diff --git a/src/wallet/coinselection.cpp b/src/wallet/coinselection.cpp index 391e120932..42615b5d42 100644 --- a/src/wallet/coinselection.cpp +++ b/src/wallet/coinselection.cpp @@ -25,14 +25,30 @@ static util::Result ErrorMaxWeightExceeded() "Please try sending a smaller amount or manually consolidating your wallet's UTXOs")}; } -// Descending order comparator +// Sort by descending (effective) value prefer lower waste on tie struct { bool operator()(const OutputGroup& a, const OutputGroup& b) const { + if (a.GetSelectionAmount() == b.GetSelectionAmount()) { + // Lower waste is better when effective_values are tied + return (a.fee - a.long_term_fee) < (b.fee - b.long_term_fee); + } return a.GetSelectionAmount() > b.GetSelectionAmount(); } } descending; +// Sort by descending (effective) value prefer lower weight on tie +struct { + bool operator()(const OutputGroup& a, const OutputGroup& b) const + { + if (a.GetSelectionAmount() == b.GetSelectionAmount()) { + // Sort lower weight to front on tied effective_value + return a.m_weight < b.m_weight; + } + return a.GetSelectionAmount() > b.GetSelectionAmount(); + } +} descending_effval_weight; + /* * This is the Branch and Bound Coin Selection algorithm designed by Murch. It searches for an input * set that can pay for the spending target and does not exceed the spending target by more than the @@ -68,6 +84,7 @@ struct { * bound of the range. * @param const CAmount& cost_of_change This is the cost of creating and spending a change output. * This plus selection_target is the upper bound of the range. + * @param int max_weight The maximum weight available for the input set. * @returns The result of this coin selection algorithm, or std::nullopt */ @@ -183,6 +200,331 @@ util::Result SelectCoinsBnB(std::vector& utxo_pool return result; } +/* + * TL;DR: Coin Grinder is a DFS-based algorithm that deterministically searches for the minimum-weight input set to fund + * the transaction. The algorithm is similar to the Branch and Bound algorithm, but will produce a transaction _with_ a + * change output instead of a changeless transaction. + * + * Full description: CoinGrinder can be thought of as a graph walking algorithm. It explores a binary tree + * representation of the powerset of the UTXO pool. Each node in the tree represents a candidate input set. The tree’s + * root is the empty set. Each node in the tree has two children which are formed by either adding or skipping the next + * UTXO ("inclusion/omission branch"). Each level in the tree after the root corresponds to a decision about one UTXO in + * the UTXO pool. + * + * Example: + * We represent UTXOs as _alias=[effective_value/weight]_ and indicate omitted UTXOs with an underscore. Given a UTXO + * pool {A=[10/2], B=[7/1], C=[5/1], D=[4/2]} sorted by descending effective value, our search tree looks as follows: + * + * _______________________ {} ________________________ + * / \ + * A=[10/2] __________ {A} _________ __________ {_} _________ + * / \ / \ + * B=[7/1] {AB} _ {A_} _ {_B} _ {__} _ + * / \ / \ / \ / \ + * C=[5/1] {ABC} {AB_} {A_C} {A__} {_BC} {_B_} {__C} {___} + * / \ / \ / \ / \ / \ / \ / \ / \ + * D=[4/2] {ABCD} {ABC_} {AB_D} {AB__} {A_CD} {A_C_} {A__D} {A___} {_BCD} {_BC_} {_B_D} {_B__} {__CD} {__C_} {___D} {____} + * + * + * CoinGrinder uses a depth-first search to walk this tree. It first tries inclusion branches, then omission branches. A + * naive exploration of a tree with four UTXOs requires visiting all 31 nodes: + * + * {} {A} {AB} {ABC} {ABCD} {ABC_} {AB_} {AB_D} {AB__} {A_} {A_C} {A_CD} {A_C_} {A__} {A__D} {A___} {_} {_B} {_BC} + * {_BCD} {_BC_} {_B_} {_B_D} {_B__} {__} {__C} {__CD} {__C} {___} {___D} {____} + * + * As powersets grow exponentially with the set size, walking the entire tree would quickly get computationally + * infeasible with growing UTXO pools. Thanks to traversing the tree in a deterministic order, we can keep track of the + * progress of the search solely on basis of the current selection (and the best selection so far). We visit as few + * nodes as possible by recognizing and skipping any branches that can only contain solutions worse than the best + * solution so far. This makes CoinGrinder a branch-and-bound algorithm + * (https://en.wikipedia.org/wiki/Branch_and_bound). + * CoinGrinder is searching for the input set with lowest weight that can fund a transaction, so for example we can only + * ever find a _better_ candidate input set in a node that adds a UTXO, but never in a node that skips a UTXO. After + * visiting {A} and exploring the inclusion branch {AB} and its descendants, the candidate input set in the omission + * branch {A_} is equivalent to the parent {A} in effective value and weight. While CoinGrinder does need to visit the + * descendants of the omission branch {A_}, it is unnecessary to evaluate the candidate input set in the omission branch + * itself. By skipping evaluation of all nodes on an omission branch we reduce the visited nodes to 15: + * + * {A} {AB} {ABC} {ABCD} {AB_D} {A_C} {A_CD} {A__D} {_B} {_BC} {_BCD} {_B_D} {__C} {__CD} {___D} + * + * _______________________ {} ________________________ + * / \ + * A=[10/2] __________ {A} _________ ___________\____________ + * / \ / \ + * B=[7/1] {AB} __ __\_____ {_B} __ __\_____ + * / \ / \ / \ / \ + * C=[5/1] {ABC} \ {A_C} \ {_BC} \ {__C} \ + * / / / / / / / / + * D=[4/2] {ABCD} {AB_D} {A_CD} {A__D} {_BCD} {_B_D} {__CD} {___D} + * + * + * We