0
0
Fork 0
mirror of https://github.com/bitcoin/bitcoin.git synced 2025-02-01 09:35:52 -05:00
This commit is contained in:
Vasil Dimov 2025-01-31 21:47:44 +01:00 committed by GitHub
commit 26f0ebbb4e
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
2 changed files with 477 additions and 85 deletions

View file

@ -14,7 +14,10 @@
#include <random.h>
#include <serialize.h>
#include <span.h>
#include <sync.h>
#include <chrono>
#include <optional>
#include <vector>
void ConnmanTestMsg::Handshake(CNode& node,
@ -137,3 +140,271 @@ std::vector<NodeEvictionCandidate> GetRandomNodeEvictionCandidates(int n_candida
}
return candidates;
}
// Have different ZeroSock (or others that inherit from it) objects have different
// m_socket because EqualSharedPtrSock compares m_socket and we want to avoid two
// different objects comparing as equal.
static std::atomic<SOCKET> g_mocked_sock_fd{0};
ZeroSock::ZeroSock() : Sock{g_mocked_sock_fd++} {}
// Sock::~Sock() would try to close(2) m_socket if it is not INVALID_SOCKET, avoid that.
ZeroSock::~ZeroSock() { m_socket = INVALID_SOCKET; }
ssize_t ZeroSock::Send(const void*, size_t len, int) const { return len; }
ssize_t ZeroSock::Recv(void* buf, size_t len, int flags) const
{
memset(buf, 0x0, len);
return len;
}
int ZeroSock::Connect(const sockaddr*, socklen_t) const { return 0; }
int ZeroSock::Bind(const sockaddr*, socklen_t) const { return 0; }
int ZeroSock::Listen(int) const { return 0; }
std::unique_ptr<Sock> ZeroSock::Accept(sockaddr* addr, socklen_t* addr_len) const
{
if (addr != nullptr) {
// Pretend all connections come from 5.5.5.5:6789
memset(addr, 0x00, *addr_len);
const socklen_t write_len = static_cast<socklen_t>(sizeof(sockaddr_in));
if (*addr_len >= write_len) {
*addr_len = write_len;
sockaddr_in* addr_in = reinterpret_cast<sockaddr_in*>(addr);
addr_in->sin_family = AF_INET;
memset(&addr_in->sin_addr, 0x05, sizeof(addr_in->sin_addr));
addr_in->sin_port = htons(6789);
}
}
return std::make_unique<ZeroSock>();
}
int ZeroSock::GetSockOpt(int level, int opt_name, void* opt_val, socklen_t* opt_len) const
{
std::memset(opt_val, 0x0, *opt_len);
return 0;
}
int ZeroSock::SetSockOpt(int, int, const void*, socklen_t) const { return 0; }
int ZeroSock::GetSockName(sockaddr* name, socklen_t* name_len) const
{
std::memset(name, 0x0, *name_len);
return 0;
}
bool ZeroSock::SetNonBlocking() const { return true; }
bool ZeroSock::IsSelectable() const { return true; }
bool ZeroSock::Wait(std::chrono::milliseconds timeout, Event requested, Event* occurred) const
{
if (occurred != nullptr) {
*occurred = requested;
}
return true;
}
bool ZeroSock::WaitMany(std::chrono::milliseconds timeout, EventsPerSock& events_per_sock) const
{
for (auto& [sock, events] : events_per_sock) {
(void)sock;
events.occurred = events.requested;
}
return true;
}
ZeroSock& ZeroSock::operator=(Sock&& other)
{
assert(false && "Move of Sock into ZeroSock not allowed.");
return *this;
}
StaticContentsSock::StaticContentsSock(const std::string& contents)
: m_contents{contents}
{
}
ssize_t StaticContentsSock::Recv(void* buf, size_t len, int flags) const
{
const size_t consume_bytes{std::min(len, m_contents.size() - m_consumed)};
std::memcpy(buf, m_contents.data() + m_consumed, consume_bytes);
if ((flags & MSG_PEEK) == 0) {
m_consumed += consume_bytes;
}
return consume_bytes;
}
StaticContentsSock& StaticContentsSock::operator=(Sock&& other)
{
assert(false && "Move of Sock into StaticContentsSock not allowed.");
return *this;
}
ssize_t DynSock::Pipe::GetBytes(void* buf, size_t len, int flags)
{
WAIT_LOCK(m_mutex, lock);
if (m_data.empty()) {
if (m_eof) {
return 0;
}
errno = EAGAIN; // Same as recv(2) on a non-blocking socket.
