0
0
Fork 0
mirror of https://github.com/bitcoin/bitcoin.git synced 2025-02-24 12:41:41 -05:00
bitcoin-bitcoin-core/src/test/miniminer_tests.cpp

478 lines
25 KiB
C++
Raw Normal View History

// Copyright (c) 2021 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <node/mini_miner.h>
#include <random.h>
#include <txmempool.h>
#include <util/time.h>
#include <test/util/setup_common.h>
#include <test/util/txmempool.h>
#include <boost/test/unit_test.hpp>
#include <optional>
#include <vector>
BOOST_FIXTURE_TEST_SUITE(miniminer_tests, TestingSetup)
static inline CTransactionRef make_tx(const std::vector<COutPoint>& inputs, size_t num_outputs)
{
CMutableTransaction tx = CMutableTransaction();
tx.vin.resize(inputs.size());
tx.vout.resize(num_outputs);
for (size_t i = 0; i < inputs.size(); ++i) {
tx.vin[i].prevout = inputs[i];
}
for (size_t i = 0; i < num_outputs; ++i) {
tx.vout[i].scriptPubKey = CScript() << OP_11 << OP_EQUAL;
// The actual input and output values of these transactions don't really
// matter, since all accounting will use the entries' cached fees.
tx.vout[i].nValue = COIN;
}
return MakeTransactionRef(tx);
}
static inline bool sanity_check(const std::vector<CTransactionRef>& transactions,
const std::map<COutPoint, CAmount>& bumpfees)
{
// No negative bumpfees.
for (const auto& [outpoint, fee] : bumpfees) {
if (fee < 0) return false;
if (fee == 0) continue;
auto outpoint_ = outpoint; // structured bindings can't be captured in C++17, so we need to use a variable
const bool found = std::any_of(transactions.cbegin(), transactions.cend(), [&](const auto& tx) {
return outpoint_.hash == tx->GetHash() && outpoint_.n < tx->vout.size();
});
if (!found) return false;
}
for (const auto& tx : transactions) {
// If tx has multiple outputs, they must all have the same bumpfee (if they exist).
if (tx->vout.size() > 1) {
std::set<CAmount> distinct_bumpfees;
for (size_t i{0}; i < tx->vout.size(); ++i) {
const auto bumpfee = bumpfees.find(COutPoint{tx->GetHash(), static_cast<uint32_t>(i)});
if (bumpfee != bumpfees.end()) distinct_bumpfees.insert(bumpfee->second);
}
if (distinct_bumpfees.size() > 1) return false;
}
}
return true;
}
template <typename Key, typename Value>
Value Find(const std::map<Key, Value>& map, const Key& key)
{
auto it = map.find(key);
BOOST_CHECK_MESSAGE(it != map.end(), strprintf("Cannot find %s", key.ToString()));
return it->second;
}
BOOST_FIXTURE_TEST_CASE(miniminer_1p1c, TestChain100Setup)
{
CTxMemPool& pool = *Assert(m_node.mempool);
LOCK2(::cs_main, pool.cs);
TestMemPoolEntryHelper entry;
const CAmount low_fee{CENT/2000};
const CAmount normal_fee{CENT/200};
const CAmount high_fee{CENT/10};
// Create a parent tx0 and child tx1 with normal fees:
const auto tx0 = make_tx({COutPoint{m_coinbase_txns[0]->GetHash(), 0}}, /*num_outputs=*/2);
pool.addUnchecked(entry.Fee(normal_fee).FromTx(tx0));
const auto tx1 = make_tx({COutPoint{tx0->GetHash(), 0}}, /*num_outputs=*/1);
pool.addUnchecked(entry.Fee(normal_fee).FromTx(tx1));
// Create a low-feerate parent tx2 and high-feerate child tx3 (cpfp)
const auto tx2 = make_tx({COutPoint{m_coinbase_txns[1]->GetHash(), 0}}, /*num_outputs=*/2);
pool.addUnchecked(entry.Fee(low_fee).FromTx(tx2));
const auto tx3 = make_tx({COutPoint{tx2->GetHash(), 0}}, /*num_outputs=*/1);
pool.addUnchecked(entry.Fee(high_fee).FromTx(tx3));
// Create a parent tx4 and child tx5 where both have low fees
const auto tx4 = make_tx({COutPoint{m_coinbase_txns[2]->GetHash(), 0}}, /*num_outputs=*/2);
pool.addUnchecked(entry.Fee(low_fee).FromTx(tx4));
const auto tx5 = make_tx({COutPoint{tx4->GetHash(), 0}}, /*num_outputs=*/1);
pool.addUnchecked(entry.Fee(low_fee).FromTx(tx5));
// Make tx5's modified fee much higher than its base fee. This should cause it to pass
// the fee-related checks despite being low-feerate.
