0
0
Fork 0
mirror of https://github.com/bitcoin/bitcoin.git synced 2025-02-03 09:56:38 -05:00

Merge bitcoin/bitcoin#23025: bench: update nanobench add -min_time

e148a52332 bench: fixed ubsan implicit conversion (Martin Ankerl)
da4e2f1da0 bench: various args improvements (Jon Atack)
d312fd94a1 bench: clean up includes (Jon Atack)
1f10f1663e bench: add usage description and documentation (Martin Ankerl)
d3c6f8bfa1 bench: introduce -min_time argument (Martin Ankerl)
9fef832932 bench: make EvictionProtection.* work with any number of iterations (Martin Ankerl)
153e6860e8 bench: change AddrManGood to AddrManAddThenGood (Martin Ankerl)
468b232f71 bench: remove unnecessary & incorrect  multiplication in MuHashDiv (Martin Ankerl)
eed99cf272 bench: update nanobench from 4.3.4 to 4.3.6 (Martin Ankerl)

Pull request description:

  This PR updates the nanobench with the latest release from upstream, v4.3.6. It fixes the missing performance counters.

  Due to discussions on #22999 I have done some work that should make the benchmark results more reliable. It introduces a new flag `-min_time` that allows to run a benchmark for much longer then the default. When results are unreliable, choosing a large timeframe here should usually get repeatable results even when frequency scaling cannot be disabled. The default is now 10ms. For this to work I have changed the `AddrManGood` and `EvictionProtection` benchmarks so they work with any number of iterations.

  Also, this adds more usage documentation to `bench_bitcoin -h` and I've cherry-picked two changes from #22999 authored by Jon Atack

ACKs for top commit:
  jonatack:
    re-ACK e148a52332
  laanwj:
    Code review ACK e148a52332

Tree-SHA512: 2da6de19a5c85ac234b190025e195c727546166dbb75e3f9267e667a73677ba1e29b7765877418a42b1407b65df901e0130763936525e6f1450f18f08837c40c
This commit is contained in:
W. J. van der Laan 2021-09-24 17:10:06 +02:00
commit 03cb2b480b
No known key found for this signature in database
GPG key ID: 1E4AED62986CD25D
9 changed files with 128 additions and 72 deletions

View file

@ -103,41 +103,33 @@ static void AddrManGetAddr(benchmark::Bench& bench)
});
}
static void AddrManGood(benchmark::Bench& bench)
static void AddrManAddThenGood(benchmark::Bench& bench)
{
/* Create many CAddrMan objects - one to be modified at each loop iteration.
* This is necessary because the CAddrMan::Good() method modifies the
* object, affecting the timing of subsequent calls to the same method and
* we want to do the same amount of work in every loop iteration. */
bench.epochs(5).epochIterations(1);
const uint64_t addrman_count{bench.epochs() * bench.epochIterations()};
Assert(addrman_count == 5U);
std::vector<std::unique_ptr<CAddrMan>> addrmans(addrman_count);
for (size_t i{0}; i < addrman_count; ++i) {
addrmans[i] = std::make_unique<CAddrMan>(/* asmap */ std::vector<bool>(), /* deterministic */ false, /* consistency_check_ratio */ 0);
FillAddrMan(*addrmans[i]);
}
auto markSomeAsGood = [](CAddrMan& addrman) {
for (size_t source_i = 0; source_i < NUM_SOURCES; ++source_i) {
for (size_t addr_i = 0; addr_i < NUM_ADDRESSES_PER_SOURCE; ++addr_i) {
if (addr_i % 32 == 0) {
addrman.Good(g_addresses[source_i][addr_i]);
}
addrman.Good(g_addresses[source_i][addr_i]);
}
}
};
uint64_t i = 0;
CreateAddresses();
bench.run([&] {
markSomeAsGood(*addrmans.at(i));
++i;
// To make the benchmark independent of the number of evaluations, we always prepare a new addrman.
// This is necessary because CAddrMan::Good() method modifies the object, affecting the timing of subsequent calls
// to the same method and we want to do the same amount of work in every loop iteration.
//
// This has some overhead (exactly the result of AddrManAdd benchmark), but that overhead is constant so improvements in
// CAddrMan::Good() will still be noticeable.
CAddrMan addrman(/* asmap */ std::vector<bool>(), /* deterministic */ false, /* consistency_check_ratio */ 0);
AddAddressesToAddrMan(addrman);
markSomeAsGood(addrman);
});
}
BENCHMARK(AddrManAdd);
BENCHMARK(AddrManSelect);
BENCHMARK(AddrManGetAddr);
BENCHMARK(AddrManGood);
BENCHMARK(AddrManAddThenGood);