refer to the move from the inclusion branch {AB} via the omission branch {A_} to its inclusion-branch child {A_C} + * as _shifting to the omission branch_ or just _SHIFT_. (The index of the ultimate element in the candidate input set + * shifts right by one: {AB} ⇒ {A_C}.) + * When we reach a leaf node in the last level of the tree, shifting to the omission branch is not possible. Instead we + * go to the omission branch of the node’s last ancestor on an inclusion branch: from {ABCD}, we go to {AB_D}. From + * {AB_D}, we go to {A_C}. We refer to this operation as a _CUT_. (The ultimate element in + * the input set is deselected, and the penultimate element is shifted right by one: {AB_D} ⇒ {A_C}.) + * If a candidate input set in a node has not selected sufficient funds to build the transaction, we continue directly + * along the next inclusion branch. We call this operation _EXPLORE_. (We go from one inclusion branch to the next + * inclusion branch: {_B} ⇒ {_BC}.) + * Further, any prefix that already has selected sufficient effective value to fund the transaction cannot be improved + * by adding more UTXOs. If for example the candidate input set in {AB} is a valid solution, all potential descendant + * solutions {ABC}, {ABCD}, and {AB_D} must have a higher weight, thus instead of exploring the descendants of {AB}, we + * can SHIFT from {AB} to {A_C}. + * + * Given the above UTXO set, using a target of 11, and following these initial observations, the basic implementation of + * CoinGrinder visits the following 10 nodes: + * + * Node [eff_val/weight] Evaluation + * --------------------------------------------------------------- + * {A} [10/2] Insufficient funds: EXPLORE + * {AB} [17/3] Solution: SHIFT to omission branch + * {A_C} [15/3] Better solution: SHIFT to omission branch + * {A__D} [14/4] Worse solution, shift impossible due to leaf node: CUT to omission branch of {A__D}, + * i.e. SHIFT to omission branch of {A} + * {_B} [7/1] Insufficient funds: EXPLORE + * {_BC} [12/2] Better solution: SHIFT to omission branch + * {_B_D} [11/3] Worse solution, shift impossible due to leaf node: CUT to omission branch of {_B_D}, + * i.e. SHIFT to omission branch of {_B} + * {__C} [5/1] Insufficient funds: EXPLORE + * {__CD} [9/3] Insufficient funds, leaf node: CUT + * {___D} [4/2] Insufficient funds, leaf node, cannot CUT since only one UTXO selected: done. + * + * _______________________ {} ________________________ + * / \ + * A=[10/2] __________ {A} _________ ___________\____________ + * / \ / \ + * B=[7/1] {AB} __\_____ {_B} __ __\_____ + * / \ / \ / \ + * C=[5/1] {A_C} \ {_BC} \ {__C} \ + * / / / / + * D=[4/2] {A__D} {_B_D} {__CD} {___D} + * + * + * We implement this tree walk in the following algorithm: + * 1. Add `next_utxo` + * 2. Evaluate candidate input set + * 3. Determine `next_utxo` by deciding whether to + * a) EXPLORE: Add next inclusion branch, e.g. {_B} ⇒ {_B} + `next_uxto`: C + * b) SHIFT: Replace last selected UTXO by next higher index, e.g. {A_C} ⇒ {A__} + `next_utxo`: D + * c) CUT: deselect last selected UTXO and shift to omission branch of penultimate UTXO, e.g. {AB_D} ⇒ {A_} + `next_utxo: C + * + * The implementation then adds further optimizations by discovering further situations in which either the inclusion + * branch can be skipped, or both the inclusion and omission branch can be skipped after evaluating the candidate input + * set in the node. + * + * @param std::vector& utxo_pool The UTXOs that we are choosing from. These UTXOs will be sorted in + * descending order by effective value, with lower weight preferred as a tie-breaker. (We can think of an output + * group with multiple as a heavier UTXO with the combined amount here.) + * @param const CAmount& selection_target This is the minimum amount that we need for the transaction without considering change. + * @param const CAmount& change_target The minimum budget for creating a change output, by which we increase the selection_target. + * @param int max_weight The maximum permitted weight for the input set. + * @returns The result of this coin selection algorithm, or std::nullopt + */ +util::Result CoinGrinder(std::vector& utxo_pool, const CAmount& selection_target, CAmount change_target, int max_weight) +{ + std::sort(utxo_pool.begin(), utxo_pool.end(), descending_effval_weight); + // The sum of UTXO amounts after this UTXO index, e.g. lookahead[5] = Σ(UTXO[6+].amount) + std::vector lookahead(utxo_pool.size()); + // The minimum UTXO weight among the remaining UTXOs after this UTXO index, e.g. min_tail_weight[5] = min(UTXO[6+].weight) + std::vector min_tail_weight(utxo_pool.size()); + + // Calculate lookahead values, min_tail_weights, and check that there are sufficient funds + CAmount total_available = 0; + int min_group_weight = std::numeric_limits::max(); + for (size_t i = 0; i < utxo_pool.size(); ++i) { + size_t index = utxo_pool.size() - 1 - i; // Loop over every element in reverse order + lookahead[index] = total_available; + min_tail_weight[index] = min_group_weight; + // UTXOs with non-positive effective value must have been filtered + Assume(utxo_pool[index].GetSelectionAmount() > 0); + total_available += utxo_pool[index].GetSelectionAmount(); + min_group_weight = std::min(min_group_weight, utxo_pool[index].m_weight); + } + + const CAmount total_target = selection_target + change_target; + if (total_available < total_target) { + // Insufficient funds + return util::Error(); + } + + // The current selection and the best input set found so far, stored as the utxo_pool indices of the UTXOs forming them + std::vector curr_selection; + std::vector best_selection; + + // The currently selected effective amount, and the effective amount of the best selection so far + CAmount curr_amount = 0; + CAmount best_selection_amount = MAX_MONEY; + + // The weight of the currently selected input set, and the weight of the best selection + int curr_weight = 0; + int best_selection_weight = max_weight; // Tie is fine, because we prefer lower selection amount + + // Whether the input sets generated during this search have exceeded the maximum transaction weight at any point + bool max_tx_weight_exceeded = false; + + // Index of the next UTXO to consider in utxo_pool + size_t next_utxo = 0; + + /* + * You can think of the current selection as a vector of booleans that has decided inclusion or exclusion of all + * UTXOs before `next_utxo`. When we consider the next UTXO, we extend this hypothetical boolean vector either with + * a true value if the UTXO is included or a false value if it is omitted. The equivalent state is stored more + * compactly as the list of indices of the included UTXOs and the `next_utxo` index. + * + * We can never find a new solution by deselecting a UTXO, because we then revisit a previously evaluated + * selection. Therefore, we only need to check whether we found a new solution _after adding_ a new UTXO. + * + * Each iteration of CoinGrinder starts by selecting the `next_utxo` and evaluating the current selection. We + * use three state transitions to progress from the current selection to the next promising selection: + * + * - EXPLORE inclusion branch: We do not have sufficient funds, yet. Add `next_utxo` to the current selection, then + * nominate the direct successor of the just selected UTXO as our `next_utxo` for the + * following iteration. + * + * Example: + * Current Selection: {0, 5, 7} + * Evaluation: EXPLORE, next_utxo: 8 + * Next Selection: {0, 5, 7, 8} + * + * - SHIFT to omission branch: Adding more UTXOs to the current selection cannot produce a solution that is better + * than the current best, e.g. the current selection weight exceeds the max weight or + * the current selection amount is equal to or greater than the target. + * We designate our `next_utxo` the one after the tail of our current selection, then + * deselect the tail of our current selection. + * + * Example: + * Current Selection: {0, 5, 7} + * Evaluation: SHIFT, next_utxo: 8, omit last selected: {0, 5} + * Next Selection: {0, 5, 8} + * + * - CUT entire subtree: We have exhausted the inclusion branch for the penultimately selected UTXO, both the + * inclusion and the omission branch of the current prefix are barren. E.g. we have + * reached the end of the UTXO pool, so neither further EXPLORING nor SHIFTING can find + * any solutions. We designate our `next_utxo` the one after our penultimate selected, + * then deselect both the last and penultimate selected. + * + * Example: + * Current Selection: {0, 5, 7} + * Evaluation: CUT, next_utxo: 6, omit two last selected: {0} + * Next Selection: {0, 6} + */ + auto deselect_last = [&]() { + OutputGroup& utxo = utxo_pool[curr_selection.back()]; + curr_amount -= utxo.GetSelectionAmount(); + curr_weight -= utxo.m_weight; + curr_selection.pop_back(); + }; + + SelectionResult result(selection_target, SelectionAlgorithm::CG); + bool is_done = false; + size_t curr_try = 0; + while (!is_done) { + bool should_shift{false}, should_cut{false}; + // Select `next_utxo` + OutputGroup& utxo = utxo_pool[next_utxo]; + curr_amount += utxo.GetSelectionAmount(); + curr_weight += utxo.m_weight; + curr_selection.push_back(next_utxo); + ++next_utxo; + ++curr_try; + + // EVALUATE current selection: check for solutions and see whether we can CUT or SHIFT before EXPLORING further + auto curr_tail = curr_selection.back(); + if (curr_amount + lookahead[curr_tail] < total_target) { + // Insufficient funds with lookahead: CUT + should_cut = true; + } else if (curr_weight > best_selection_weight) { + // best_selection_weight is initialized to max_weight + if (curr_weight > max_weight) max_tx_weight_exceeded = true; + // Worse weight than best solution. More UTXOs only increase weight: + // CUT if last selected group had minimal weight, else SHIFT + if (utxo_pool[curr_tail].m_weight <= min_tail_weight[curr_tail]) { + should_cut = true; + } else { + should_shift = true; + } + } else if (curr_amount >= total_target) { + // Success, adding more weight cannot be better: SHIFT + should_shift = true; + if (curr_weight < best_selection_weight || (curr_weight == best_selection_weight && curr_amount < best_selection_amount)) { + // New lowest weight, or same weight with fewer funds tied up + best_selection = curr_selection; + best_selection_weight = curr_weight; + best_selection_amount = curr_amount; + } + } else if (!best_selection.empty() && curr_weight + int64_t{min_tail_weight[curr_tail]} * ((total_target - curr_amount + utxo_pool[curr_tail].GetSelectionAmount() - 1) / utxo_pool[curr_tail].GetSelectionAmount()) > best_selection_weight) { + // Compare minimal tail weight and last selected amount with the amount missing to gauge whether a better weight is still possible. + if (utxo_pool[curr_tail].m_weight <= min_tail_weight[curr_tail]) { + should_cut = true; + } else { + should_shift = true; + } + } + + if (curr_try >= TOTAL_TRIES) { + // Solution is not guaranteed to be optimal if `curr_try` hit TOTAL_TRIES + result.SetAlgoCompleted(false); + break; + } + + if (next_utxo == utxo_pool.size()) { + // Last added UTXO was end of UTXO pool, nothing left to add on inclusion or omission branch: CUT + should_cut = true; + } + + if (should_cut) { + // Neither adding to the current selection nor exploring the omission branch of the last selected UTXO can + // find any solutions. Redirect to exploring the Omission branch of the penultimate selected UTXO (i.e. + // set `next_utxo` to one after the penultimate selected, then deselect the last two selected UTXOs) + should_cut = false; + deselect_last(); + should_shift = true; + } + + while (should_shift) { + // Set `next_utxo` to one after last selected, then deselect last selected UTXO + if (curr_selection.empty()) { + // Exhausted search space before running into attempt limit + is_done = true; + result.SetAlgoCompleted(true); + break; + } + next_utxo = curr_selection.back() + 1; + deselect_last(); + should_shift = false; + + // After SHIFTing to an omission branch, the `next_utxo` might have the same effective value as the UTXO we + // just omitted. Since lower weight is our tiebreaker on UTXOs with equal effective value for sorting, if it + // ties on the effective value, it _must_ have the same weight (i.e. be a "clone" of the prior UTXO) or a + // higher weight. If so, selecting `next_utxo` would produce an equivalent or worse selection as one we + // previously evaluated. In that case, increment `next_utxo` until we find a UTXO with a differing amount. + while (utxo_pool[next_utxo - 1].GetSelectionAmount() == utxo_pool[next_utxo].GetSelectionAmount()) { + if (next_utxo >= utxo_pool.size() - 1) { + // Reached end of UTXO pool skipping clones: SHIFT instead + should_shift = true; + break; + } + // Skip clone: previous UTXO is equivalent and unselected + ++next_utxo; + } + } + } + + result.SetSelectionsEvaluated(curr_try); + + if (best_selection.empty()) { + return max_tx_weight_exceeded ? ErrorMaxWeightExceeded() : util::Error(); + } + + for (const size_t& i : best_selection) { + result.AddInput(utxo_pool[i]); + } + + return result; +} + class MinOutputGroupComparator { public: @@ -509,6 +851,26 @@ void SelectionResult::ComputeAndSetWaste(const CAmount min_viable_change, const } } +void SelectionResult::SetAlgoCompleted(bool algo_completed) +{ + m_algo_completed = algo_completed; +} + +bool SelectionResult::GetAlgoCompleted() const +{ + return m_algo_completed; +} + +void SelectionResult::SetSelectionsEvaluated(size_t attempts) +{ + m_selections_evaluated = attempts; +} + +size_t SelectionResult::GetSelectionsEvaluated() const +{ + return m_selections_evaluated; +} + CAmount SelectionResult::GetWaste() const { return *Assert(m_waste); @@ -602,6 +964,7 @@ std::string GetAlgorithmName(const SelectionAlgorithm algo) case SelectionAlgorithm::BNB: return "bnb"; case SelectionAlgorithm::KNAPSACK: return "knapsack"; case SelectionAlgorithm::SRD: return "srd"; + case SelectionAlgorithm::CG: return "cg"; case SelectionAlgorithm::MANUAL: return "manual"; // No default case to allow for compiler to warn } diff --git a/src/wallet/coinselection.h b/src/wallet/coinselection.h index 20b2461c04..80c92e1b0e 100644 --- a/src/wallet/coinselection.h +++ b/src/wallet/coinselection.h @@ -142,8 +142,8 @@ struct CoinSelectionParams { size_t change_output_size = 0; /** Size of the input to spend a change output in virtual bytes. */ size_t change_spend_size = 0; - /** Mininmum change to target in Knapsack solver: select coins to cover the payment and - * at least this value of change. */ + /** Mininmum change to target in Knapsack solver and CoinGrinder: + * select coins to cover the payment and at least this value of change. */ CAmount m_min_change_target{0}; /** Minimum amount for creating a change output. * If change budget is smaller than min_change then we forgo creation of change output. @@ -311,7 +311,8 @@ enum class SelectionAlgorithm : uint8_t BNB = 0, KNAPSACK = 1, SRD = 2, - MANUAL = 3, + CG = 3, + MANUAL = 4, }; std::string GetAlgorithmName(const SelectionAlgorithm algo); @@ -329,6 +330,10 @@ private: bool m_use_effective{false}; /** The computed waste */ std::optional m_waste; + /** False if algorithm was cut short by hitting limit of attempts and solution is non-optimal */ + bool m_algo_completed{true}; + /** The count of selections that were evaluated by this coin selection attempt */ + size_t m_selections_evaluated; /** Total weight of the selected inputs */ int m_weight{0}; /** How much individual inputs overestimated the bump fees for the shared ancestry */ @@ -386,6 +391,18 @@ public: void ComputeAndSetWaste(const CAmount min_viable_change, const CAmount change_cost, const CAmount change_fee); [[nodiscard]] CAmount GetWaste() const; + /** Tracks that algorithm was able to exhaustively search the entire combination space before hitting limit of tries */ + void SetAlgoCompleted(bool algo_completed); + + /** Get m_algo_completed */ + bool GetAlgoCompleted() const; + + /** Record the number of selections that were evaluated */ + void SetSelectionsEvaluated(size_t attempts); + + /** Get selections_evaluated */ + size_t GetSelectionsEvaluated() const ; + /** * Combines the @param[in] other selection result into 'this' selection result. * @@ -430,6 +447,8 @@ public: util::Result SelectCoinsBnB(std::vector& utxo_pool, const CAmount& selection_target, const CAmount& cost_of_change, int max_weight); +util::Result CoinGrinder(std::vector& utxo_pool, const CAmount& selection_target, CAmount change_target, int max_weight); + /** Select coins by Single Random Draw. OutputGroups are selected randomly from the eligible * outputs until the target is satisfied * diff --git a/src/wallet/spend.cpp b/src/wallet/spend.cpp index e229962ca5..5d23ebd35a 100644 --- a/src/wallet/spend.cpp +++ b/src/wallet/spend.cpp @@ -709,6 +709,15 @@ util::Result ChooseSelectionResult(interfaces::Chain& chain, co results.push_back(*knapsack_result); } else append_error(knapsack_result); + if (coin_selection_params.m_effective_feerate > CFeeRate{3 * coin_selection_params.m_long_term_feerate}) { // Minimize input set for feerates of at least 3×LTFRE (default: 30 ṩ/vB+) + if (auto cg_result{CoinGrinder(groups.positive_group, nTargetValue, coin_selection_params.m_min_change_target, max_inputs_weight)}) { + cg_result->ComputeAndSetWaste(coin_selection_params.min_viable_change, coin_selection_params.m_cost_of_change, coin_selection_params.m_change_fee); + results.push_back(*cg_result); + } else { + append_error(cg_result); + } + } + if (auto srd_result{SelectCoinsSRD(groups.positive_group, nTargetValue, coin_selection_params.m_change_fee, coin_selection_params.rng_fast, max_inputs_weight)}) { results.push_back(*srd_result); } else append_error(srd_result); diff --git a/src/wallet/test/coinselector_tests.cpp b/src/wallet/test/coinselector_tests.cpp index 9fea14145f..9a349f0992 100644 --- a/src/wallet/test/coinselector_tests.cpp +++ b/src/wallet/test/coinselector_tests.cpp @@ -1090,6 +1090,216 @@ BOOST_AUTO_TEST_CASE(effective_value_test) BOOST_CHECK_EQUAL(output5.GetEffectiveValue(), nValue); // The effective value should be equal to the absolute value if input_bytes is -1 } +static util::Result CoinGrinder(const CAmount& target, + const CoinSelectionParams& cs_params, + const node::NodeContext& m_node, + int max_weight, + std::function coin_setup) +{ + std::unique_ptr wallet = NewWallet(m_node); + CoinEligibilityFilter filter(0, 0, 0); // accept all coins without ancestors + Groups group = GroupOutputs(*wallet, coin_setup(*wallet), cs_params, {{filter}})[filter].all_groups; + return CoinGrinder(group.positive_group, target, cs_params.m_min_change_target, max_weight); +} + +BOOST_AUTO_TEST_CASE(coin_grinder_tests) +{ + // Test Coin Grinder: + // 1) Insufficient funds, select all provided coins and fail. + // 2) Exceeded max weight, coin selection always surpasses the max allowed weight. + // 3) Select coins without surpassing the max weight (some coins surpasses the max allowed weight, some others not) + // 4) Test that two less valuable UTXOs with a combined lower weight are preferred over a more valuable heavier UTXO + // 5) Test finding a solution in a UTXO pool with mixed weights + // 6) Test that the lightest solution among many clones is found + // 7) Test that lots of tiny UTXOs can be skipped if they are too heavy while there are enough funds in lookahead + + FastRandomContext rand; + CoinSelectionParams dummy_params{ // Only used to provide the 'avoid_partial' flag. + rand, + /*change_output_size=*/34, + /*change_spend_size=*/68, + /*min_change_target=*/CENT, + /*effective_feerate=*/CFeeRate(5000), + /*long_term_feerate=*/CFeeRate(2000), + /*discard_feerate=*/CFeeRate(1000), + /*tx_noinputs_size=*/10 + 34, // static header size + output size + /*avoid_partial=*/false, + }; + + { + // ######################################################### + // 1) Insufficient funds, select all provided coins and fail + // ######################################################### + CAmount target = 49.5L * COIN; + int max_weight = 10'000; // high enough to not fail for this reason. + const auto& res = CoinGrinder(target, dummy_params, m_node, max_weight, [&](CWallet& wallet) { + CoinsResult available_coins; + for (int j = 0; j < 10; ++j) { + add_coin(available_coins, wallet, CAmount(1 * COIN)); + add_coin(available_coins, wallet, CAmount(2 * COIN)); + } + return available_coins; + }); + BOOST_CHECK(!res); + BOOST_CHECK(util::ErrorString(res).empty()); // empty means "insufficient funds" + } + + { + // ########################### + // 2) Test max weight exceeded + // ########################### + CAmount target = 29.5L * COIN; + int max_weight = 3000; + const auto& res = CoinGrinder(target, dummy_params, m_node, max_weight, [&](CWallet& wallet) { + CoinsResult available_coins; + for (int j = 0; j < 10; ++j) { + add_coin(available_coins, wallet, CAmount(1 * COIN), CFeeRate(5000), 144, false, 0, true); + add_coin(available_coins, wallet, CAmount(2 * COIN), CFeeRate(5000), 144, false, 0, true); + } + return available_coins; + }); + BOOST_CHECK(!res); + BOOST_CHECK(util::ErrorString(res).original.find("The inputs size exceeds the maximum weight") != std::string::npos); + } + + { + // ############################################################################################################### + // 3) Test selection when some coins surpass the max allowed weight while others not. --> must find a good solution + // ################################################################################################################ + CAmount