pool.PrioritiseTransaction(tx5->GetHash(), CENT/100);
// Create a high-feerate parent tx6, low-feerate child tx7
const auto tx6 = make_tx({COutPoint{m_coinbase_txns[3]->GetHash(), 0}}, /*num_outputs=*/2);
pool.addUnchecked(entry.Fee(high_fee).FromTx(tx6));
const auto tx7 = make_tx({COutPoint{tx6->GetHash(), 0}}, /*num_outputs=*/1);
pool.addUnchecked(entry.Fee(low_fee).FromTx(tx7));
std::vector<COutPoint> all_unspent_outpoints({
COutPoint{tx0->GetHash(), 1},
COutPoint{tx1->GetHash(), 0},
COutPoint{tx2->GetHash(), 1},
COutPoint{tx3->GetHash(), 0},
COutPoint{tx4->GetHash(), 1},
COutPoint{tx5->GetHash(), 0},
COutPoint{tx6->GetHash(), 1},
COutPoint{tx7->GetHash(), 0}
});
for (const auto& outpoint : all_unspent_outpoints) BOOST_CHECK(!pool.isSpent(outpoint));
std::vector<COutPoint> all_spent_outpoints({
COutPoint{tx0->GetHash(), 0},
COutPoint{tx2->GetHash(), 0},
COutPoint{tx4->GetHash(), 0},
COutPoint{tx6->GetHash(), 0}
});
for (const auto& outpoint : all_spent_outpoints) BOOST_CHECK(pool.GetConflictTx(outpoint) != nullptr);
std::vector<COutPoint> all_parent_outputs({
COutPoint{tx0->GetHash(), 0},
COutPoint{tx0->GetHash(), 1},
COutPoint{tx2->GetHash(), 0},
COutPoint{tx2->GetHash(), 1},
COutPoint{tx4->GetHash(), 0},
COutPoint{tx4->GetHash(), 1},
COutPoint{tx6->GetHash(), 0},
COutPoint{tx6->GetHash(), 1}
});
std::vector<CTransactionRef> all_transactions{tx0, tx1, tx2, tx3, tx4, tx5, tx6, tx7};
struct TxDimensions {
int32_t vsize; CAmount mod_fee; CFeeRate feerate;
};
std::map<uint256, TxDimensions> tx_dims;
for (const auto& tx : all_transactions) {
const auto it = pool.GetIter(tx->GetHash()).value();
tx_dims.emplace(tx->GetHash(), TxDimensions{it->GetTxSize(), it->GetModifiedFee(),
CFeeRate(it->GetModifiedFee(), it->GetTxSize())});
}
const std::vector<CFeeRate> various_normal_feerates({CFeeRate(0), CFeeRate(500), CFeeRate(999),
CFeeRate(1000), CFeeRate(2000), CFeeRate(2500),
CFeeRate(3333), CFeeRate(7800), CFeeRate(11199),
CFeeRate(23330), CFeeRate(50000), CFeeRate(5*CENT)});
// All nonexistent entries have a bumpfee of zero, regardless of feerate
std::vector<COutPoint> nonexistent_outpoints({ COutPoint{GetRandHash(), 0}, COutPoint{GetRandHash(), 3} });
for (const auto& outpoint : nonexistent_outpoints) BOOST_CHECK(!pool.isSpent(outpoint));
for (const auto& feerate : various_normal_feerates) {
node::MiniMiner mini_miner(pool, nonexistent_outpoints);
BOOST_CHECK(mini_miner.IsReadyToCalculate());
auto bump_fees = mini_miner.CalculateBumpFees(feerate);
BOOST_CHECK(!mini_miner.IsReadyToCalculate());
BOOST_CHECK(sanity_check(all_transactions, bump_fees));
BOOST_CHECK(bump_fees.size() == nonexistent_outpoints.size());
for (const auto& outpoint: nonexistent_outpoints) {
auto it = bump_fees.find(outpoint);
BOOST_CHECK(it != bump_fees.end());
BOOST_CHECK_EQUAL(it->second, 0);
}
}
// Gather bump fees for all available UTXOs.