return -1;
}
const size_t read_bytes{std::min(len, m_data.size())};
std::memcpy(buf, m_data.data(), read_bytes);
if ((flags & MSG_PEEK) == 0) {
m_data.erase(m_data.begin(), m_data.begin() + read_bytes);
}
return read_bytes;
}
std::optional<CNetMessage> DynSock::Pipe::GetNetMsg()
{
V1Transport transport{NodeId{0}};
{
WAIT_LOCK(m_mutex, lock);
WaitForDataOrEof(lock);
if (m_eof && m_data.empty()) {
return std::nullopt;
}
for (;;) {
Span<const uint8_t> s{m_data};
if (!transport.ReceivedBytes(s)) { // Consumed bytes are removed from the front of s.
return std::nullopt;
}
m_data.erase(m_data.begin(), m_data.begin() + m_data.size() - s.size());
if (transport.ReceivedMessageComplete()) {
break;
}
if (m_data.empty()) {
WaitForDataOrEof(lock);
if (m_eof && m_data.empty()) {
return std::nullopt;
}
}
}
}
bool reject{false};
CNetMessage msg{transport.GetReceivedMessage(/*time=*/{}, reject)};
if (reject) {
return std::nullopt;
}
return std::make_optional<CNetMessage>(std::move(msg));
}
void DynSock::Pipe::PushBytes(const void* buf, size_t len)
{
LOCK(m_mutex);
const uint8_t* b = static_cast<const uint8_t*>(buf);
m_data.insert(m_data.end(), b, b + len);
m_cond.notify_all();
}
void DynSock::Pipe::Eof()
{
LOCK(m_mutex);
m_eof = true;
m_cond.notify_all();
}
void DynSock::Pipe::WaitForDataOrEof(UniqueLock<Mutex>& lock)
{
Assert(lock.mutex() == &m_mutex);
m_cond.wait(lock, [&]() EXCLUSIVE_LOCKS_REQUIRED(m_mutex) {
AssertLockHeld(m_mutex);
return !m_data.empty() || m_eof;
});
}
DynSock::DynSock(std::shared_ptr<Pipes> pipes, std::shared_ptr<Queue> accept_sockets)
: m_pipes{pipes}, m_accept_sockets{accept_sockets}
{
}
DynSock::~DynSock()
{
m_pipes->send.Eof();
}
ssize_t DynSock::Recv(void* buf, size_t len, int flags) const
{
return m_pipes->recv.GetBytes(buf, len, flags);
}
ssize_t DynSock::Send(const void* buf, size_t len, int) const
{
m_pipes->send.PushBytes(buf, len);
return len;
}
std::unique_ptr<Sock> DynSock::Accept(sockaddr* addr, socklen_t* addr_len) const
{
ZeroSock::Accept(addr, addr_len);
return m_accept_sockets->Pop().value_or(nullptr);
}
bool DynSock::Wait(std::chrono::milliseconds timeout,
Event requested,
Event* occurred) const
{
EventsPerSock ev;
ev.emplace(this, Events{requested});
const bool ret{WaitMany(timeout, ev)};
if (occurred != nullptr) {
*occurred = ev.begin()->second.occurred;
}
return ret;
}
bool DynSock::WaitMany(std::chrono::milliseconds timeout, EventsPerSock& events_per_sock) const
{
const auto deadline = std::chrono::steady_clock::now() + timeout;
bool at_least_one_event_occurred{false};
for (;;) {
// Check all sockets for readiness without waiting.
for (auto& [sock, events] : events_per_sock) {
if ((events.requested & Sock::SEND) != 0) {
// Always ready for Send().
events.occurred |= Sock::SEND;
at_least_one_event_occurred = true;
}
if ((events.requested & Sock::RECV) != 0) {
auto dyn_sock = reinterpret_cast<const DynSock*>(sock.get());
uint8_t b;
if (dyn_sock->m_pipes->recv.GetBytes(&b, 1, MSG_PEEK) == 1 || !dyn_sock->m_accept_sockets->Empty()) {
events.occurred |= Sock::RECV;
at_least_one_event_occurred = true;
}
}
}
if (at_least_one_event_occurred || std::chrono::steady_clock::now() > deadline) {
break;
}
std::this_thread::sleep_for(10ms);
}
return true;
}
DynSock& DynSock::operator=(Sock&&)
{
assert(false && "Move of Sock into DynSock not allowed.");
return *this;
}

View file

@ -6,6 +6,7 @@
#define BITCOIN_TEST_UTIL_NET_H
#include <compat/compat.h>
#include <netmessagemaker.h>
#include <net.h>
#include <net_permissions.h>
#include <net_processing.h>
@ -20,9 +21,11 @@
#include <array>
#include <cassert>
#include <chrono>
#include <condition_variable>
#include <cstdint>
#include <cstring>
#include <memory>
#include <optional>
#include <string>
#include <unordered_map>
#include <vector>
@ -131,99 +134,64 @@ constexpr auto ALL_NETWORKS = std::array{
Network::NET_INTERNAL,
};
/**
* A mocked Sock alternative that succeeds on all operations.