View file

@ -3,7 +3,6 @@
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <bench/bench.h>
#include <bench/nanobench.h>
#include <bech32.h>
#include <util/strencodings.h>

View file

@ -4,11 +4,18 @@
#include <bench/bench.h>
#include <chainparams.h>
#include <test/util/setup_common.h>
#include <validation.h>
#include <chrono>
#include <fstream>
#include <functional>
#include <iostream>
#include <map>
#include <regex>
#include <string>
#include <vector>
using namespace std::chrono_literals;
const std::function<void(const std::string&)> G_TEST_LOG_FUN{};
@ -61,6 +68,12 @@ void benchmark::BenchRunner::RunAll(const Args& args)
Bench bench;
bench.name(p.first);
if (args.min_time > 0ms) {
// convert to nanos before dividing to reduce rounding errors
std::chrono::nanoseconds min_time_ns = args.min_time;
bench.minEpochTime(min_time_ns / bench.epochs());
}
if (args.asymptote.empty()) {
p.second(bench);
} else {

View file

@ -41,11 +41,12 @@ using ankerl::nanobench::Bench;
typedef std::function<void(Bench&)> BenchFunction;
struct Args {
std::string regex_filter;
bool is_list_only;
std::chrono::milliseconds min_time;
std::vector<double> asymptote;
std::string output_csv;
std::string output_json;
std::string regex_filter;
};
class BenchRunner

View file

@ -4,21 +4,28 @@
#include <bench/bench.h>
#include <clientversion.h>
#include <crypto/sha256.h>
#include <util/strencodings.h>
#include <util/system.h>
#include <memory>
#include <chrono>
#include <cstdint>
#include <iostream>
#include <sstream>
#include <vector>
static const char* DEFAULT_BENCH_FILTER = ".*";
static constexpr int64_t DEFAULT_MIN_TIME_MS{10};
static void SetupBenchArgs(ArgsManager& argsman)
{
SetupHelpOptions(argsman);
argsman.AddArg("-asymptote=n1,n2,n3,...", "Test asymptotic growth of the runtime of an algorithm, if supported by the benchmark", ArgsManager::ALLOW_ANY, OptionsCategory::OPTIONS);
argsman.AddArg("-asymptote=<n1,n2,n3,...>", "Test asymptotic growth of the runtime of an algorithm, if supported by the benchmark", ArgsManager::ALLOW_ANY, OptionsCategory::OPTIONS);
argsman.AddArg("-filter=<regex>", strprintf("Regular expression filter to select benchmark by name (default: %s)", DEFAULT_BENCH_FILTER), ArgsManager::ALLOW_ANY, OptionsCategory::OPTIONS);
argsman.AddArg("-list", "List benchmarks without executing them", ArgsManager::ALLOW_ANY, OptionsCategory::OPTIONS);
argsman.AddArg("-list", "List benchmarks without executing them", ArgsManager::ALLOW_BOOL, OptionsCategory::OPTIONS);
argsman.AddArg("-min_time=<milliseconds>", strprintf("Minimum runtime per benchmark, in milliseconds (default: %d)", DEFAULT_MIN_TIME_MS), ArgsManager::ALLOW_INT, OptionsCategory::OPTIONS);
argsman.AddArg("-output_csv=<output.csv>", "Generate CSV file with the most important benchmark results", ArgsManager::ALLOW_ANY, OptionsCategory::OPTIONS);
argsman.AddArg("-output_json=<output.json>", "Generate JSON file with all benchmark results", ArgsManager::ALLOW_ANY, OptionsCategory::OPTIONS);
}
@ -48,17 +55,62 @@ int main(int argc, char** argv)
}
if (HelpRequested(argsman)) {
std::cout << argsman.GetHelpMessage();
std::cout << "Usage: bench_bitcoin [options]\n"
"\n"
<< argsman.GetHelpMessage()
<< "Description:\n"
"\n"
" bench_bitcoin executes microbenchmarks. The quality of the benchmark results\n"
" highly depend on the stability of the machine. It can sometimes be difficult\n"
" to get stable, repeatable results, so here are a few tips:\n"
"\n"
" * Use pyperf [1] to disable frequency scaling, turbo boost etc. For best\n"
" results, use CPU pinning and CPU isolation (see [2]).\n"
"\n"
" * Each call of run() should do exactly the same work. E.g. inserting into\n"
" a std::vector doesn't do that as it will reallocate on certain calls. Make\n"
" sure each run has exactly the same preconditions.\n"
"\n"
" * If results are still not reliable, increase runtime with e.g.\n"
" -min_time=5000 to let a benchmark run for at least 5 seconds.\n"
"\n"
" * bench_bitcoin uses nanobench [3] for which there is extensive\n"
" documentation available online.\n"
"\n"
"Environment Variables:\n"
"\n"
" To attach a profiler you can run a benchmark in endless mode. This can be\n"
" done with the environment variable NANOBENCH_ENDLESS. E.g. like so:\n"
"\n"
" NANOBENCH_ENDLESS=MuHash ./bench_bitcoin -filter=MuHash\n"
"\n"
" In rare cases it can be useful to suppress stability warnings. This can be\n"
" done with the environment variable NANOBENCH_SUPPRESS_WARNINGS, e.g:\n"
"\n"
" NANOBENCH_SUPPRESS_WARNINGS=1 ./bench_bitcoin\n"
"\n"
"Notes:\n"
"\n"
" 1. pyperf\n"
" https://github.com/psf/pyperf\n"
"\n"
" 2. CPU pinning & isolation\n"
" https://pyperf.readthedocs.io/en/latest/system.html\n"
"\n"
" 3. nanobench\n"
" https://github.com/martinus/nanobench\n"
"\n";
return EXIT_SUCCESS;
}
benchmark::Args args;
args.regex_filter = argsman.GetArg("-filter", DEFAULT_BENCH_FILTER);
args.is_list_only = argsman.GetBoolArg("-list", false);
args.asymptote = parseAsymptote(argsman.GetArg("-asymptote", ""));
args.is_list_only = argsman.GetBoolArg("-list", false);
args.min_time = std::chrono::milliseconds(argsman.GetArg("-min_time", DEFAULT_MIN_TIME_MS));
args.output_csv = argsman.GetArg("-output_csv", "");
args.output_json = argsman.GetArg("-output_json", "");
args.regex_filter = argsman.GetArg("-filter", DEFAULT_BENCH_FILTER);
benchmark::BenchRunner::RunAll(args);