for (const auto& target_feerate : various_normal_feerates) {
node::MiniMiner mini_miner(pool, all_unspent_outpoints);
BOOST_CHECK(mini_miner.IsReadyToCalculate());
auto bump_fees = mini_miner.CalculateBumpFees(target_feerate);
BOOST_CHECK(!mini_miner.IsReadyToCalculate());
BOOST_CHECK(sanity_check(all_transactions, bump_fees));
BOOST_CHECK_EQUAL(bump_fees.size(), all_unspent_outpoints.size());
// Check tx0 bumpfee: no other bumper.
const TxDimensions& tx0_dimensions = tx_dims.find(tx0->GetHash())->second;
CAmount bumpfee0 = Find(bump_fees, COutPoint{tx0->GetHash(), 1});
if (target_feerate <= tx0_dimensions.feerate) {
BOOST_CHECK_EQUAL(bumpfee0, 0);
} else {
// Difference is fee to bump tx0 from current to target feerate.
BOOST_CHECK_EQUAL(bumpfee0, target_feerate.GetFee(tx0_dimensions.vsize) - tx0_dimensions.mod_fee);
}
// Check tx2 bumpfee: assisted by tx3.
const TxDimensions& tx2_dimensions = tx_dims.find(tx2->GetHash())->second;
const TxDimensions& tx3_dimensions = tx_dims.find(tx3->GetHash())->second;
const CFeeRate tx2_feerate = CFeeRate(tx2_dimensions.mod_fee + tx3_dimensions.mod_fee, tx2_dimensions.vsize + tx3_dimensions.vsize);
CAmount bumpfee2 = Find(bump_fees, COutPoint{tx2->GetHash(), 1});
if (target_feerate <= tx2_feerate) {
// As long as target feerate is below tx3's ancestor feerate, there is no bump fee.
BOOST_CHECK_EQUAL(bumpfee2, 0);
} else {
// Difference is fee to bump tx2 from current to target feerate, without tx3.
BOOST_CHECK_EQUAL(bumpfee2, target_feerate.GetFee(tx2_dimensions.vsize) - tx2_dimensions.mod_fee);
}
// If tx5s modified fees are sufficient for tx4 and tx5 to be picked
// into the block, our prospective new transaction would not need to
// bump tx4 when using tx4s second output. If however even tx5s
// modified fee (which essentially indicates "effective feerate") is
// not sufficient to bump tx4, using the second output of tx4 would
// require our transaction to bump tx4 from scratch since we evaluate
// transaction packages per ancestor sets and do not consider multiple
// childrens fees.
const TxDimensions& tx4_dimensions = tx_dims.find(tx4->GetHash())->second;
const TxDimensions& tx5_dimensions = tx_dims.find(tx5->GetHash())->second;
const CFeeRate tx4_feerate = CFeeRate(tx4_dimensions.mod_fee + tx5_dimensions.mod_fee, tx4_dimensions.vsize + tx5_dimensions.vsize);
CAmount bumpfee4 = Find(bump_fees, COutPoint{tx4->GetHash(), 1});
if (target_feerate <= tx4_feerate) {
// As long as target feerate is below tx5's ancestor feerate, there is no bump fee.
