mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-02-08 10:31:50 -05:00
Merge bitcoin/bitcoin#28263: Add fuzz test for FSChaCha20Poly1305, AEADChacha20Poly1305
8607773750
Add fuzz test for FSChaCha20Poly1305 (stratospher)c807f33228
Add fuzz test for AEADChacha20Poly1305 (stratospher) Pull request description: This PR adds fuzz tests for `AEADChaCha20Poly1305` and `FSChaCha20Poly1305` introduced in #28008. Run using: ``` $ FUZZ=crypto_aeadchacha20poly1305 src/test/fuzz/fuzz $ FUZZ=crypto_fschacha20poly1305 src/test/fuzz/fuzz ``` ACKs for top commit: dergoegge: tACK8607773750
marcofleon: Tested ACK8607773750
. Ran both targets for ~200 CPU hours. Coverage of intended targets looks good to me. The simulation of damaged keys and checks that follow seem useful as well. Tree-SHA512: b6b85661d896e653caeed330f941fde665fc2bbd97ecd340808a3f365c469fe9134aa77316569a771dc36d1158cac1a5f76700bcfc45fff12aef07562e48feb9
This commit is contained in:
commit
1db0be8353
2 changed files with 201 additions and 0 deletions
|
@ -309,6 +309,7 @@ test_fuzz_fuzz_SOURCES = \
|
|||
test/fuzz/crypto_aes256.cpp \
|
||||
test/fuzz/crypto_aes256cbc.cpp \
|
||||
test/fuzz/crypto_chacha20.cpp \
|
||||
test/fuzz/crypto_chacha20poly1305.cpp \
|
||||
test/fuzz/crypto_common.cpp \
|
||||
test/fuzz/crypto_diff_fuzz_chacha20.cpp \
|
||||
test/fuzz/crypto_hkdf_hmac_sha256_l32.cpp \
|
||||
|
|
200
src/test/fuzz/crypto_chacha20poly1305.cpp
Normal file
200
src/test/fuzz/crypto_chacha20poly1305.cpp
Normal file
|
@ -0,0 +1,200 @@
|
|||
// Copyright (c) 2020-2021 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#include <crypto/chacha20poly1305.h>
|
||||
#include <random.h>
|
||||
#include <span.h>
|
||||
#include <test/fuzz/FuzzedDataProvider.h>
|
||||
#include <test/fuzz/fuzz.h>
|
||||
#include <test/fuzz/util.h>
|
||||
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
#include <vector>
|
||||
|
||||
constexpr static inline void crypt_till_rekey(FSChaCha20Poly1305& aead, int rekey_interval, bool encrypt)
|
||||
{
|
||||
for (int i = 0; i < rekey_interval; ++i) {
|
||||
std::byte dummy_tag[FSChaCha20Poly1305::EXPANSION] = {{}};
|
||||
if (encrypt) {
|
||||
aead.Encrypt(Span{dummy_tag}.first(0), Span{dummy_tag}.first(0), dummy_tag);
|
||||
} else {
|
||||
aead.Decrypt(dummy_tag, Span{dummy_tag}.first(0), Span{dummy_tag}.first(0));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
FUZZ_TARGET(crypto_aeadchacha20poly1305)
|
||||
{
|
||||
FuzzedDataProvider provider{buffer.data(), buffer.size()};
|
||||
|
||||
auto key = provider.ConsumeBytes<std::byte>(32);
|
||||
key.resize(32);
|
||||
AEADChaCha20Poly1305 aead(key);
|
||||
|
||||
// Initialize RNG deterministically, to generate contents and AAD. We assume that there are no
|
||||
// (potentially buggy) edge cases triggered by specific values of contents/AAD, so we can avoid
|
||||
// reading the actual data for those from the fuzzer input (which would need large amounts of
|
||||
// data).
|
||||
InsecureRandomContext rng(provider.ConsumeIntegral<uint64_t>());
|
||||
|
||||
LIMITED_WHILE(provider.ConsumeBool(), 10000)
|
||||
{
|
||||
// Mode:
|
||||
// - Bit 0: whether to use single-plain Encrypt/Decrypt; otherwise use a split at prefix.