View file

@ -110,9 +110,9 @@ static void MuHash(benchmark::Bench& bench)
{
MuHash3072 acc;
unsigned char key[32] = {0};
int i = 0;
uint32_t i = 0;
bench.run([&] {
key[0] = ++i;
key[0] = ++i & 0xFF;
acc *= MuHash3072(key);
});
}
@ -134,10 +134,6 @@ static void MuHashDiv(benchmark::Bench& bench)
FastRandomContext rng(true);
MuHash3072 muhash{rng.randbytes(32)};
for (size_t i = 0; i < bench.epochIterations(); ++i) {
acc *= muhash;
}
bench.run([&] {
acc /= muhash;
});

View file

@ -33,7 +33,7 @@
// see https://semver.org/
#define ANKERL_NANOBENCH_VERSION_MAJOR 4 // incompatible API changes
#define ANKERL_NANOBENCH_VERSION_MINOR 3 // backwards-compatible changes
#define ANKERL_NANOBENCH_VERSION_PATCH 4 // backwards-compatible bug fixes
#define ANKERL_NANOBENCH_VERSION_PATCH 6 // backwards-compatible bug fixes
///////////////////////////////////////////////////////////////////////////////////////////////////
// public facing api - as minimal as possible
@ -88,13 +88,15 @@
} while (0)
#endif
#if defined(__linux__) && defined(PERF_EVENT_IOC_ID) && defined(PERF_COUNT_HW_REF_CPU_CYCLES) && defined(PERF_FLAG_FD_CLOEXEC) && \
!defined(ANKERL_NANOBENCH_DISABLE_PERF_COUNTERS)
// only enable perf counters on kernel 3.14 which seems to have all the necessary defines. The three PERF_... defines are not in
// kernel 2.6.32 (all others are).
# define ANKERL_NANOBENCH_PRIVATE_PERF_COUNTERS() 1
#else
# define ANKERL_NANOBENCH_PRIVATE_PERF_COUNTERS() 0
#define ANKERL_NANOBENCH_PRIVATE_PERF_COUNTERS() 0
#if defined(__linux__) && !defined(ANKERL_NANOBENCH_DISABLE_PERF_COUNTERS)
# include <linux/version.h>
# if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 14, 0)
// PERF_COUNT_HW_REF_CPU_CYCLES only available since kernel 3.3
// PERF_FLAG_FD_CLOEXEC since kernel 3.14
# undef ANKERL_NANOBENCH_PRIVATE_PERF_COUNTERS
# define ANKERL_NANOBENCH_PRIVATE_PERF_COUNTERS() 1
# endif
#endif
#if defined(__clang__)
@ -2210,20 +2212,20 @@ struct IterationLogic::Impl {
columns.emplace_back(10, 1, "err%", "%", rErrorMedian * 100.0);
double rInsMedian = -1.0;
if (mResult.has(Result::Measure::instructions)) {
if (mBench.performanceCounters() && mResult.has(Result::Measure::instructions)) {
rInsMedian = mResult.median(Result::Measure::instructions);
columns.emplace_back(18, 2, "ins/" + mBench.unit(), "", rInsMedian / mBench.batch());
}
double rCycMedian = -1.0;
if (mResult.has(Result::Measure::cpucycles)) {
if (mBench.performanceCounters() && mResult.has(Result::Measure::cpucycles)) {
rCycMedian = mResult.median(Result::Measure::cpucycles);
columns.emplace_back(18, 2, "cyc/" + mBench.unit(), "", rCycMedian / mBench.batch());