* Returns infinite amount of 0x0 bytes on reads.
*/
class ZeroSock : public Sock
{
public:
ZeroSock();
~ZeroSock() override;
ssize_t Send(const void*, size_t len, int) const override;
ssize_t Recv(void* buf, size_t len, int flags) const override;
int Connect(const sockaddr*, socklen_t) const override;
int Bind(const sockaddr*, socklen_t) const override;
int Listen(int) const override;
std::unique_ptr<Sock> Accept(sockaddr* addr, socklen_t* addr_len) const override;
int GetSockOpt(int level, int opt_name, void* opt_val, socklen_t* opt_len) const override;
int SetSockOpt(int, int, const void*, socklen_t) const override;
int GetSockName(sockaddr* name, socklen_t* name_len) const override;
bool SetNonBlocking() const override;
bool IsSelectable() const override;
bool Wait(std::chrono::milliseconds timeout,
Event requested,
Event* occurred = nullptr) const override;
bool WaitMany(std::chrono::milliseconds timeout, EventsPerSock& events_per_sock) const override;
private:
ZeroSock& operator=(Sock&& other) override;
};
/**
* A mocked Sock alternative that returns a statically contained data upon read and succeeds
* and ignores all writes. The data to be returned is given to the constructor and when it is
* exhausted an EOF is returned by further reads.
*/
class StaticContentsSock : public Sock
class StaticContentsSock : public ZeroSock
{
public:
explicit StaticContentsSock(const std::string& contents)
: Sock{INVALID_SOCKET},
m_contents{contents}
{
}
explicit StaticContentsSock(const std::string& contents);
~StaticContentsSock() override { m_socket = INVALID_SOCKET; }
StaticContentsSock& operator=(Sock&& other) override
{
assert(false && "Move of Sock into MockSock not allowed.");
return *this;
}
ssize_t Send(const void*, size_t len, int) const override { return len; }
ssize_t Recv(void* buf, size_t len, int flags) const override
{
const size_t consume_bytes{std::min(len, m_contents.size() - m_consumed)};
std::memcpy(buf, m_contents.data() + m_consumed, consume_bytes);
if ((flags & MSG_PEEK) == 0) {
m_consumed += consume_bytes;
}
return consume_bytes;
}
int Connect(const sockaddr*, socklen_t) const override { return 0; }
int Bind(const sockaddr*, socklen_t) const override { return 0; }
int Listen(int) const override { return 0; }
std::unique_ptr<Sock> Accept(sockaddr* addr, socklen_t* addr_len) const override
{
if (addr != nullptr) {
// Pretend all connections come from 5.5.5.5:6789
memset(addr, 0x00, *addr_len);
const socklen_t write_len = static_cast<socklen_t>(sizeof(sockaddr_in));
if (*addr_len >= write_len) {
*addr_len = write_len;
sockaddr_in* addr_in = reinterpret_cast<sockaddr_in*>(addr);
addr_in->sin_family = AF_INET;
memset(&addr_in->sin_addr, 0x05, sizeof(addr_in->sin_addr));
addr_in->sin_port = htons(6789);
}
}
return std::make_unique<StaticContentsSock>("");
};
int GetSockOpt(int level, int opt_name, void* opt_val, socklen_t* opt_len) const override
{
std::memset(opt_val, 0x0, *opt_len);
return 0;
}
int SetSockOpt(int, int, const void*, socklen_t) const override { return 0; }
int GetSockName(sockaddr* name, socklen_t* name_len) const override
{
std::memset(name, 0x0, *name_len);
return 0;
}
bool SetNonBlocking() const override { return true; }
bool IsSelectable() const override { return true; }
bool Wait(std::chrono::milliseconds timeout,
Event requested,
Event* occurred = nullptr) const override
{
if (occurred != nullptr) {
*occurred = requested;
}
return true;
}
bool WaitMany(std::chrono::milliseconds timeout, EventsPerSock& events_per_sock) const override
{
for (auto& [sock, events] : events_per_sock) {
(void)sock;
events.occurred = events.requested;
}
return true;
}
/**
* Return parts of the contents that was provided at construction until it is exhausted
* and then return 0 (EOF).
*/
ssize_t Recv(void* buf, size_t len, int flags) const override;
bool IsConnected(std::string&) const override
{
@ -231,10 +199,163 @@ public:
}
private:
StaticContentsSock& operator=(Sock&& other) override;
const std::string m_contents;
mutable size_t m_consumed{0};
};
/**
* A mocked Sock alternative that allows providing the data to be returned by Recv()
* and inspecting the data that has been supplied to Send().
