralInRange<size_t>(0, len));
}
if (random_bytes.empty()) {
const ssize_t r = m_fuzzed_data_provider.ConsumeBool() ? 0 : -1;
if (r == -1) {
SetFuzzedErrNo(m_fuzzed_data_provider, recv_errnos);
}
return r;
}
std::memcpy(buf, random_bytes.data(), random_bytes.size());
if (pad_to_len_bytes) {
if (len > random_bytes.size()) {
std::memset((char*)buf + random_bytes.size(), 0, len - random_bytes.size());
}
return len;
}
if (m_fuzzed_data_provider.ConsumeBool() && std::getenv("FUZZED_SOCKET_FAKE_LATENCY") != nullptr) {
std::this_thread::sleep_for(std::chrono::milliseconds{2});
}
return random_bytes.size();
}
int FuzzedSock::Connect(const sockaddr*, socklen_t) const
{
// Have a permanent error at connect_errnos[0] because when the fuzzed data is exhausted
// SetFuzzedErrNo() will always return the first element and we want to avoid Connect()
// returning -1 and setting errno to EAGAIN repeatedly.
constexpr std::array connect_errnos{
ECONNREFUSED,
EAGAIN,
ECONNRESET,
EHOSTUNREACH,
EINPROGRESS,
EINTR,
ENETUNREACH,
ETIMEDOUT,
};
if (m_fuzzed_data_provider.ConsumeBool()) {
SetFuzzedErrNo(m_fuzzed_data_provider, connect_errnos);
return -1;
}
return 0;
}
std::unique_ptr<Sock> FuzzedSock::Accept(sockaddr* addr, socklen_t* addr_len) const
{
constexpr std::array accept_errnos{
ECONNABORTED,
EINTR,
ENOMEM,
};
if (m_fuzzed_data_provider.ConsumeBool()) {
SetFuzzedErrNo(m_fuzzed_data_provider, accept_errnos);
return std::unique_ptr<FuzzedSock>();
}
return std::make_unique<FuzzedSock>(m_fuzzed_data_provider);
}
int FuzzedSock::GetSockOpt(int level, int opt_name, void* opt_val, socklen_t* opt_len) const
{
constexpr std::array getsockopt_errnos{
ENOMEM,
ENOBUFS,
};
if (m_fuzzed_data_provider.ConsumeBool()) {
SetFuzzedErrNo(m_fuzzed_data_provider, getsockopt_errnos);
return -1;
}
if (opt_val == nullptr) {
return 0;
}
std::memcpy(opt_val,
ConsumeFixedLengthByteVector(m_fuzzed_data_provider, *opt_len).data(),
*opt_len);
return 0;
}
2021-04-07 10:58:48 +02:00
bool FuzzedSock::Wait(std::chrono::milliseconds timeout, Event requested, Event* occurred) const
2021-04-06 12:47:04 +02:00
{
constexpr std::array wait_errnos{
EBADF,
EINTR,
EINVAL,
};
if (m_fuzzed_data_provider.ConsumeBool()) {
SetFuzzedErrNo(m_fuzzed_data_provider, wait_errnos);
2021-04-06 12:47:04 +02:00
return false;
}
if (occurred != nullptr) {
*occurred = m_fuzzed_data_provider.ConsumeBool() ? requested : 0;
}
2021-04-06 12:47:04 +02:00
return true;
}
2021-01-14 21:26:19 +01:00
bool FuzzedSock::IsConnected(std::string& errmsg) const
{
if (m_fuzzed_data_provider.ConsumeBool()) {
return true;
}
errmsg = "disconnected at random by the fuzzer";
return false;
}
void FillNode(FuzzedDataProvider& fuzzed_data_provider, ConnmanTestMsg& connman, PeerManager& peerman, CNode& node) noexcept
{
const bool successfully_connected{fuzzed_data_provider.ConsumeBool()};
const ServiceFlags remote_services = ConsumeWeakEnum(fuzzed_data_provider, ALL_SERVICE_FLAGS);
const NetPermissionFlags permission_flags = ConsumeWeakEnum(fuzzed_data_provider, ALL_NET_PERMISSION_FLAGS);
const int32_t version = fuzzed_data_provider.ConsumeIntegralInRange<int32_t>(MIN_PEER_PROTO_VERSION, std::numeric_limits<int32_t>::max());
const bool filter_txs = fuzzed_data_provider.ConsumeBool();
2021-11-22 17:43:38 +01:00
const CNetMsgMaker mm{0};
CSerializedNetMsg msg_version{
mm.Make(NetMsgType::VERSION,
version, //