BOOST_CHECK_EQUAL(bumpfee4, 0);
} else {
// Difference is fee to bump tx4 from current to target feerate, without tx5.
BOOST_CHECK_EQUAL(bumpfee4, target_feerate.GetFee(tx4_dimensions.vsize) - tx4_dimensions.mod_fee);
}
}
// Spent outpoints should usually not be requested as they would not be
// considered available. However, when they are explicitly requested, we
// can calculate their bumpfee to facilitate RBF-replacements
for (const auto& target_feerate : various_normal_feerates) {
node::MiniMiner mini_miner_all_spent(pool, all_spent_outpoints);
BOOST_CHECK(mini_miner_all_spent.IsReadyToCalculate());
auto bump_fees_all_spent = mini_miner_all_spent.CalculateBumpFees(target_feerate);
BOOST_CHECK(!mini_miner_all_spent.IsReadyToCalculate());
BOOST_CHECK_EQUAL(bump_fees_all_spent.size(), all_spent_outpoints.size());
node::MiniMiner mini_miner_all_parents(pool, all_parent_outputs);
BOOST_CHECK(mini_miner_all_parents.IsReadyToCalculate());
auto bump_fees_all_parents = mini_miner_all_parents.CalculateBumpFees(target_feerate);
BOOST_CHECK(!mini_miner_all_parents.IsReadyToCalculate());
BOOST_CHECK_EQUAL(bump_fees_all_parents.size(), all_parent_outputs.size());
for (auto& bump_fees : {bump_fees_all_parents, bump_fees_all_spent}) {
// For all_parents case, both outputs from the parent should have the same bump fee,
// even though only one of them is in a to-be-replaced transaction.
BOOST_CHECK(sanity_check(all_transactions, bump_fees));
// Check tx0 bumpfee: no other bumper.
const TxDimensions& tx0_dimensions = tx_dims.find(tx0->GetHash())->second;
CAmount it0_spent = Find(bump_fees, COutPoint{tx0->GetHash(), 0});
if (target_feerate <= tx0_dimensions.feerate) {
BOOST_CHECK_EQUAL(it0_spent, 0);
} else {
// Difference is fee to bump tx0 from current to target feerate.
BOOST_CHECK_EQUAL(it0_spent, target_feerate.GetFee(tx0_dimensions.vsize) - tx0_dimensions.mod_fee);
}
// Check tx2 bumpfee: no other bumper, because tx3 is to-be-replaced.
const TxDimensions& tx2_dimensions = tx_dims.find(tx2->GetHash())->second;
const CFeeRate tx2_feerate_unbumped = tx2_dimensions.feerate;
auto it2_spent = Find(bump_fees, COutPoint{tx2->GetHash(), 0});
if (target_feerate <= tx2_feerate_unbumped) {
BOOST_CHECK_EQUAL(it2_spent, 0);
} else {
// Difference is fee to bump tx2 from current to target feerate, without tx3.
BOOST_CHECK_EQUAL(it2_spent, target_feerate.GetFee(tx2_dimensions.vsize) - tx2_dimensions.mod_fee);
}
// Check tx4 bumpfee: no other bumper, because tx5 is to-be-replaced.
const TxDimensions& tx4_dimensions = tx_dims.find(tx4->GetHash())->second;
const CFeeRate tx4_feerate_unbumped = tx4_dimensions.feerate;
auto it4_spent = Find(bump_fees, COutPoint{tx4->GetHash(), 0});
if (target_feerate <= tx4_feerate_unbumped) {
BOOST_CHECK_EQUAL(it4_spent, 0);
} else {
// Difference is fee to bump tx4 from current to target feerate, without tx5.
