mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-02-03 09:56:38 -05:00
clusterlin: add SearchCandidateFinder class
Similar to AncestorCandidateFinder, this encapsulates the state needed for finding good candidate sets using a search algorithm.
This commit is contained in:
parent
4828079db3
commit
2a41f151af
2 changed files with 392 additions and 0 deletions
|
@ -5,6 +5,8 @@
|
|||
#ifndef BITCOIN_CLUSTER_LINEARIZE_H
|
||||
#define BITCOIN_CLUSTER_LINEARIZE_H
|
||||
|
||||
#include <algorithm>
|
||||
#include <numeric>
|
||||
#include <optional>
|
||||
#include <stdint.h>
|
||||
#include <vector>
|
||||
|
@ -176,6 +178,9 @@ struct SetInfo
|
|||
/** Their combined fee and size. */
|
||||
FeeFrac feerate;
|
||||
|
||||
/** Construct a SetInfo for the empty set. */
|
||||
SetInfo() noexcept = default;
|
||||
|
||||
/** Construct a SetInfo for a specified set and feerate. */
|
||||
SetInfo(const SetType& txn, const FeeFrac& fr) noexcept : transactions(txn), feerate(fr) {}
|
||||
|
||||
|
@ -183,6 +188,13 @@ struct SetInfo
|
|||
explicit SetInfo(const DepGraph<SetType>& depgraph, const SetType& txn) noexcept :
|
||||
transactions(txn), feerate(depgraph.FeeRate(txn)) {}
|
||||
|
||||
/** Construct a new SetInfo equal to this, with more transactions added (which may overlap
|
||||
* with the existing transactions in the SetInfo). */
|
||||
[[nodiscard]] SetInfo Add(const DepGraph<SetType>& depgraph, const SetType& txn) const noexcept
|
||||
{
|
||||
return {transactions | txn, feerate + depgraph.FeeRate(txn - transactions)};
|
||||
}
|
||||
|
||||
/** Permit equality testing. */
|
||||
friend bool operator==(const SetInfo&, const SetInfo&) noexcept = default;
|
||||
};
|
||||
|
@ -283,6 +295,165 @@ public:
|
|||
}
|
||||
};
|
||||
|
||||
/** Class encapsulating the state needed to perform search for good candidate sets.
|
||||
*
|
||||
* It is initialized for an entire DepGraph, and parts of the graph can be dropped by calling
|
||||
* MarkDone().
|
||||
*
|
||||
* As long as any part of the graph remains, FindCandidateSet() can be called to perform a search
|
||||
* over the set of topologically-valid subsets of that remainder, with a limit on how many
|
||||
* combinations are tried.
|
||||
*/
|
||||
template<typename SetType>
|
||||
class SearchCandidateFinder
|
||||
{
|
||||
/** Internal dependency graph for the cluster. */
|
||||
const DepGraph<SetType>& m_depgraph;
|
||||
/** Which transactions are left to do (sorted indices). */
|
||||
SetType m_todo;
|
||||
|
||||
public:
|
||||
/** Construct a candidate finder for a graph.
|
||||
*
|
||||
* @param[in] depgraph Dependency graph for the to-be-linearized cluster.
|
||||
*
|
||||
* Complexity: O(1).
|
||||
*/
|
||||
SearchCandidateFinder(const DepGraph<SetType>& depgraph LIFETIMEBOUND) noexcept :
|
||||
m_depgraph(depgraph),
|
||||
m_todo(SetType::Fill(depgraph.TxCount())) {}
|
||||
|
||||
/** Check whether any unlinearized transactions remain. */
|
||||
bool AllDone() const noexcept
|
||||
{
|
||||
return m_todo.None();
|
||||
}
|
||||
|
||||
/** Find a high-feerate topologically-valid subset of what remains of the cluster.
|
||||
* Requires !AllDone().
|
||||
*
|
||||
* @param[in] max_iterations The maximum number of optimization steps that will be performed.
|
||||
* @param[in] best A set/feerate pair with an already-known good candidate. This may
|
||||
* be empty.
|
||||
* @return A pair of:
|
||||
* - The best (highest feerate, smallest size as tiebreaker)
|
||||
* topologically valid subset (and its feerate) that was
|
||||
* encountered during search. It will be at least as good as the
|
||||
* best passed in (if not empty).