Using<CustomUintFormatter<8>>(remote_services), //
int64_t{}, // dummy time
int64_t{}, // ignored service bits
CService{}, // dummy
int64_t{}, // ignored service bits
CService{}, // ignored
uint64_t{1}, // dummy nonce
std::string{}, // dummy subver
int32_t{}, // dummy starting_height
filter_txs),
};
(void)connman.ReceiveMsgFrom(node, msg_version);
node.fPauseSend = false;
2021-11-22 17:43:38 +01:00
connman.ProcessMessagesOnce(node);
{
LOCK(node.cs_sendProcessing);
peerman.SendMessages(&node);
}
2021-11-22 17:43:38 +01:00
if (node.fDisconnect) return;
assert(node.nVersion == version);
assert(node.GetCommonVersion() == std::min(version, PROTOCOL_VERSION));
assert(node.nServices == remote_services);
node.m_permissionFlags = permission_flags;
if (successfully_connected) {
CSerializedNetMsg msg_verack{mm.Make(NetMsgType::VERACK)};
(void)connman.ReceiveMsgFrom(node, msg_verack);
node.fPauseSend = false;
connman.ProcessMessagesOnce(node);
{
LOCK(node.cs_sendProcessing);
peerman.SendMessages(&node);
}
assert(node.fSuccessfullyConnected == true);
}
}
2021-01-14 21:26:19 +01:00
CAmount ConsumeMoney(FuzzedDataProvider& fuzzed_data_provider, const std::optional<CAmount>& max) noexcept
{
return fuzzed_data_provider.ConsumeIntegralInRange<CAmount>(0, max.value_or(MAX_MONEY));
}
int64_t ConsumeTime(FuzzedDataProvider& fuzzed_data_provider, const std::optional<int64_t>& min, const std::optional<int64_t>& max) noexcept
{
// Avoid t=0 (1970-01-01T00:00:00Z) since SetMockTime(0) disables mocktime.
static const int64_t time_min{ParseISO8601DateTime("2000-01-01T00:00:01Z")};
static const int64_t time_max{ParseISO8601DateTime("2100-12-31T23:59:59Z")};
return fuzzed_data_provider.ConsumeIntegralInRange<int64_t>(min.value_or(time_min), max.value_or(time_max));
}
2021-01-14 21:26:19 +01:00
CMutableTransaction ConsumeTransaction(FuzzedDataProvider& fuzzed_data_provider, const std::optional<std::vector<uint256>>& prevout_txids, const int max_num_in, const int max_num_out) noexcept
{
CMutableTransaction tx_mut;
const auto p2wsh_op_true = fuzzed_data_provider.ConsumeBool();
tx_mut.nVersion = fuzzed_data_provider.ConsumeBool() ?
CTransaction::CURRENT_VERSION :
fuzzed_data_provider.ConsumeIntegral<int32_t>();
tx_mut.nLockTime = fuzzed_data_provider.ConsumeIntegral<uint32_t>();
const auto num_in = fuzzed_data_provider.ConsumeIntegralInRange<int>(0, max_num_in);
const auto num_out = fuzzed_data_provider.ConsumeIntegralInRange<int>(0, max_num_out);
for (int i = 0; i < num_in; ++i) {
const auto& txid_prev = prevout_txids ?
PickValue(fuzzed_data_provider, *prevout_txids) :
ConsumeUInt256(fuzzed_data_provider);
const auto index_out = fuzzed_data_provider.ConsumeIntegralInRange<uint32_t>(0, max_num_out);
const auto sequence = ConsumeSequence(fuzzed_data_provider);
const auto script_sig = p2wsh_op_true ? CScript{} : ConsumeScript(fuzzed_data_provider);
CScriptWitness script_wit;
if (p2wsh_op_true) {
script_wit.stack = std::vector<std::vector<uint8_t>>{WITNESS_STACK_ELEM_OP_TRUE};
} else {
script_wit = ConsumeScriptWitness(fuzzed_data_provider);
}
CTxIn in;
in.prevout = COutPoint{txid_prev, index_out};
in.nSequence = sequence;
in.scriptSig = script_sig;
in.scriptWitness = script_wit;
tx_mut.vin.push_back(in);
}
for (int i = 0; i < num_out; ++i) {
const auto amount = fuzzed_data_provider.ConsumeIntegralInRange<CAmount>(-10, 50 * COIN + 10);
const auto script_pk = p2wsh_op_true ?