|
||||
// - Bit 2: whether this ciphertext will be corrupted (making it the last sent one)
|
||||
// - Bit 3-4: controls the maximum aad length (max 511 bytes)
|
||||
// - Bit 5-7: controls the maximum content length (max 16383 bytes, for performance reasons)
|
||||
unsigned mode = provider.ConsumeIntegral<uint8_t>();
|
||||
bool use_splits = mode & 1;
|
||||
bool damage = mode & 4;
|
||||
unsigned aad_length_bits = 3 * ((mode >> 3) & 3);
|
||||
unsigned aad_length = provider.ConsumeIntegralInRange<unsigned>(0, (1 << aad_length_bits) - 1);
|
||||
unsigned length_bits = 2 * ((mode >> 5) & 7);
|
||||
unsigned length = provider.ConsumeIntegralInRange<unsigned>(0, (1 << length_bits) - 1);
|
||||
// Generate aad and content.
|
||||
auto aad = rng.randbytes<std::byte>(aad_length);
|
||||
auto plain = rng.randbytes<std::byte>(length);
|
||||
std::vector<std::byte> cipher(length + AEADChaCha20Poly1305::EXPANSION);
|
||||
// Generate nonce
|
||||
AEADChaCha20Poly1305::Nonce96 nonce = {(uint32_t)rng(), rng()};
|
||||
|
||||
if (use_splits && length > 0) {
|
||||
size_t split_index = provider.ConsumeIntegralInRange<size_t>(1, length);
|
||||
aead.Encrypt(Span{plain}.first(split_index), Span{plain}.subspan(split_index), aad, nonce, cipher);
|
||||
} else {
|
||||
aead.Encrypt(plain, aad, nonce, cipher);
|
||||
}
|
||||
|
||||
// Test Keystream output
|
||||
std::vector<std::byte> keystream(length);
|
||||
aead.Keystream(nonce, keystream);
|
||||
for (size_t i = 0; i < length; ++i) {
|
||||
assert((plain[i] ^ keystream[i]) == cipher[i]);
|
||||
}
|
||||
|
||||
std::vector<std::byte> decrypted_contents(length);
|
||||
bool ok{false};
|
||||
|
||||
// damage the key
|
||||
unsigned key_position = provider.ConsumeIntegralInRange<unsigned>(0, 31);
|
||||
std::byte damage_val{(uint8_t)(1U << (key_position & 7))};
|
||||
std::vector<std::byte> bad_key = key;
|
||||
bad_key[key_position] ^= damage_val;
|
||||
|
||||
AEADChaCha20Poly1305 bad_aead(bad_key);
|
||||
ok = bad_aead.Decrypt(cipher, aad, nonce, decrypted_contents);
|
||||
assert(!ok);
|
||||
|
||||
// Optionally damage 1 bit in either the cipher (corresponding to a change in transit)
|
||||
// or the aad (to make sure that decryption will fail if the AAD mismatches).
|
||||
if (damage) {
|
||||
unsigned damage_bit = provider.ConsumeIntegralInRange<unsigned>(0, (cipher.size() + aad.size()) * 8U - 1U);
|
||||
unsigned damage_pos = damage_bit >> 3;
|
||||
std::byte damage_val{(uint8_t)(1U << (damage_bit & 7))};
|
||||
if (damage_pos >= cipher.size()) {
|
||||
aad[damage_pos - cipher.size()] ^= damage_val;
|
||||
} else {
|
||||
cipher[damage_pos] ^= damage_val;
|
||||
}
|
||||
}
|
||||
|
||||
if (use_splits && length > 0) {
|
||||
size_t split_index = provider.ConsumeIntegralInRange<size_t>(1, length);
|
||||
ok = aead.Decrypt(cipher, aad, nonce, Span{decrypted_contents}.first(split_index), Span{decrypted_contents}.subspan(split_index));
|
||||
} else {
|
||||
ok = aead.Decrypt(cipher, aad, nonce, decrypted_contents);
|
||||
}
|
||||
|
||||
// Decryption *must* fail if the packet was damaged, and succeed if it wasn't.
|
||||
assert(!ok == damage);
|
||||
if (!ok) break;
|
||||
assert(decrypted_contents == plain);
|
||||
}
|
||||
}
|
||||
|
||||
FUZZ_TARGET(crypto_fschacha20poly1305)
|
||||
{
|
||||
FuzzedDataProvider provider{buffer.data(), buffer.size()};
|
||||
|
||||
uint32_t rekey_interval = provider.ConsumeIntegralInRange<size_t>(32, 512);
|
||||
auto key = provider.ConsumeBytes<std::byte>(32);
|
||||
key.resize(32);
|
||||
FSChaCha20Poly1305 enc_aead(key, rekey_interval);
|
||||
FSChaCha20Poly1305 dec_aead(key, rekey_interval);
|
||||
|
||||
// Initialize RNG deterministically, to generate contents and AAD. We assume that there are no
|
||||
// (potentially buggy) edge cases triggered by specific values of contents/AAD, so we can avoid
|
||||
// reading the actual data for those from the fuzzer input (which would need large amounts of
|
||||
// data).