BOOST_CHECK_EQUAL(it4_spent, target_feerate.GetFee(tx4_dimensions.vsize) - tx4_dimensions.mod_fee);
}
}
}
}
BOOST_FIXTURE_TEST_CASE(miniminer_overlap, TestChain100Setup)
{
CTxMemPool& pool = *Assert(m_node.mempool);
LOCK2(::cs_main, pool.cs);
TestMemPoolEntryHelper entry;
const CAmount low_fee{CENT/2000}; // 500 ṩ
const CAmount med_fee{CENT/200}; // 5000 ṩ
const CAmount high_fee{CENT/10}; // 100_000 ṩ
// Create 3 parents of different feerates, and 1 child spending outputs from all 3 parents.
const auto tx0 = make_tx({COutPoint{m_coinbase_txns[0]->GetHash(), 0}}, /*num_outputs=*/2);
pool.addUnchecked(entry.Fee(low_fee).FromTx(tx0));
const auto tx1 = make_tx({COutPoint{m_coinbase_txns[1]->GetHash(), 0}}, /*num_outputs=*/2);
pool.addUnchecked(entry.Fee(med_fee).FromTx(tx1));
const auto tx2 = make_tx({COutPoint{m_coinbase_txns[2]->GetHash(), 0}}, /*num_outputs=*/2);
pool.addUnchecked(entry.Fee(high_fee).FromTx(tx2));
const auto tx3 = make_tx({COutPoint{tx0->GetHash(), 0}, COutPoint{tx1->GetHash(), 0}, COutPoint{tx2->GetHash(), 0}}, /*num_outputs=*/3);
pool.addUnchecked(entry.Fee(high_fee).FromTx(tx3));
// Create 1 grandparent and 1 parent, then 2 children.
const auto tx4 = make_tx({COutPoint{m_coinbase_txns[3]->GetHash(), 0}}, /*num_outputs=*/2);
pool.addUnchecked(entry.Fee(high_fee).FromTx(tx4));
const auto tx5 = make_tx({COutPoint{tx4->GetHash(), 0}}, /*num_outputs=*/3);
pool.addUnchecked(entry.Fee(low_fee).FromTx(tx5));
const auto tx6 = make_tx({COutPoint{tx5->GetHash(), 0}}, /*num_outputs=*/2);
pool.addUnchecked(entry.Fee(med_fee).FromTx(tx6));
const auto tx7 = make_tx({COutPoint{tx5->GetHash(), 1}}, /*num_outputs=*/2);
pool.addUnchecked(entry.Fee(high_fee).FromTx(tx7));
std::vector<CTransactionRef> all_transactions{tx0, tx1, tx2, tx3, tx4, tx5, tx6, tx7};
std::vector<int64_t> tx_vsizes;
tx_vsizes.reserve(all_transactions.size());
for (const auto& tx : all_transactions) tx_vsizes.push_back(GetVirtualTransactionSize(*tx));
std::vector<COutPoint> all_unspent_outpoints({
COutPoint{tx0->GetHash(), 1},
COutPoint{tx1->GetHash(), 1},
COutPoint{tx2->GetHash(), 1},
COutPoint{tx3->GetHash(), 0},
COutPoint{tx3->GetHash(), 1},
COutPoint{tx3->GetHash(), 2},
COutPoint{tx4->GetHash(), 1},
COutPoint{tx5->GetHash(), 2},
COutPoint{tx6->GetHash(), 0},
COutPoint{tx7->GetHash(), 0}
});
for (const auto& outpoint : all_unspent_outpoints) BOOST_CHECK(!pool.isSpent(outpoint));
const auto tx2_feerate = CFeeRate(high_fee, tx_vsizes[2]);
const auto tx3_feerate = CFeeRate(high_fee, tx_vsizes[3]);
// tx3's feerate is lower than tx2's. same fee, different weight.