P2WSH_OP_TRUE :
ConsumeScript(fuzzed_data_provider, /*maybe_p2wsh=*/true);
2021-01-14 21:26:19 +01:00
tx_mut.vout.emplace_back(amount, script_pk);
}
return tx_mut;
}
CScriptWitness ConsumeScriptWitness(FuzzedDataProvider& fuzzed_data_provider, const size_t max_stack_elem_size) noexcept
{
CScriptWitness ret;
const auto n_elements = fuzzed_data_provider.ConsumeIntegralInRange<size_t>(0, max_stack_elem_size);
for (size_t i = 0; i < n_elements; ++i) {
ret.stack.push_back(ConsumeRandomLengthByteVector(fuzzed_data_provider));
}
return ret;
}
CScript ConsumeScript(FuzzedDataProvider& fuzzed_data_provider, const bool maybe_p2wsh) noexcept
2021-01-14 21:26:19 +01:00
{
CScript r_script{};
{
// Keep a buffer of bytes to allow the fuzz engine to produce smaller
// inputs to generate CScripts with repeated data.
static constexpr unsigned MAX_BUFFER_SZ{128};
std::vector<uint8_t> buffer(MAX_BUFFER_SZ, uint8_t{'a'});
while (fuzzed_data_provider.ConsumeBool()) {
CallOneOf(
fuzzed_data_provider,
[&] {
// Insert byte vector directly to allow malformed or unparsable scripts
r_script.insert(r_script.end(), buffer.begin(), buffer.begin() + fuzzed_data_provider.ConsumeIntegralInRange(0U, MAX_BUFFER_SZ));
},
[&] {
// Push a byte vector from the buffer
r_script << std::vector<uint8_t>{buffer.begin(), buffer.begin() + fuzzed_data_provider.ConsumeIntegralInRange(0U, MAX_BUFFER_SZ)};
},
[&] {
// Push multisig
// There is a special case for this to aid the fuzz engine
// navigate the highly structured multisig format.
r_script << fuzzed_data_provider.ConsumeIntegralInRange<int64_t>(0, 22);
int num_data{fuzzed_data_provider.ConsumeIntegralInRange(1, 22)};
std::vector<uint8_t> pubkey_comp{buffer.begin(), buffer.begin() + CPubKey::COMPRESSED_SIZE};
pubkey_comp.front() = fuzzed_data_provider.ConsumeIntegralInRange(2, 3); // Set first byte for GetLen() to pass
std::vector<uint8_t> pubkey_uncomp{buffer.begin(), buffer.begin() + CPubKey::SIZE};
pubkey_uncomp.front() = fuzzed_data_provider.ConsumeIntegralInRange(4, 7); // Set first byte for GetLen() to pass
while (num_data--) {
auto& pubkey{fuzzed_data_provider.ConsumeBool() ? pubkey_uncomp : pubkey_comp};
if (fuzzed_data_provider.ConsumeBool()) {
pubkey.back() = num_data; // Make each pubkey different
}
r_script << pubkey;
}
r_script << fuzzed_data_provider.ConsumeIntegralInRange<int64_t>(0, 22);
},
[&] {
// Mutate the buffer
const auto vec{ConsumeRandomLengthByteVector(fuzzed_data_provider, /*max_length=*/MAX_BUFFER_SZ)};
std::copy(vec.begin(), vec.end(), buffer.begin());
},
[&] {
// Push an integral
r_script << fuzzed_data_provider.ConsumeIntegral<int64_t>();
},
[&] {
// Push an opcode
r_script << ConsumeOpcodeType(fuzzed_data_provider);
},
[&] {
// Push a scriptnum
r_script << ConsumeScriptNum(fuzzed_data_provider);
});
}
}
2021-01-14 21:26:19 +01:00
if (maybe_p2wsh && fuzzed_data_provider.ConsumeBool()) {
uint256 script_hash;
CSHA256().Write(r_script.data(), r_script.size()).Finalize(script_hash.begin());
2021-01-14 21:26:19 +01:00
r_script.clear();
r_script << OP_0 << ToByteVector(script_hash);
}
return r_script;
}
uint32_t ConsumeSequence(FuzzedDataProvider& fuzzed_data_provider) noexcept
{
return fuzzed_data_provider.ConsumeBool() ?