|
||||
InsecureRandomContext rng(provider.ConsumeIntegral<uint64_t>());
|
||||
|
||||
LIMITED_WHILE(provider.ConsumeBool(), 10000)
|
||||
{
|
||||
// Mode:
|
||||
// - Bit 0: whether to use single-plain Encrypt/Decrypt; otherwise use a split at prefix.
|
||||
// - Bit 2: whether this ciphertext will be corrupted (making it the last sent one)
|
||||
// - Bit 3-4: controls the maximum aad length (max 511 bytes)
|
||||
// - Bit 5-7: controls the maximum content length (max 16383 bytes, for performance reasons)
|
||||
unsigned mode = provider.ConsumeIntegral<uint8_t>();
|
||||
bool use_splits = mode & 1;
|
||||
bool damage = mode & 4;
|
||||
unsigned aad_length_bits = 3 * ((mode >> 3) & 3);
|
||||
unsigned aad_length = provider.ConsumeIntegralInRange<unsigned>(0, (1 << aad_length_bits) - 1);
|
||||
unsigned length_bits = 2 * ((mode >> 5) & 7);
|
||||
unsigned length = provider.ConsumeIntegralInRange<unsigned>(0, (1 << length_bits) - 1);
|
||||
// Generate aad and content.
|
||||
auto aad = rng.randbytes<std::byte>(aad_length);
|
||||
auto plain = rng.randbytes<std::byte>(length);
|
||||
std::vector<std::byte> cipher(length + FSChaCha20Poly1305::EXPANSION);
|
||||
|
||||
crypt_till_rekey(enc_aead, rekey_interval, true);
|
||||
if (use_splits && length > 0) {
|
||||
size_t split_index = provider.ConsumeIntegralInRange<size_t>(1, length);
|
||||
enc_aead.Encrypt(Span{plain}.first(split_index), Span{plain}.subspan(split_index), aad, cipher);
|
||||
} else {
|
||||
enc_aead.Encrypt(plain, aad, cipher);
|
||||
}
|
||||
|
||||
std::vector<std::byte> decrypted_contents(length);
|
||||
bool ok{false};
|
||||
|
||||
// damage the key
|
||||
unsigned key_position = provider.ConsumeIntegralInRange<unsigned>(0, 31);
|
||||
std::byte damage_val{(uint8_t)(1U << (key_position & 7))};
|
||||
std::vector<std::byte> bad_key = key;
|
||||
bad_key[key_position] ^= damage_val;
|
||||
|
||||
FSChaCha20Poly1305 bad_fs_aead(bad_key, rekey_interval);
|
||||
crypt_till_rekey(bad_fs_aead, rekey_interval, false);
|
||||
ok = bad_fs_aead.Decrypt(cipher, aad, decrypted_contents);
|
||||
assert(!ok);
|
||||
|
||||
// Optionally damage 1 bit in either the cipher (corresponding to a change in transit)
|
||||
// or the aad (to make sure that decryption will fail if the AAD mismatches).
|
||||
if (damage) {
|
||||
unsigned damage_bit = provider.ConsumeIntegralInRange<unsigned>(0, (cipher.size() + aad.size()) * 8U - 1U);
|
||||
unsigned damage_pos = damage_bit >> 3;
|
||||
std::byte damage_val{(uint8_t)(1U << (damage_bit & 7))};
|
||||
if (damage_pos >= cipher.size()) {
|
||||
aad[damage_pos - cipher.size()] ^= damage_val;
|
||||
} else {
|
||||
cipher[damage_pos] ^= damage_val;
|
||||
}
|
||||
}
|
||||
|
||||
crypt_till_rekey(dec_aead, rekey_interval, false);
|
||||
if (use_splits && length > 0) {
|
||||
size_t split_index = provider.ConsumeIntegralInRange<size_t>(1, length);
|
||||
ok = dec_aead.Decrypt(cipher, aad, Span{decrypted_contents}.first(split_index), Span{decrypted_contents}.subspan(split_index));
|
||||
} else {
|
||||
ok = dec_aead.Decrypt(cipher, aad, decrypted_contents);
|
||||
}
|
||||
|
||||
// Decryption *must* fail if the packet was damaged, and succeed if it wasn't.
|
||||
assert(!ok == damage);
|
||||
if (!ok) break;
|
||||
assert(decrypted_contents == plain);
|
||||
}
|
||||
}
|
Loading…
Add table
Reference in a new issue