}
if (rInsMedian > 0.0 && rCycMedian > 0.0) {
columns.emplace_back(9, 3, "IPC", "", rCycMedian <= 0.0 ? 0.0 : rInsMedian / rCycMedian);
}
if (mResult.has(Result::Measure::branchinstructions)) {
if (mBench.performanceCounters() && mResult.has(Result::Measure::branchinstructions)) {
double rBraMedian = mResult.median(Result::Measure::branchinstructions);
columns.emplace_back(17, 2, "bra/" + mBench.unit(), "", rBraMedian / mBench.batch());
if (mResult.has(Result::Measure::branchmisses)) {
@ -2402,6 +2404,14 @@ public:
return (a + divisor / 2) / divisor;
}
ANKERL_NANOBENCH_NO_SANITIZE("integer", "undefined")
static inline uint32_t mix(uint32_t x) noexcept {
x ^= x << 13;
x ^= x >> 17;
x ^= x << 5;
return x;
}
template <typename Op>
ANKERL_NANOBENCH_NO_SANITIZE("integer", "undefined")
void calibrate(Op&& op) {
@ -2441,15 +2451,10 @@ public:
uint64_t const numIters = 100000U + (std::random_device{}() & 3);
uint64_t n = numIters;
uint32_t x = 1234567;
auto fn = [&]() {
x ^= x << 13;
x ^= x >> 17;
x ^= x << 5;
};
beginMeasure();
while (n-- > 0) {
fn();
x = mix(x);
}
endMeasure();
detail::doNotOptimizeAway(x);
@ -2459,8 +2464,8 @@ public:
beginMeasure();
while (n-- > 0) {
// we now run *twice* so we can easily calculate the overhead
fn();
fn();
x = mix(x);
x = mix(x);
}
endMeasure();
detail::doNotOptimizeAway(x);

View file

@ -20,19 +20,17 @@ static void EvictionProtectionCommon(
{
using Candidates = std::vector<NodeEvictionCandidate>;
FastRandomContext random_context{true};
bench.warmup(100).epochIterations(1100);
Candidates candidates{GetRandomNodeEvictionCandidates(num_candidates, random_context)};
for (auto& c : candidates) {
candidate_setup_fn(c);
}
std::vector<Candidates> copies{
static_cast<size_t>(bench.epochs() * bench.epochIterations()), candidates};
size_t i{0};
bench.run([&] {
ProtectEvictionCandidatesByRatio(copies.at(i));
++i;
// creating a copy has an overhead of about 3%, so it does not influence the benchmark results much.
auto copy = candidates;
ProtectEvictionCandidatesByRatio(copy);
});
}

View file

@ -13,16 +13,16 @@ static void RollingBloom(benchmark::Bench& bench)
uint32_t count = 0;
bench.run([&] {
count++;
data[0] = count;
data[1] = count >> 8;
data[2] = count >> 16;
data[3] = count >> 24;
data[0] = count & 0xFF;
data[1] = (count >> 8) & 0xFF;
data[2] = (count >> 16) & 0xFF;
data[3] = (count >> 24) & 0xFF;
filter.insert(data);
data[0] = count >> 24;
data[1] = count >> 16;
data[2] = count >> 8;
data[3] = count;
data[0] = (count >> 24) & 0xFF;
data[1] = (count >> 16) & 0xFF;
data[2] = (count >> 8) & 0xFF;
data[3] = count & 0xFF;
filter.contains(data);
});
}