0
0
Fork 0
mirror of https://github.com/bitcoin/bitcoin.git synced 2025-02-21 12:22:50 -05:00
bitcoin-bitcoin-core/src/field.h

128 lines
5.8 KiB
C
Raw Normal View History

/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
2013-05-09 15:24:32 +02:00
2013-03-08 01:20:41 +01:00
#ifndef _SECP256K1_FIELD_
#define _SECP256K1_FIELD_
2013-03-30 22:32:16 +01:00
/** Field element module.
*
* Field elements can be represented in several ways, but code accessing
* it (and implementations) need to take certain properaties into account:
* - Each field element can be normalized or not.
* - Each field element has a magnitude, which represents how far away
* its representation is away from normalization. Normalized elements
* always have a magnitude of 1, but a magnitude of 1 doesn't imply
* normality.
*/
2014-01-17 22:52:33 -05:00
#if defined HAVE_CONFIG_H
#include "libsecp256k1-config.h"
#endif
2014-12-17 12:41:31 +01:00
#if defined(USE_FIELD_10X26)
2013-04-02 00:10:14 +02:00
#include "field_10x26.h"
2013-04-07 00:37:06 +02:00
#elif defined(USE_FIELD_5X52)
2013-03-30 21:49:09 +01:00
#include "field_5x52.h"
2013-04-07 00:37:06 +02:00
#else
#error "Please select field implementation"
#endif
2013-03-08 01:20:41 +01:00
2013-03-30 22:32:16 +01:00
typedef struct {
2014-11-28 01:23:55 +01:00
#ifndef USE_NUM_NONE
2013-03-30 22:32:16 +01:00
secp256k1_num_t p;
2014-11-28 01:23:55 +01:00
#endif
secp256k1_fe_t order;
2013-03-30 22:32:16 +01:00
} secp256k1_fe_consts_t;
static const secp256k1_fe_consts_t *secp256k1_fe_consts = NULL;
/** Initialize field element precomputation data. */
static void secp256k1_fe_start(void);
2013-03-30 22:32:16 +01:00
/** Unload field element precomputation data. */
static void secp256k1_fe_stop(void);
2013-03-30 22:32:16 +01:00
/** Normalize a field element. */
static void secp256k1_fe_normalize(secp256k1_fe_t *r);
2013-03-30 22:32:16 +01:00
2014-12-10 14:34:25 +01:00
/** Weakly normalize a field element: reduce it magnitude to 1, but don't fully normalize. */
static void secp256k1_fe_normalize_weak(secp256k1_fe_t *r);
2014-12-05 03:37:42 +01:00
/** Normalize a field element, without constant-time guarantee. */
static void secp256k1_fe_normalize_var(secp256k1_fe_t *r);
2014-12-12 12:55:01 +07:00
/** Verify whether a field element represents zero i.e. would normalize to a zero value. The field
* implementation may optionally normalize the input, but this should not be relied upon. */
static int secp256k1_fe_normalizes_to_zero(secp256k1_fe_t *r);
2013-03-30 22:32:16 +01:00
/** Set a field element equal to a small integer. Resulting field element is normalized. */
static void secp256k1_fe_set_int(secp256k1_fe_t *r, int a);
2013-03-30 22:32:16 +01:00
/** Verify whether a field element is zero. Requires the input to be normalized. */
static int secp256k1_fe_is_zero(const secp256k1_fe_t *a);
2013-03-30 22:32:16 +01:00
/** Check the "oddness" of a field element. Requires the input to be normalized. */
static int secp256k1_fe_is_odd(const secp256k1_fe_t *a);
2013-03-30 22:32:16 +01:00
/** Compare two field elements. Requires magnitude-1 inputs. */
static int secp256k1_fe_equal_var(const secp256k1_fe_t *a, const secp256k1_fe_t *b);
2013-03-30 22:32:16 +01:00
/** Compare two field elements. Requires both inputs to be normalized */
static int secp256k1_fe_cmp_var(const secp256k1_fe_t *a, const secp256k1_fe_t *b);