BOOST_CHECK(tx2_feerate > tx3_feerate);
const auto tx3_anc_feerate = CFeeRate(low_fee + med_fee + high_fee, tx_vsizes[0] + tx_vsizes[1] + tx_vsizes[3]);
const auto tx4_feerate = CFeeRate(high_fee, tx_vsizes[4]);
const auto tx6_anc_feerate = CFeeRate(low_fee + med_fee, tx_vsizes[5] + tx_vsizes[6]);
const auto tx7_anc_feerate = CFeeRate(low_fee + high_fee, tx_vsizes[5] + tx_vsizes[7]);
BOOST_CHECK(tx4_feerate > tx6_anc_feerate);
BOOST_CHECK(tx4_feerate > tx7_anc_feerate);
// Extremely high feerate: everybody's bumpfee is from their full ancestor set.
{
node::MiniMiner mini_miner(pool, all_unspent_outpoints);
const CFeeRate very_high_feerate(COIN);
BOOST_CHECK(tx3_anc_feerate < very_high_feerate);
BOOST_CHECK(mini_miner.IsReadyToCalculate());
auto bump_fees = mini_miner.CalculateBumpFees(very_high_feerate);
BOOST_CHECK_EQUAL(bump_fees.size(), all_unspent_outpoints.size());
BOOST_CHECK(!mini_miner.IsReadyToCalculate());
BOOST_CHECK(sanity_check(all_transactions, bump_fees));
const auto tx0_bumpfee = bump_fees.find(COutPoint{tx0->GetHash(), 1});
BOOST_CHECK(tx0_bumpfee != bump_fees.end());
BOOST_CHECK_EQUAL(tx0_bumpfee->second, very_high_feerate.GetFee(tx_vsizes[0]) - low_fee);
const auto tx3_bumpfee = bump_fees.find(COutPoint{tx3->GetHash(), 0});
BOOST_CHECK(tx3_bumpfee != bump_fees.end());
BOOST_CHECK_EQUAL(tx3_bumpfee->second,
very_high_feerate.GetFee(tx_vsizes[0] + tx_vsizes[1] + tx_vsizes[2] + tx_vsizes[3]) - (low_fee + med_fee + high_fee + high_fee));
const auto tx6_bumpfee = bump_fees.find(COutPoint{tx6->GetHash(), 0});
BOOST_CHECK(tx6_bumpfee != bump_fees.end());
BOOST_CHECK_EQUAL(tx6_bumpfee->second,
very_high_feerate.GetFee(tx_vsizes[4] + tx_vsizes[5] + tx_vsizes[6]) - (high_fee + low_fee + med_fee));
const auto tx7_bumpfee = bump_fees.find(COutPoint{tx7->GetHash(), 0});
BOOST_CHECK(tx7_bumpfee != bump_fees.end());
BOOST_CHECK_EQUAL(tx7_bumpfee->second,
very_high_feerate.GetFee(tx_vsizes[4] + tx_vsizes[5] + tx_vsizes[7]) - (high_fee + low_fee + high_fee));
// Total fees: if spending multiple outputs from tx3 don't double-count fees.
node::MiniMiner mini_miner_total_tx3(pool, {COutPoint{tx3->GetHash(), 0}, COutPoint{tx3->GetHash(), 1}});
BOOST_CHECK(mini_miner_total_tx3.IsReadyToCalculate());
const auto tx3_bump_fee = mini_miner_total_tx3.CalculateTotalBumpFees(very_high_feerate);
BOOST_CHECK(!mini_miner_total_tx3.IsReadyToCalculate());
BOOST_CHECK(tx3_bump_fee.has_value());
BOOST_CHECK_EQUAL(tx3_bump_fee.value(),
very_high_feerate.GetFee(tx_vsizes[0] + tx_vsizes[1] + tx_vsizes[2] + tx_vsizes[3]) - (low_fee + med_fee + high_fee + high_fee));
// Total fees: if spending both tx6 and tx7, don't double-count fees.
