2022-01-20 18:57:27 +01:00
|
|
|
// Copyright (c) 2022 The Bitcoin Core developers
|
|
|
|
// Distributed under the MIT software license, see the accompanying
|
|
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
//
|
|
|
|
// Based on https://github.com/noloader/SHA-Intrinsics/blob/master/sha256-arm.c,
|
|
|
|
// Written and placed in public domain by Jeffrey Walton.
|
|
|
|
// Based on code from ARM, and by Johannes Schneiders, Skip Hovsmith and
|
|
|
|
// Barry O'Rourke for the mbedTLS project.
|
|
|
|
|
|
|
|
#ifdef ENABLE_ARM_SHANI
|
|
|
|
|
2022-01-20 19:00:33 +01:00
|
|
|
#include <array>
|
2022-01-20 18:57:27 +01:00
|
|
|
#include <cstdint>
|
|
|
|
#include <cstddef>
|
2022-01-20 19:00:33 +01:00
|
|
|
#include <arm_acle.h>
|
|
|
|
#include <arm_neon.h>
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
alignas(uint32x4_t) static constexpr std::array<uint32_t, 64> K =
|
|
|
|
{
|
|
|
|
0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5,
|
|
|
|
0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5,
|
|
|
|
0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3,
|
|
|
|
0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174,
|
|
|
|
0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC,
|
|
|
|
0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA,
|
|
|
|
0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7,
|
|
|
|
0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967,
|
|
|
|
0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13,
|
|
|
|
0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85,
|
|
|
|
0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3,
|
|
|
|
0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070,
|
|
|
|
0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5,
|
|
|
|
0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3,
|
|
|
|
0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208,
|
|
|
|
0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2,
|
|
|
|
};
|
|
|
|
}
|
2022-01-20 18:57:27 +01:00
|
|
|
|
|
|
|
namespace sha256_arm_shani {
|
|
|
|
void Transform(uint32_t* s, const unsigned char* chunk, size_t blocks)
|
|
|
|
{
|
2022-01-20 19:00:33 +01:00
|
|
|
uint32x4_t STATE0, STATE1, ABEF_SAVE, CDGH_SAVE;
|
|
|
|
uint32x4_t MSG0, MSG1, MSG2, MSG3;
|
|
|
|
uint32x4_t TMP0, TMP2;
|
|
|
|
|
|
|
|
// Load state
|
|
|
|
STATE0 = vld1q_u32(&s[0]);
|
|
|
|
STATE1 = vld1q_u32(&s[4]);
|
|
|
|
|
|
|
|
while (blocks--)
|
|
|
|
{
|
|
|
|
// Save state
|
|
|
|
ABEF_SAVE = STATE0;
|
|
|
|
CDGH_SAVE = STATE1;
|
|
|
|
|
|
|
|
// Load and convert input chunk to Big Endian
|
|
|
|
MSG0 = vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(chunk + 0)));
|
|
|
|
MSG1 = vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(chunk + 16)));
|
|
|
|
MSG2 = vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(chunk + 32)));
|
|
|
|
MSG3 = vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(chunk + 48)));
|
|
|
|
chunk += 64;
|
|
|
|
|
|
|
|
// Original implemenation preloaded message and constant addition which was 1-3% slower.
|
|
|
|
// Now included as first step in quad round code saving one Q Neon register
|
|
|
|
// "TMP0 = vaddq_u32(MSG0, vld1q_u32(&K[0]));"
|
|
|
|
|
|
|
|
// Rounds 1-4
|
|
|
|
TMP0 = vaddq_u32(MSG0, vld1q_u32(&K[0]));
|
|
|
|
TMP2 = STATE0;
|
|
|
|
MSG0 = vsha256su0q_u32(MSG0, MSG1);
|
|
|
|
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
|
|
|
|
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
|
|
|
|
MSG0 = vsha256su1q_u32(MSG0, MSG2, MSG3);
|
|
|
|
|
|
|
|
// Rounds 5-8
|
|
|
|
TMP0 = vaddq_u32(MSG1, vld1q_u32(&K[4]));
|
|
|
|
TMP2 = STATE0;
|
|
|
|
MSG1 = vsha256su0q_u32(MSG1, MSG2);
|
|
|
|
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
|
|
|
|
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
|
|
|
|
MSG1 = vsha256su1q_u32(MSG1, MSG3, MSG0);
|
|
|
|
|
|
|
|
// Rounds 9-12
|
|
|
|
TMP0 = vaddq_u32(MSG2, vld1q_u32(&K[8]));
|
|
|
|
TMP2 = STATE0;
|
|
|
|
MSG2 = vsha256su0q_u32(MSG2, MSG3);
|
|
|
|
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
|
|
|
|
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
|
|
|
|
MSG2 = vsha256su1q_u32(MSG2, MSG0, MSG1);
|
|
|
|
|
|
|
|
// Rounds 13-16