/** Set a field element equal to 32-byte big endian value. If succesful, the resulting field element is normalized. */
static int secp256k1_fe_set_b32(secp256k1_fe_t *r, const unsigned char *a);
2013-03-30 22:32:16 +01:00
/** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */
static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe_t *a);
2013-03-30 22:32:16 +01:00
/** Set a field element equal to the additive inverse of another. Takes a maximum magnitude of the input
* as an argument. The magnitude of the output is one higher. */
static void secp256k1_fe_negate(secp256k1_fe_t *r, const secp256k1_fe_t *a, int m);
2013-03-30 22:32:16 +01:00
/** Multiplies the passed field element with a small integer constant. Multiplies the magnitude by that
* small integer. */
static void secp256k1_fe_mul_int(secp256k1_fe_t *r, int a);
2013-03-30 22:32:16 +01:00
/** Adds a field element to another. The result has the sum of the inputs' magnitudes as magnitude. */
static void secp256k1_fe_add(secp256k1_fe_t *r, const secp256k1_fe_t *a);
2013-03-30 22:32:16 +01:00
/** Sets a field element to be the product of two others. Requires the inputs' magnitudes to be at most 8.
* The output magnitude is 1 (but not guaranteed to be normalized). */
static void secp256k1_fe_mul(secp256k1_fe_t *r, const secp256k1_fe_t *a, const secp256k1_fe_t * SECP256K1_RESTRICT b);
2013-03-30 22:32:16 +01:00
/** Sets a field element to be the square of another. Requires the input's magnitude to be at most 8.
* The output magnitude is 1 (but not guaranteed to be normalized). */
static void secp256k1_fe_sqr(secp256k1_fe_t *r, const secp256k1_fe_t *a);
2013-03-30 22:32:16 +01:00
/** Sets a field element to be the (modular) square root (if any exist) of another. Requires the
* input's magnitude to be at most 8. The output magnitude is 1 (but not guaranteed to be
* normalized). Return value indicates whether a square root was found. */
2014-12-05 03:37:42 +01:00
static int secp256k1_fe_sqrt_var(secp256k1_fe_t *r, const secp256k1_fe_t *a);
2013-03-30 22:32:16 +01:00
/** Sets a field element to be the (modular) inverse of another. Requires the input's magnitude to be
* at most 8. The output magnitude is 1 (but not guaranteed to be normalized). */
static void secp256k1_fe_inv(secp256k1_fe_t *r, const secp256k1_fe_t *a);
2013-03-08 01:20:41 +01:00
2013-03-30 22:32:16 +01:00
/** Potentially faster version of secp256k1_fe_inv, without constant-time guarantee. */
static void secp256k1_fe_inv_var(secp256k1_fe_t *r, const secp256k1_fe_t *a);
2013-03-09 22:47:40 +01:00
/** Calculate the (modular) inverses of a batch of field elements. Requires the inputs' magnitudes to be
* at most 8. The output magnitudes are 1 (but not guaranteed to be normalized). The inputs and
* outputs must not overlap in memory. */
static void secp256k1_fe_inv_all_var(size_t len, secp256k1_fe_t r[len], const secp256k1_fe_t a[len]);
2013-03-30 22:32:16 +01:00
/** Convert a field element to a hexadecimal string. */
static void secp256k1_fe_get_hex(char *r, int *rlen, const secp256k1_fe_t *a);
2013-03-11 03:09:07 +01:00
2013-03-30 22:32:16 +01:00
/** Convert a hexadecimal string to a field element. */
static int secp256k1_fe_set_hex(secp256k1_fe_t *r, const char *a, int alen);
2013-03-08 01:20:41 +01:00
/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. */
static void secp256k1_fe_cmov(secp256k1_fe_t *r, const secp256k1_fe_t *a, int flag);
2013-03-08 01:20:41 +01:00
#endif