|
||||
* - The number of optimization steps that were performed. This will
|
||||
* be <= max_iterations. If strictly < max_iterations, the
|
||||
* returned subset is optimal.
|
||||
*
|
||||
* Complexity: O(N * min(max_iterations, 2^N)) where N=depgraph.TxCount().
|
||||
*/
|
||||
std::pair<SetInfo<SetType>, uint64_t> FindCandidateSet(uint64_t max_iterations, SetInfo<SetType> best) noexcept
|
||||
{
|
||||
Assume(!AllDone());
|
||||
|
||||
/** Type for work queue items. */
|
||||
struct WorkItem
|
||||
{
|
||||
/** Set of transactions definitely included (and its feerate). This must be a subset
|
||||
* of m_todo, and be topologically valid (includes all in-m_todo ancestors of
|
||||
* itself). */
|
||||
SetInfo<SetType> inc;
|
||||
/** Set of undecided transactions. This must be a subset of m_todo, and have no overlap
|
||||
* with inc. The set (inc | und) must be topologically valid. */
|
||||
SetType und;
|
||||
|
||||
/** Construct a new work item. */
|
||||
WorkItem(SetInfo<SetType>&& i, SetType&& u) noexcept :
|
||||
inc(std::move(i)), und(std::move(u)) {}
|
||||
};
|
||||
|
||||
/** The queue of work items. */
|
||||
std::vector<WorkItem> queue;
|
||||
|
||||
// Create an initial entry with m_todo as undecided. Also use it as best if not provided,
|
||||
// so that during the work processing loop below, and during the add_fn/split_fn calls, we
|
||||
// do not need to deal with the best=empty case.
|
||||
if (best.feerate.IsEmpty()) best = SetInfo(m_depgraph, m_todo);
|
||||
queue.emplace_back(SetInfo<SetType>{}, SetType{m_todo});
|
||||
|
||||
/** Local copy of the iteration limit. */
|
||||
uint64_t iterations_left = max_iterations;
|
||||
|
||||
/** Internal function to add an item to the queue of elements to explore if there are any
|
||||
* transactions left to split on, and to update best.
|
||||
*
|
||||
* - inc: the "inc" value for the new work item (must be topological).
|
||||
* - und: the "und" value for the new work item ((inc | und) must be topological).
|
||||
*/
|
||||
auto add_fn = [&](SetInfo<SetType> inc, SetType und) noexcept {
|
||||
if (!inc.feerate.IsEmpty()) {
|
||||
// If inc's feerate is better than best's, remember it as our new best.
|
||||
if (inc.feerate > best.feerate) {
|
||||
best = inc;
|
||||
}
|
||||
} else {
|
||||
Assume(inc.transactions.None());
|
||||
}
|
||||
|
||||
// Make sure there are undecided transactions left to split on.
|
||||
if (und.None()) return;
|
||||
|
||||
// Actually construct a new work item on the queue.
|
||||
queue.emplace_back(std::move(inc), std::move(und));
|
||||
};
|
||||
|
||||
/** Internal process function. It takes an existing work item, and splits it in two: one
|
||||
* with a particular transaction (and its ancestors) included, and one with that
|
||||
* transaction (and its descendants) excluded. */
|
||||
auto split_fn = [&](WorkItem&& elem) noexcept {
|
||||
// Any queue element must have undecided transactions left, otherwise there is nothing
|
||||
// to explore anymore.
|
||||
Assume(elem.und.Any());
|
||||
// The included and undecided set are all subsets of m_todo.
|
||||
Assume(elem.inc.transactions.IsSubsetOf(m_todo) && elem.und.IsSubsetOf(m_todo));
|
||||
// Included transactions cannot be undecided.
|
||||
Assume(!elem.inc.transactions.Overlaps(elem.und));
|
||||
|
||||
// Pick the first undecided transaction as the one to split on.
|
||||
const ClusterIndex split = elem.und.First();
|
||||
|
||||
// Add a work item corresponding to exclusion of the split transaction.
|
||||
const auto& desc = m_depgraph.Descendants(split);
|
||||
add_fn(/*inc=*/elem.inc,
|
||||
/*und=*/elem.und - desc);
|
||||
|
||||
// Add a work item corresponding to inclusion of the split transaction.
|
||||
const auto anc = m_depgraph.Ancestors(split) & m_todo;
|
||||
add_fn(/*inc=*/elem.inc.Add(m_depgraph, anc),
|
||||
/*und=*/elem.und - anc);
|
||||
|
||||
// Account for the performed split.