target = 25.33L * COIN; + int max_weight = 10'000; // WU + const auto& res = CoinGrinder(target, dummy_params, m_node, max_weight, [&](CWallet& wallet) { + CoinsResult available_coins; + for (int j = 0; j < 60; ++j) { // 60 UTXO --> 19,8 BTC total --> 60 × 272 WU = 16320 WU + add_coin(available_coins, wallet, CAmount(0.33 * COIN), CFeeRate(5000), 144, false, 0, true); + } + for (int i = 0; i < 10; i++) { // 10 UTXO --> 20 BTC total --> 10 × 272 WU = 2720 WU + add_coin(available_coins, wallet, CAmount(2 * COIN), CFeeRate(5000), 144, false, 0, true); + } + return available_coins; + }); + BOOST_CHECK(res); + // Demonstrate how following improvements reduce iteration count and catch any regressions in the future. + size_t expected_attempts = 37; + BOOST_CHECK_MESSAGE(res->GetSelectionsEvaluated() == expected_attempts, strprintf("Expected %i attempts, but got %i", expected_attempts, res->GetSelectionsEvaluated())); + } + + { + // ################################################################################################################# + // 4) Test that two less valuable UTXOs with a combined lower weight are preferred over a more valuable heavier UTXO + // ################################################################################################################# + CAmount target = 1.9L * COIN; + int max_weight = 400'000; // WU + const auto& res = CoinGrinder(target, dummy_params, m_node, max_weight, [&](CWallet& wallet) { + CoinsResult available_coins; + add_coin(available_coins, wallet, CAmount(2 * COIN), CFeeRate(5000), 144, false, 0, true, 148); + add_coin(available_coins, wallet, CAmount(1 * COIN), CFeeRate(5000), 144, false, 0, true, 68); + add_coin(available_coins, wallet, CAmount(1 * COIN), CFeeRate(5000), 144, false, 0, true, 68); + return available_coins; + }); + SelectionResult expected_result(CAmount(0), SelectionAlgorithm::CG); + add_coin(1 * COIN, 1, expected_result); + add_coin(1 * COIN, 2, expected_result); + BOOST_CHECK(EquivalentResult(expected_result, *res)); + // Demonstrate how following improvements reduce iteration count and catch any regressions in the future. + size_t expected_attempts = 3; + BOOST_CHECK_MESSAGE(res->GetSelectionsEvaluated() == expected_attempts, strprintf("Expected %i attempts, but got %i", expected_attempts, res->GetSelectionsEvaluated())); + } + + { + // ############################################################################################################### + // 5) Test finding a solution in a UTXO pool with mixed weights + // ################################################################################################################ + CAmount target = 30L * COIN; + int max_weight = 400'000; // WU + const auto& res = CoinGrinder(target, dummy_params, m_node, max_weight, [&](CWallet& wallet) { + CoinsResult available_coins; + for (int j = 0; j < 5; ++j) { + // Add heavy coins {3, 6, 9, 12, 15} + add_coin(available_coins, wallet, CAmount((3 + 3 * j) * COIN), CFeeRate(5000), 144, false, 0, true, 350); + // Add medium coins {2, 5, 8, 11, 14} + add_coin(available_coins, wallet, CAmount((2 + 3 * j) * COIN), CFeeRate(5000), 144, false, 0, true, 250); + // Add light coins {1, 4, 7, 10, 13} + add_coin(available_coins, wallet, CAmount((1 + 3 * j) * COIN), CFeeRate(5000), 144, false, 0, true, 150); + } + return available_coins; + }); + BOOST_CHECK(res); + SelectionResult expected_result(CAmount(0), SelectionAlgorithm::CG); + add_coin(14 * COIN, 1, expected_result); + add_coin(13 * COIN, 2, expected_result); + add_coin(4 * COIN, 3, expected_result); + BOOST_CHECK(EquivalentResult(expected_result, *res)); + // Demonstrate how following improvements reduce iteration count and catch any regressions in the future. + size_t expected_attempts = 92; + BOOST_CHECK_MESSAGE(res->GetSelectionsEvaluated() == expected_attempts, strprintf("Expected %i attempts, but got %i", expected_attempts, res->GetSelectionsEvaluated())); + } + + { + // ################################################################################################################# + // 6) Test that the lightest solution among many clones is found + // ################################################################################################################# + CAmount target = 9.9L * COIN; + int max_weight = 400'000; // WU + const auto& res = CoinGrinder(target, dummy_params, m_node, max_weight, [&](CWallet& wallet) { + CoinsResult available_coins; + // Expected Result: 4 + 3 + 2 + 1 = 10 BTC at 400 vB + add_coin(available_coins, wallet, CAmount(4 * COIN), CFeeRate(5000), 144, false, 0, true, 100); + add_coin(available_coins, wallet, CAmount(3 * COIN), CFeeRate(5000), 144, false, 0, true, 100); + add_coin(available_coins, wallet, CAmount(2 * COIN), CFeeRate(5000), 144, false, 0, true, 100); + add_coin(available_coins, wallet, CAmount(1 * COIN), CFeeRate(5000), 144, false, 0, true, 100); + // Distracting clones: + for (int j = 0; j < 100; ++j) { + add_coin(available_coins, wallet, CAmount(8 * COIN), CFeeRate(5000), 144, false, 0, true, 1000); + } + for (int j = 0; j < 100; ++j) { + add_coin(available_coins, wallet, CAmount(7 * COIN), CFeeRate(5000), 144, false, 0, true, 800); + } + for (int j = 0; j < 100; ++j) { + add_coin(available_coins, wallet, CAmount(6 * COIN), CFeeRate(5000), 144, false, 0, true, 600); + } + for (int j = 0; j < 