|
|
|
|
TMP0 = vaddq_u32(MSG3, vld1q_u32(&K[12]));
|
|
|
|
TMP2 = STATE0;
|
|
|
|
MSG3 = vsha256su0q_u32(MSG3, MSG0);
|
|
|
|
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
|
|
|
|
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
|
|
|
|
MSG3 = vsha256su1q_u32(MSG3, MSG1, MSG2);
|
|
|
|
|
|
|
|
// Rounds 17-20
|
|
|
|
TMP0 = vaddq_u32(MSG0, vld1q_u32(&K[16]));
|
|
|
|
TMP2 = STATE0;
|
|
|
|
MSG0 = vsha256su0q_u32(MSG0, MSG1);
|
|
|
|
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
|
|
|
|
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
|
|
|
|
MSG0 = vsha256su1q_u32(MSG0, MSG2, MSG3);
|
|
|
|
|
|
|
|
// Rounds 21-24
|
|
|
|
TMP0 = vaddq_u32(MSG1, vld1q_u32(&K[20]));
|
|
|
|
TMP2 = STATE0;
|
|
|
|
MSG1 = vsha256su0q_u32(MSG1, MSG2);
|
|
|
|
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
|
|
|
|
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
|
|
|
|
MSG1 = vsha256su1q_u32(MSG1, MSG3, MSG0);
|
|
|
|
|
|
|
|
// Rounds 25-28
|
|
|
|
TMP0 = vaddq_u32(MSG2, vld1q_u32(&K[24]));
|
|
|
|
TMP2 = STATE0;
|
|
|
|
MSG2 = vsha256su0q_u32(MSG2, MSG3);
|
|
|
|
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
|
|
|
|
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
|
|
|
|
MSG2 = vsha256su1q_u32(MSG2, MSG0, MSG1);
|
|
|
|
|
|
|
|
// Rounds 29-32
|
|
|
|
TMP0 = vaddq_u32(MSG3, vld1q_u32(&K[28]));
|
|
|
|
TMP2 = STATE0;
|
|
|
|
MSG3 = vsha256su0q_u32(MSG3, MSG0);
|
|
|
|
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
|
|
|
|
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
|
|
|
|
MSG3 = vsha256su1q_u32(MSG3, MSG1, MSG2);
|
|
|
|
|
|
|
|
// Rounds 33-36
|
|
|
|
TMP0 = vaddq_u32(MSG0, vld1q_u32(&K[32]));
|
|
|
|
TMP2 = STATE0;
|
|
|
|
MSG0 = vsha256su0q_u32(MSG0, MSG1);
|
|
|
|
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
|
|
|
|
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
|
|
|
|
MSG0 = vsha256su1q_u32(MSG0, MSG2, MSG3);
|
|
|
|
|
|
|
|
// Rounds 37-40
|
|
|
|
TMP0 = vaddq_u32(MSG1, vld1q_u32(&K[36]));
|
|
|
|
TMP2 = STATE0;
|
|
|
|
MSG1 = vsha256su0q_u32(MSG1, MSG2);
|
|
|
|
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
|
|
|
|
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
|
|
|
|
MSG1 = vsha256su1q_u32(MSG1, MSG3, MSG0);
|
|
|
|
|
|
|
|
// Rounds 41-44
|
|
|
|
TMP0 = vaddq_u32(MSG2, vld1q_u32(&K[40]));
|
|
|
|
TMP2 = STATE0;
|
|
|
|
MSG2 = vsha256su0q_u32(MSG2, MSG3);
|
|
|
|
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
|
|
|
|
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
|
|
|
|
MSG2 = vsha256su1q_u32(MSG2, MSG0, MSG1);
|
|
|
|
|
|
|
|
// Rounds 45-48
|
|
|
|
TMP0 = vaddq_u32(MSG3, vld1q_u32(&K[44]));
|
|
|
|
TMP2 = STATE0;
|
|
|
|
MSG3 = vsha256su0q_u32(MSG3, MSG0);
|
|
|
|
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
|
|
|
|
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
|
|
|
|
MSG3 = vsha256su1q_u32(MSG3, MSG1, MSG2);
|
|
|
|
|
|
|
|
// Rounds 49-52
|
|
|
|
TMP0 = vaddq_u32(MSG0, vld1q_u32(&K[48]));
|
|
|
|
TMP2 = STATE0;
|
|
|
|
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
|
|
|
|
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
|
|
|
|
|
|
|
|
// Rounds 53-56
|
|
|
|
TMP0 = vaddq_u32(MSG1, vld1q_u32(&K[52]));
|
|
|
|
TMP2 = STATE0;
|
|
|
|
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
|
|
|
|
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
|
|
|
|
|
|
|
|
// Rounds 57-60
|
|
|
|
TMP0 = vaddq_u32(MSG2, vld1q_u32(&K[56]));
|
|
|
|
TMP2 = STATE0;
|
|
|
|
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
|
|
|
|
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
|
|
|
|
|
|
|
|
// Rounds 61-64
|
|
|
|
TMP0 = vaddq_u32(MSG3, vld1q_u32(&K[60]));
|
|
|
|
TMP2 = STATE0;
|
|
|
|
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
|
|
|
|
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
|
|
|
|
|
|
|
|
// Update state
|
|
|
|
STATE0 = vaddq_u32(STATE0, ABEF_SAVE);
|
|
|
|
STATE1 = vaddq_u32(STATE1, CDGH_SAVE);
|
|
|
|
}
|
2022-01-20 18:57:27 +01:00
|
|
|
|
2022-01-20 19:00:33 +01:00
|
|
|
// Save final state
|
|
|
|
vst1q_u32(&s[0], STATE0);
|
|
|
|
vst1q_u32(&s[4], STATE1);
|
2022-01-20 18:57:27 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|