node::MiniMiner mini_miner_tx6_tx7(pool, {COutPoint{tx6->GetHash(), 0}, COutPoint{tx7->GetHash(), 0}});
BOOST_CHECK(mini_miner_tx6_tx7.IsReadyToCalculate());
const auto tx6_tx7_bumpfee = mini_miner_tx6_tx7.CalculateTotalBumpFees(very_high_feerate);
BOOST_CHECK(!mini_miner_tx6_tx7.IsReadyToCalculate());
BOOST_CHECK(tx6_tx7_bumpfee.has_value());
BOOST_CHECK_EQUAL(tx6_tx7_bumpfee.value(),
very_high_feerate.GetFee(tx_vsizes[4] + tx_vsizes[5] + tx_vsizes[6] + tx_vsizes[7]) - (high_fee + low_fee + med_fee + high_fee));
}
// Feerate just below tx4: tx6 and tx7 have different bump fees.
{
const auto just_below_tx4 = CFeeRate(tx4_feerate.GetFeePerK() - 5);
node::MiniMiner mini_miner(pool, all_unspent_outpoints);
BOOST_CHECK(mini_miner.IsReadyToCalculate());
auto bump_fees = mini_miner.CalculateBumpFees(just_below_tx4);
BOOST_CHECK(!mini_miner.IsReadyToCalculate());
BOOST_CHECK_EQUAL(bump_fees.size(), all_unspent_outpoints.size());
BOOST_CHECK(sanity_check(all_transactions, bump_fees));
const auto tx6_bumpfee = bump_fees.find(COutPoint{tx6->GetHash(), 0});
BOOST_CHECK(tx6_bumpfee != bump_fees.end());
BOOST_CHECK_EQUAL(tx6_bumpfee->second, just_below_tx4.GetFee(tx_vsizes[5] + tx_vsizes[6]) - (low_fee + med_fee));
const auto tx7_bumpfee = bump_fees.find(COutPoint{tx7->GetHash(), 0});
BOOST_CHECK(tx7_bumpfee != bump_fees.end());
BOOST_CHECK_EQUAL(tx7_bumpfee->second, just_below_tx4.GetFee(tx_vsizes[5] + tx_vsizes[7]) - (low_fee + high_fee));
// Total fees: if spending both tx6 and tx7, don't double-count fees.
node::MiniMiner mini_miner_tx6_tx7(pool, {COutPoint{tx6->GetHash(), 0}, COutPoint{tx7->GetHash(), 0}});
BOOST_CHECK(mini_miner_tx6_tx7.IsReadyToCalculate());
const auto tx6_tx7_bumpfee = mini_miner_tx6_tx7.CalculateTotalBumpFees(just_below_tx4);
BOOST_CHECK(!mini_miner_tx6_tx7.IsReadyToCalculate());
BOOST_CHECK(tx6_tx7_bumpfee.has_value());
BOOST_CHECK_EQUAL(tx6_tx7_bumpfee.value(), just_below_tx4.GetFee(tx_vsizes[5] + tx_vsizes[6]) - (low_fee + med_fee));
}
// Feerate between tx6 and tx7's ancestor feerates: don't need to bump tx5 because tx7 already does.