100; ++j) { + add_coin(available_coins, wallet, CAmount(5 * COIN), CFeeRate(5000), 144, false, 0, true, 400); + } + return available_coins; + }); + SelectionResult expected_result(CAmount(0), SelectionAlgorithm::CG); + add_coin(4 * COIN, 0, expected_result); + add_coin(3 * COIN, 0, expected_result); + add_coin(2 * COIN, 0, expected_result); + add_coin(1 * COIN, 0, expected_result); + BOOST_CHECK(EquivalentResult(expected_result, *res)); + // Demonstrate how following improvements reduce iteration count and catch any regressions in the future. + size_t expected_attempts = 38; + BOOST_CHECK_MESSAGE(res->GetSelectionsEvaluated() == expected_attempts, strprintf("Expected %i attempts, but got %i", expected_attempts, res->GetSelectionsEvaluated())); + } + + { + // ################################################################################################################# + // 7) Test that lots of tiny UTXOs can be skipped if they are too heavy while there are enough funds in lookahead + // ################################################################################################################# + CAmount target = 1.9L * COIN; + int max_weight = 40000; // WU + const auto& res = CoinGrinder(target, dummy_params, m_node, max_weight, [&](CWallet& wallet) { + CoinsResult available_coins; + add_coin(available_coins, wallet, CAmount(1.8 * COIN), CFeeRate(5000), 144, false, 0, true, 2500); + add_coin(available_coins, wallet, CAmount(1 * COIN), CFeeRate(5000), 144, false, 0, true, 1000); + add_coin(available_coins, wallet, CAmount(1 * COIN), CFeeRate(5000), 144, false, 0, true, 1000); + for (int j = 0; j < 100; ++j) { + // make a 100 unique coins only differing by one sat + add_coin(available_coins, wallet, CAmount(0.01 * COIN + j), CFeeRate(5000), 144, false, 0, true, 110); + } + return available_coins; + }); + SelectionResult expected_result(CAmount(0), SelectionAlgorithm::CG); + add_coin(1 * COIN, 1, expected_result); + add_coin(1 * COIN, 2, expected_result); + BOOST_CHECK(EquivalentResult(expected_result, *res)); + // Demonstrate how following improvements reduce iteration count and catch any regressions in the future. + size_t expected_attempts = 7; + BOOST_CHECK_MESSAGE(res->GetSelectionsEvaluated() == expected_attempts, strprintf("Expected %i attempts, but got %i", expected_attempts, res->GetSelectionsEvaluated())); + } +} static util::Result SelectCoinsSRD(const CAmount& target, const CoinSelectionParams& cs_params, @@ -1150,6 +1360,7 @@ BOOST_AUTO_TEST_CASE(srd_tests) const auto& res = SelectCoinsSRD(target, dummy_params, m_node, max_weight, [&](CWallet& wallet) { CoinsResult available_coins; for (int j = 0; j < 10; ++j) { + /* 10 × 1 BTC + 10 × 2 BTC = 30 BTC. 20 × 272 WU = 5440 WU */ add_coin(available_coins, wallet, CAmount(1 * COIN), CFeeRate(0), 144, false, 0, true); add_coin(available_coins, wallet, CAmount(2 * COIN), CFeeRate(0), 144, false, 0, true); } diff --git a/src/wallet/test/fuzz/coinselection.cpp b/src/wallet/test/fuzz/coinselection.cpp index 87d419493b..3ffeecdf34 100644 --- a/src/wallet/test/fuzz/coinselection.cpp +++ b/src/wallet/test/fuzz/coinselection.cpp @@ -11,6 +11,7 @@ #include #include +#include #include namespace wallet { @@ -77,6 +78,144 @@ static SelectionResult ManualSelection(std::vector& utxos, const CAmoun // Returns true if the result contains an error and the message is not empty static bool HasErrorMsg(const util::Result& res) { return !util::ErrorString(res).empty(); } +FUZZ_TARGET(coin_grinder) +{ + FuzzedDataProvider fuzzed_data_provider{buffer.data(), buffer.size()}; + std::vector utxo_pool; + + const CAmount target{fuzzed_data_provider.ConsumeIntegralInRange(1, MAX_MONEY)}; + + FastRandomContext fast_random_context{ConsumeUInt256(fuzzed_data_provider)}; + CoinSelectionParams coin_params{fast_random_context}; + coin_params.m_subtract_fee_outputs = fuzzed_data_provider.ConsumeBool(); + coin_params.m_long_term_feerate = CFeeRate{ConsumeMoney(fuzzed_data_provider, /*max=*/COIN)}; + coin_params.m_effective_feerate = CFeeRate{ConsumeMoney(fuzzed_data_provider, /*max=*/COIN)}; + coin_params.change_output_size = fuzzed_data_provider.ConsumeIntegralInRange(10, 1000); + coin_params.change_spend_size = fuzzed_data_provider.ConsumeIntegralInRange(10, 1000); + coin_params.m_cost_of_change= coin_params.m_effective_feerate.GetFee(coin_params.change_output_size) + coin_params.m_long_term_feerate.GetFee(coin_params.change_spend_size); + coin_params.m_change_fee = coin_params.m_effective_feerate.GetFee(coin_params.change_output_size); + // For other results to be comparable to SRD, we must align the change_target with SRD’s hardcoded behavior + coin_params.m_min_change_target = CHANGE_LOWER + coin_params.m_change_fee; + + // Create some coins + CAmount total_balance{0}; + CAmount max_spendable{0}; + int next_locktime{0}; + LIMITED_WHILE(fuzzed_data_provider.ConsumeBool(), 10000) + { + const int n_input{fuzzed_data_provider.ConsumeIntegralInRange(0, 10)}; + const int n_input_bytes{fuzzed_data_provider.ConsumeIntegralInRange(41, 10000)}; + const CAmount amount{fuzzed_data_provider.ConsumeIntegralInRange(1, MAX_MONEY)}; + if (total_balance + amount >= MAX_MONEY) { + break; + } + AddCoin(amount, n_input, n_input_bytes, ++next_locktime, utxo_pool, coin_params.m_effective_feerate); + total_balance += amount; + CAmount eff_value = amount - coin_params.m_effective_feerate.GetFee(n_input_bytes); + max_spendable += eff_value; + } + + std::vector group_pos; + GroupCoins(fuzzed_data_provider, utxo_pool, coin_params, /*positive_only=*/true, group_pos); + + // Run coinselection algorithms + auto result_cg = CoinGrinder(group_pos, target, coin_params.m_min_change_target, MAX_STANDARD_TX_WEIGHT); + if (target + coin_params.m_min_change_target > max_spendable || HasErrorMsg(result_cg)) return; // We only need to compare algorithms if CoinGrinder has a solution + assert(result_cg); + if (!result_cg->GetAlgoCompleted()) return; // Bail out if CoinGrinder solution is not optimal + + auto result_srd = SelectCoinsSRD(group_pos, target, coin_params.m_change_fee, fast_random_context, MAX_STANDARD_TX_WEIGHT); + if (result_srd && result_srd->GetChange(CHANGE_LOWER, coin_params.m_change_fee) > 0) { // exclude any srd solutions that don’t have change, err on excluding + assert(result_srd->GetWeight() >= result_cg->GetWeight()); + } + + auto result_knapsack = KnapsackSolver(group_pos, target, coin_params.m_min_change_target, fast_random_context, MAX_STANDARD_TX_WEIGHT); + if (result_knapsack && result_knapsack->GetChange(CHANGE_LOWER, coin_params.m_change_fee) > 0) { // exclude any knapsack solutions that don’t have change, err on excluding + assert(result_knapsack->GetWeight() >= result_cg->GetWeight()); + } +} + +FUZZ_TARGET(coin_grinder_is_optimal) +{ + FuzzedDataProvider fuzzed_data_provider{buffer.data(), buffer.size()}; + + FastRandomContext fast_random_context{ConsumeUInt256(fuzzed_data_provider)}; + CoinSelectionParams coin_params{fast_random_context}; + coin_params.m_subtract_fee_outputs = false; + // Set effective feerate up to MAX_MONEY sats per 1'000'000 vB (2'100'000'000 sat/vB = 21'000 BTC/kvB). + coin_params.m_effective_feerate = CFeeRate{ConsumeMoney(fuzzed_data_provider, MAX_MONEY), 1'000'000}; + coin_params.m_min_change_target = ConsumeMoney(fuzzed_data_provider); + + // Create some coins + CAmount max_spendable{0}; + int next_locktime{0}; + static constexpr unsigned max_output_groups{16}; + std::vector group_pos; + LIMITED_WHILE(fuzzed_data_provider.ConsumeBool(), max_output_groups) + { + // With maximum m_effective_feerate and n_input_bytes = 1'000'000, input_fee <= MAX_MONEY. + const int n_input_bytes{fuzzed_data_provider.ConsumeIntegralInRange(1, 1'000'000)}; + // Only make UTXOs with positive effective value + const CAmount input_fee = coin_params.m_effective_feerate.GetFee(n_input_bytes); + // Ensure that each UTXO has at least an effective value of 1 sat + const CAmount eff_value{fuzzed_data_provider.ConsumeIntegralInRange(1, MAX_MONEY - max_spendable - max_output_groups + group_pos.size())}; + const CAmount amount{eff_value + input_fee}; + std::vector temp_utxo_pool; + + AddCoin(amount, /*n_input=*/0, n_input_bytes, ++next_locktime, temp_utxo_pool, coin_params.m_effective_feerate); + max_spendable += eff_value; + + auto output_group = OutputGroup(coin_params); + output_group.Insert(std::make_shared(temp_utxo_pool.at(0)), /*ancestors=*/0, /*descendants=*/0); + group_pos.push_back(output_group); + } + size_t num_groups = group_pos.size(); + assert(num_groups <= max_output_groups); + + // Only choose targets below max_spendable + const CAmount target{fuzzed_data_provider.ConsumeIntegralInRange(1, std::max(CAmount{1}, max_spendable - coin_params.m_min_change_target))}; + + // Brute force optimal solution + CAmount best_amount{MAX_MONEY}; + int best_weight{std::numeric_limits::max()}; + for (uint32_t pattern = 1; (pattern >> num_groups) == 0; ++pattern) { + CAmount subset_amount{0}; + int subset_weight{0}; + for (unsigned i = 0; i < num_groups; ++i) { + if ((pattern >> i) & 1) { + subset_amount += group_pos[i].GetSelectionAmount(); + subset_weight += group_pos[i].m_weight; + } + } + if ((subset_amount >= target + coin_params.m_min_change_target) && (subset_weight < best_weight || (subset_weight == best_weight && subset_amount < best_amount))) { + best_weight = subset_weight; + best_amount = subset_amount; + } + } + + if (best_weight < std::numeric_limits::max()) { + // Sufficient funds and acceptable weight: CoinGrinder should find at least one solution + int high_max_weight = fuzzed_data_provider.ConsumeIntegralInRange(best_weight, std::numeric_limits::max()); + + auto result_cg = CoinGrinder(group_pos, target, coin_params.m_min_change_target, high_max_weight); + assert(result_cg); + assert(result_cg->GetWeight() <= high_max_weight); + assert(result_cg->GetSelectedEffectiveValue() >= target + coin_params.m_min_change_target); + assert(best_weight < result_cg->GetWeight() || (best_weight == result_cg->GetWeight() && best_amount <= result_cg->GetSelectedEffectiveValue())); + if (result_cg->GetAlgoCompleted()) { + // If CoinGrinder exhausted the search space, it must return the optimal solution + assert(best_weight == result_cg->GetWeight()); + assert(best_amount == result_cg->GetSelectedEffectiveValue()); + } + } + + // CoinGrinder cannot ever find a better solution than the brute-forced best, or there is none in the first place + int low_max_weight = fuzzed_data_provider.ConsumeIntegralInRange(0, best_weight - 1); + auto result_cg = CoinGrinder(group_pos, target, coin_params.m_min_change_target, low_max_weight); + // Max_weight should have been exceeded, or there were insufficient funds + assert(!result_cg); +} + FUZZ_TARGET(coinselection) { FuzzedDataProvider fuzzed_data_provider{buffer.data(), buffer.size()};