0
0
Fork 0
mirror of https://github.com/bitcoin/bitcoin.git synced 2025-02-13 11:25:02 -05:00
bitcoin-bitcoin-core/src/crypto/sha3.cpp

129 lines
3.9 KiB
C++
Raw Normal View History

2020-08-30 12:54:45 -07:00
// Copyright (c) 2020 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
// Based on https://github.com/mjosaarinen/tiny_sha3/blob/master/sha3.c
// by Markku-Juhani O. Saarinen <mjos@iki.fi>
#include <crypto/sha3.h>
#include <crypto/common.h>
#include <span.h>
#include <algorithm>
#include <array> // For std::begin and std::end.
#include <stdint.h>
// Internal implementation code.
namespace
{
uint64_t Rotl(uint64_t x, int n) { return (x << n) | (x >> (64 - n)); }
} // namespace
void KeccakF(uint64_t (&st)[25])
{
static constexpr uint64_t RNDC[24] = {
0x0000000000000001, 0x0000000000008082, 0x800000000000808a, 0x8000000080008000,
0x000000000000808b, 0x0000000080000001, 0x8000000080008081, 0x8000000000008009,
0x000000000000008a, 0x0000000000000088, 0x0000000080008009, 0x000000008000000a,
0x000000008000808b, 0x800000000000008b, 0x8000000000008089, 0x8000000000008003,
0x8000000000008002, 0x8000000000000080, 0x000000000000800a, 0x800000008000000a,
0x8000000080008081, 0x8000000000008080, 0x0000000080000001, 0x8000000080008008
};
static constexpr int ROTC[24] = {
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 2, 14,
27, 41, 56, 8, 25, 43, 62, 18, 39, 61, 20, 44
};
static constexpr int PILN[24] = {
10, 7, 11, 17, 18, 3, 5, 16, 8, 21, 24, 4,
15, 23, 19, 13, 12, 2, 20, 14, 22, 9, 6, 1
};
static constexpr int ROUNDS = 24;
for (int round = 0; round < ROUNDS; ++round) {
uint64_t bc[5], t;
// Theta
for (int i = 0; i < 5; i++) {
bc[i] = st[i] ^ st[i + 5] ^ st[i + 10] ^ st[i + 15] ^ st[i + 20];
}
for (int i = 0; i < 5; i++) {
t = bc[(i + 4) % 5] ^ Rotl(bc[(i + 1) % 5], 1);
for (int j = 0; j < 25; j += 5) st[j + i] ^= t;
}
// Rho Pi
t = st[1];
for (int i = 0; i < 24; i++) {
int j = PILN[i];
bc[0] = st[j];
st[j] = Rotl(t, ROTC[i]);
t = bc[0];
}
// Chi
for (int j = 0; j < 25; j += 5) {
for (int i = 0; i < 5; i++) bc[i] = st[j + i];
for (int i = 0; i < 5; i++) {
st[j + i] ^= (~bc[(i + 1) % 5]) & bc[(i + 2) % 5];
}
}
// Iota
st[0] ^= RNDC[round];
}
}
SHA3_256& SHA3_256::Write(Span<const unsigned char> data)
{
if (m_bufsize && m_bufsize + data.size() >= sizeof(m_buffer)) {
// Fill the buffer and process it.
std::copy(data.begin(), data.begin() + sizeof(m_buffer) - m_bufsize, m_buffer + m_bufsize);
data = data.subspan(sizeof(m_buffer) - m_bufsize);
m_state[m_pos++] ^= ReadLE64(m_buffer);
m_bufsize = 0;
if (m_pos == RATE_BUFFERS) {
KeccakF(m_state);
m_pos = 0;
}
}
while (data.size() >= sizeof(m_buffer)) {
// Process chunks directly from the buffer.
m_state[m_pos++] ^= ReadLE64(data.data());
data = data.subspan(8);
if (m_pos == RATE_BUFFERS) {
KeccakF(m_state);
m_pos = 0;
}
}
if (data.size()) {
// Keep the remainder in the buffer.
std::copy(data.begin(), data.end(), m_buffer + m_bufsize);
m_bufsize += data.size();
}
return *this;
}
SHA3_256& SHA3_256::Finalize(Span<unsigned char> output)
{
assert(output.size() == OUTPUT_SIZE);
std::fill(m_buffer + m_bufsize, m_buffer + sizeof(m_buffer), 0);
m_buffer[m_bufsize] ^= 0x06;
m_state[m_pos] ^= ReadLE64(m_buffer);
m_state[RATE_BUFFERS - 1] ^= 0x8000000000000000;
KeccakF(m_state);
for (unsigned i = 0; i < 4; ++i) {
WriteLE64(output.data() + 8 * i, m_state[i]);
}
return *this;
}
SHA3_256& SHA3_256::Reset()
{
m_bufsize = 0;
m_pos = 0;
std::fill(std::begin(m_state), std::end(m_state), 0);
return *this;
}