*/
class DynSock : public ZeroSock
{
public:
/**
* Unidirectional bytes or CNetMessage queue (FIFO).
*/
class Pipe
{
public:
/**
* Get bytes and remove them from the pipe.
* @param[in] buf Destination to write bytes to.
* @param[in] len Write up to this number of bytes.
* @param[in] flags Same as the flags of `recv(2)`. Just `MSG_PEEK` is honored.
* @return The number of bytes written to `buf`. `0` if `Eof()` has been called.
* If no bytes are available then `-1` is returned and `errno` is set to `EAGAIN`.
*/
ssize_t GetBytes(void* buf, size_t len, int flags = 0) EXCLUSIVE_LOCKS_REQUIRED(!m_mutex);
/**
* Deserialize a `CNetMessage` and remove it from the pipe.
* If not enough bytes are available then the function will wait. If parsing fails
* or EOF is signaled to the pipe, then `std::nullopt` is returned.
*/
std::optional<CNetMessage> GetNetMsg() EXCLUSIVE_LOCKS_REQUIRED(!m_mutex);
/**
* Push bytes to the pipe.
*/
void PushBytes(const void* buf, size_t len) EXCLUSIVE_LOCKS_REQUIRED(!m_mutex);
/**
* Construct and push CNetMessage to the pipe.
*/
template <typename... Args>
void PushNetMsg(const std::string& type, Args&&... payload) EXCLUSIVE_LOCKS_REQUIRED(!m_mutex);
/**
* Signal end-of-file on the receiving end (`GetBytes()` or `GetNetMsg()`).
*/
void Eof() EXCLUSIVE_LOCKS_REQUIRED(!m_mutex);
private:
/**
* Return when there is some data to read or EOF has been signaled.
* @param[in,out] lock Unique lock that must have been derived from `m_mutex` by `WAIT_LOCK(m_mutex, lock)`.
*/
void WaitForDataOrEof(UniqueLock<Mutex>& lock) EXCLUSIVE_LOCKS_REQUIRED(m_mutex);
Mutex m_mutex;
std::condition_variable m_cond;
std::vector<uint8_t> m_data GUARDED_BY(m_mutex);
bool m_eof GUARDED_BY(m_mutex){false};
};
struct Pipes {
Pipe recv;
Pipe send;
};
/**
* A basic thread-safe queue, used for queuing sockets to be returned by Accept().
*/
class Queue
{
public:
using S = std::unique_ptr<DynSock>;
void Push(S s) EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
{
LOCK(m_mutex);
m_queue.push(std::move(s));
}
std::optional<S> Pop() EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
{
LOCK(m_mutex);
if (m_queue.empty()) {
return std::nullopt;
}
S front{std::move(m_queue.front())};
m_queue.pop();
return front;
}
bool Empty() const EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
{
LOCK(m_mutex);
return m_queue.empty();
}
private:
mutable Mutex m_mutex;
std::queue<S> m_queue GUARDED_BY(m_mutex);
};
/**
* Create a new mocked sock.
* @param[in] pipes Send/recv pipes used by the Send() and Recv() methods.
* @param[in] accept_sockets Sockets to return by the Accept() method.
*/
explicit DynSock(std::shared_ptr<Pipes> pipes, std::shared_ptr<Queue> accept_sockets);
~DynSock();
ssize_t Recv(void* buf, size_t len, int flags) const override;
ssize_t Send(const void* buf, size_t len, int) const override;
std::unique_ptr<Sock> Accept(sockaddr* addr, socklen_t* addr_len) const override;
bool Wait(std::chrono::milliseconds timeout,
Event requested,
Event* occurred = nullptr) const override;
bool WaitMany(std::chrono::milliseconds timeout, EventsPerSock& events_per_sock) const override;
private:
DynSock& operator=(Sock&&) override;
std::shared_ptr<Pipes> m_pipes;
std::shared_ptr<Queue> m_accept_sockets;
};
template <typename... Args>
void DynSock::Pipe::PushNetMsg(const std::string& type, Args&&... payload)
{
auto msg = NetMsg::Make(type, std::forward<Args>(payload)...);
V1Transport transport{NodeId{0}};
const bool queued{transport.SetMessageToSend(msg)};
assert(queued);
LOCK(m_mutex);
for (;;) {
const auto& [bytes, _more, _msg_type] = transport.GetBytesToSend(/*have_next_message=*/true);
if (bytes.empty()) {
break;
}
m_data.insert(m_data.end(), bytes.begin(), bytes.end());
transport.MarkBytesSent(bytes.size());
}
m_cond.notify_all();
}
std::vector<NodeEvictionCandidate> GetRandomNodeEvictionCandidates(int n_candidates, FastRandomContext& random_context);
#endif // BITCOIN_TEST_UTIL_NET_H