fuzzed_data_provider.PickValueInArray({
CTxIn::SEQUENCE_FINAL,
CTxIn::MAX_SEQUENCE_NONFINAL,
2021-01-14 21:26:19 +01:00
MAX_BIP125_RBF_SEQUENCE,
}) :
fuzzed_data_provider.ConsumeIntegral<uint32_t>();
}
CTxDestination ConsumeTxDestination(FuzzedDataProvider& fuzzed_data_provider) noexcept
{
CTxDestination tx_destination;
const size_t call_size{CallOneOf(
fuzzed_data_provider,
[&] {
tx_destination = CNoDestination{};
},
[&] {
tx_destination = PKHash{ConsumeUInt160(fuzzed_data_provider)};
},
[&] {
tx_destination = ScriptHash{ConsumeUInt160(fuzzed_data_provider)};
},
[&] {
tx_destination = WitnessV0ScriptHash{ConsumeUInt256(fuzzed_data_provider)};
},
[&] {
tx_destination = WitnessV0KeyHash{ConsumeUInt160(fuzzed_data_provider)};
},
[&] {
tx_destination = WitnessV1Taproot{XOnlyPubKey{ConsumeUInt256(fuzzed_data_provider)}};
},
[&] {
WitnessUnknown witness_unknown{};
witness_unknown.version = fuzzed_data_provider.ConsumeIntegralInRange(2, 16);
std::vector<uint8_t> witness_unknown_program_1{fuzzed_data_provider.ConsumeBytes<uint8_t>(40)};
if (witness_unknown_program_1.size() < 2) {
witness_unknown_program_1 = {0, 0};
}
witness_unknown.length = witness_unknown_program_1.size();
std::copy(witness_unknown_program_1.begin(), witness_unknown_program_1.end(), witness_unknown.program);
tx_destination = witness_unknown;
})};
Assert(call_size == std::variant_size_v<CTxDestination>);
return tx_destination;
}
CTxMemPoolEntry ConsumeTxMemPoolEntry(FuzzedDataProvider& fuzzed_data_provider, const CTransaction& tx) noexcept
{
// Avoid:
// policy/feerate.cpp:28:34: runtime error: signed integer overflow: 34873208148477500 * 1000 cannot be represented in type 'long'
//
// Reproduce using CFeeRate(348732081484775, 10).GetFeePerK()
const CAmount fee = std::min<CAmount>(ConsumeMoney(fuzzed_data_provider), std::numeric_limits<CAmount>::max() / static_cast<CAmount>(100000));
assert(MoneyRange(fee));
const int64_t time = fuzzed_data_provider.ConsumeIntegral<int64_t>();
const unsigned int entry_height = fuzzed_data_provider.ConsumeIntegral<unsigned int>();
const bool spends_coinbase = fuzzed_data_provider.ConsumeBool();
const unsigned int sig_op_cost = fuzzed_data_provider.ConsumeIntegralInRange<unsigned int>(0, MAX_BLOCK_SIGOPS_COST);
return CTxMemPoolEntry{MakeTransactionRef(tx), fee, time, entry_height, spends_coinbase, sig_op_cost, {}};
}
bool ContainsSpentInput(const CTransaction& tx, const CCoinsViewCache& inputs) noexcept
{
for (const CTxIn& tx_in : tx.vin) {
const Coin& coin = inputs.AccessCoin(tx_in.prevout);
if (coin.IsSpent()) {
return true;
}
}
return false;
}
CNetAddr ConsumeNetAddr(FuzzedDataProvider& fuzzed_data_provider) noexcept
{
const Network network = fuzzed_data_provider.PickValueInArray({Network::NET_IPV4, Network::NET_IPV6, Network::NET_INTERNAL, Network::NET_ONION});
CNetAddr net_addr;
if (network == Network::NET_IPV4) {
in_addr v4_addr = {};
v4_addr.s_addr = fuzzed_data_provider.ConsumeIntegral<uint32_t>();
net_addr = CNetAddr{v4_addr};
} else if (network == Network::NET_IPV6) {
if (fuzzed_data_provider.remaining_bytes() >= 16) {
in6_addr v6_addr = {};
memcpy(v6_addr.s6_addr, fuzzed_data_provider.ConsumeBytes<uint8_t>(16).data(), 16);