{
const auto just_above_tx6 = CFeeRate(med_fee + 10, tx_vsizes[6]);
BOOST_CHECK(just_above_tx6 <= CFeeRate(low_fee + high_fee, tx_vsizes[5] + tx_vsizes[7]));
node::MiniMiner mini_miner(pool, all_unspent_outpoints);
BOOST_CHECK(mini_miner.IsReadyToCalculate());
auto bump_fees = mini_miner.CalculateBumpFees(just_above_tx6);
BOOST_CHECK(!mini_miner.IsReadyToCalculate());
BOOST_CHECK_EQUAL(bump_fees.size(), all_unspent_outpoints.size());
BOOST_CHECK(sanity_check(all_transactions, bump_fees));
const auto tx6_bumpfee = bump_fees.find(COutPoint{tx6->GetHash(), 0});
BOOST_CHECK(tx6_bumpfee != bump_fees.end());
BOOST_CHECK_EQUAL(tx6_bumpfee->second, just_above_tx6.GetFee(tx_vsizes[6]) - (med_fee));
const auto tx7_bumpfee = bump_fees.find(COutPoint{tx7->GetHash(), 0});
BOOST_CHECK(tx7_bumpfee != bump_fees.end());
BOOST_CHECK_EQUAL(tx7_bumpfee->second, 0);
}
}
BOOST_FIXTURE_TEST_CASE(calculate_cluster, TestChain100Setup)
{
CTxMemPool& pool = *Assert(m_node.mempool);
LOCK2(cs_main, pool.cs);
// Add chain of size 500
TestMemPoolEntryHelper entry;
std::vector<uint256> chain_txids;
auto& lasttx = m_coinbase_txns[0];
for (auto i{0}; i < 500; ++i) {
const auto tx = make_tx({COutPoint{lasttx->GetHash(), 0}}, /*num_outputs=*/1);
pool.addUnchecked(entry.Fee(CENT).FromTx(tx));
chain_txids.push_back(tx->GetHash());
lasttx = tx;
}
const auto cluster_500tx = pool.GatherClusters({lasttx->GetHash()});
CTxMemPool::setEntries cluster_500tx_set{cluster_500tx.begin(), cluster_500tx.end()};
BOOST_CHECK_EQUAL(cluster_500tx.size(), cluster_500tx_set.size());
const auto vec_iters_500 = pool.GetIterVec(chain_txids);
for (const auto& iter : vec_iters_500) BOOST_CHECK(cluster_500tx_set.count(iter));
// GatherClusters stops at 500 transactions.
const auto tx_501 = make_tx({COutPoint{lasttx->GetHash(), 0}}, /*num_outputs=*/1);
pool.addUnchecked(entry.Fee(CENT).FromTx(tx_501));
const auto cluster_501 = pool.GatherClusters({tx_501->GetHash()});
BOOST_CHECK_EQUAL(cluster_501.size(), 0);
// Zig Zag cluster:
// txp0 txp1 txp2 ... txp48 txp49
// \ / \ / \ \ /
// txc0 txc1 txc2 ... txc48
// Note that each transaction's ancestor size is 1 or 3, and each descendant size is 1, 2 or 3.
// However, all of these transactions are in the same cluster.
std::vector<uint256> zigzag_txids;
for (auto p{0}; p < 50; ++p) {
const auto txp = make_tx({COutPoint{GetRandHash(), 0}}, /*num_outputs=*/2);
pool.addUnchecked(entry.Fee(CENT).FromTx(txp));
zigzag_txids.push_back(txp->GetHash());
}
for (auto c{0}; c < 49; ++c) {
const auto txc = make_tx({COutPoint{zigzag_txids[c], 1}, COutPoint{zigzag_txids[c+1], 0}}, /*num_outputs=*/1);
pool.addUnchecked(entry.Fee(CENT).FromTx(txc));
zigzag_txids.push_back(txc->GetHash());
}
const auto vec_iters_zigzag = pool.GetIterVec(zigzag_txids);
// It doesn't matter which tx we calculate cluster for, everybody is in it.
2023-06-15 15:08:03 -06:00
const std::vector<size_t> indices{0, 22, 72, zigzag_txids.size() - 1};
for (const auto index : indices) {
const auto cluster = pool.GatherClusters({zigzag_txids[index]});
BOOST_CHECK_EQUAL(cluster.size(), zigzag_txids.size());
CTxMemPool::setEntries clusterset{cluster.begin(), cluster.end()};
BOOST_CHECK_EQUAL(cluster.size(), clusterset.size());
for (const auto& iter : vec_iters_zigzag) BOOST_CHECK(clusterset.count(iter));
}
}
BOOST_AUTO_TEST_SUITE_END()