net_addr = CNetAddr{v6_addr, fuzzed_data_provider.ConsumeIntegral<uint32_t>()};
}
} else if (network == Network::NET_INTERNAL) {
net_addr.SetInternal(fuzzed_data_provider.ConsumeBytesAsString(32));
} else if (network == Network::NET_ONION) {
net_addr.SetSpecial(fuzzed_data_provider.ConsumeBytesAsString(32));
}
return net_addr;
}
FILE* FuzzedFileProvider::open()
{
SetFuzzedErrNo(m_fuzzed_data_provider);
if (m_fuzzed_data_provider.ConsumeBool()) {
return nullptr;
}
std::string mode;
CallOneOf(
m_fuzzed_data_provider,
[&] {
mode = "r";
},
[&] {
mode = "r+";
},
[&] {
mode = "w";
},
[&] {
mode = "w+";
},
[&] {
mode = "a";
},
[&] {
mode = "a+";
});
#if defined _GNU_SOURCE && !defined __ANDROID__
const cookie_io_functions_t io_hooks = {
FuzzedFileProvider::read,
FuzzedFileProvider::write,
FuzzedFileProvider::seek,
FuzzedFileProvider::close,
};
return fopencookie(this, mode.c_str(), io_hooks);
#else
(void)mode;
return nullptr;
#endif
}
ssize_t FuzzedFileProvider::read(void* cookie, char* buf, size_t size)
{
FuzzedFileProvider* fuzzed_file = (FuzzedFileProvider*)cookie;
SetFuzzedErrNo(fuzzed_file->m_fuzzed_data_provider);
if (buf == nullptr || size == 0 || fuzzed_file->m_fuzzed_data_provider.ConsumeBool()) {
return fuzzed_file->m_fuzzed_data_provider.ConsumeBool() ? 0 : -1;
}
const std::vector<uint8_t> random_bytes = fuzzed_file->m_fuzzed_data_provider.ConsumeBytes<uint8_t>(size);
if (random_bytes.empty()) {
return 0;
}
std::memcpy(buf, random_bytes.data(), random_bytes.size());
if (AdditionOverflow(fuzzed_file->m_offset, (int64_t)random_bytes.size())) {
return fuzzed_file->m_fuzzed_data_provider.ConsumeBool() ? 0 : -1;
}
fuzzed_file->m_offset += random_bytes.size();
return random_bytes.size();
}
ssize_t FuzzedFileProvider::write(void* cookie, const char* buf, size_t size)
{
FuzzedFileProvider* fuzzed_file = (FuzzedFileProvider*)cookie;
SetFuzzedErrNo(fuzzed_file->m_fuzzed_data_provider);
const ssize_t n = fuzzed_file->m_fuzzed_data_provider.ConsumeIntegralInRange<ssize_t>(0, size);
if (AdditionOverflow(fuzzed_file->m_offset, (int64_t)n)) {
return 0;
}
fuzzed_file->m_offset += n;
return n;
}
int FuzzedFileProvider::seek(void* cookie, int64_t* offset, int whence)
{
assert(whence == SEEK_SET || whence == SEEK_CUR || whence == SEEK_END);
FuzzedFileProvider* fuzzed_file = (FuzzedFileProvider*)cookie;
SetFuzzedErrNo(fuzzed_file->m_fuzzed_data_provider);
int64_t new_offset = 0;
if (whence == SEEK_SET) {
new_offset = *offset;
} else if (whence == SEEK_CUR) {
if (AdditionOverflow(fuzzed_file->m_offset, *offset)) {
return -1;
}
new_offset = fuzzed_file->m_offset + *offset;
} else if (whence == SEEK_END) {
const int64_t n = fuzzed_file->m_fuzzed_data_provider.ConsumeIntegralInRange<int64_t>(0, 4096);
if (AdditionOverflow(n, *offset)) {
return -1;
}
new_offset = n + *offset;
}
if (new_offset < 0) {
return -1;
}
fuzzed_file->m_offset = new_offset;
*offset = new_offset;
return fuzzed_file->m_fuzzed_data_provider.ConsumeIntegralInRange<int>(-1, 0);
}
int FuzzedFileProvider::close(void* cookie)
{
FuzzedFileProvider* fuzzed_file = (FuzzedFileProvider*)cookie;
SetFuzzedErrNo(fuzzed_file->m_fuzzed_data_provider);
return fuzzed_file->m_fuzzed_data_provider.ConsumeIntegralInRange<int>(-1, 0);
}