|
||||
--iterations_left;
|
||||
};
|
||||
|
||||
// Work processing loop.
|
||||
while (!queue.empty()) {
|
||||
if (!iterations_left) break;
|
||||
auto elem = queue.back();
|
||||
queue.pop_back();
|
||||
split_fn(std::move(elem));
|
||||
}
|
||||
|
||||
// Return the found best set and the number of iterations performed.
|
||||
return {std::move(best), max_iterations - iterations_left};
|
||||
}
|
||||
|
||||
/** Remove a subset of transactions from the cluster being linearized.
|
||||
*
|
||||
* Complexity: O(N) where N=done.Count().
|
||||
*/
|
||||
void MarkDone(const SetType& done) noexcept
|
||||
{
|
||||
Assume(done.Any());
|
||||
Assume(done.IsSubsetOf(m_todo));
|
||||
m_todo -= done;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace cluster_linearize
|
||||
|
||||
#endif // BITCOIN_CLUSTER_LINEARIZE_H
|
||||
|
|
|
@ -19,6 +19,127 @@ using namespace cluster_linearize;
|
|||
|
||||
namespace {
|
||||
|
||||
/** A simple finder class for candidate sets.
|
||||
*
|
||||
* This class matches SearchCandidateFinder in interface and behavior, though with fewer
|
||||
* optimizations.
|
||||
*/
|
||||
template<typename SetType>
|
||||
class SimpleCandidateFinder
|
||||
{
|
||||
/** Internal dependency graph. */
|
||||
const DepGraph<SetType>& m_depgraph;
|
||||
/** Which transaction are left to include. */
|
||||
SetType m_todo;
|
||||
|
||||
public:
|
||||
/** Construct an SimpleCandidateFinder for a given graph. */
|
||||
SimpleCandidateFinder(const DepGraph<SetType>& depgraph LIFETIMEBOUND) noexcept :
|
||||
m_depgraph(depgraph), m_todo{SetType::Fill(depgraph.TxCount())} {}
|
||||
|
||||
/** Remove a set of transactions from the set of to-be-linearized ones. */
|
||||
void MarkDone(SetType select) noexcept { m_todo -= select; }
|
||||
|
||||
/** Determine whether unlinearized transactions remain. */
|
||||
bool AllDone() const noexcept { return m_todo.None(); }
|
||||
|
||||
/** Find a candidate set using at most max_iterations iterations, and the number of iterations
|
||||
* actually performed. If that number is less than max_iterations, then the result is optimal.
|
||||
*
|
||||
* Complexity: O(N * M), where M is the number of connected topological subsets of the cluster.
|
||||
* That number is bounded by M <= 2^(N-1).
|
||||
*/
|
||||
std::pair<SetInfo<SetType>, uint64_t> FindCandidateSet(uint64_t max_iterations) const noexcept
|
||||
{
|
||||
uint64_t iterations_left = max_iterations;
|
||||
// Queue of work units. Each consists of:
|
||||
// - inc: set of transactions definitely included
|
||||
// - und: set of transactions that can be added to inc still
|
||||
std::vector<std::pair<SetType, SetType>> queue;
|
||||
// Initially we have just one queue element, with the entire graph in und.
|
||||
queue.emplace_back(SetType{}, m_todo);
|
||||
// Best solution so far.
|
||||
SetInfo best(m_depgraph, m_todo);
|
||||
// Process the queue.
|
||||
while (!queue.empty() && iterations_left) {
|
||||
--iterations_left;
|
||||
// Pop top element of the queue.
|
||||
auto [inc, und] = queue.back();
|
||||
queue.pop_back();
|
||||
// Look for a transaction to consider adding/removing.
|
||||
bool inc_none = inc.None();
|
||||
for (auto split : und) {
|
||||
// If inc is empty, consider any split transaction. Otherwise only consider
|
||||
// transactions that share ancestry with inc so far (which means only connected
|
||||
// sets will be considered).
|
||||
if (inc_none || inc.Overlaps(m_depgraph.Ancestors(split))) {
|
||||
// Add a queue entry with split included.
|
||||
SetInfo new_inc(m_depgraph, inc | (m_todo & m_depgraph.Ancestors(split)));
|
||||
queue.emplace_back(new_inc.transactions, und - new_inc.transactions);
|
||||
// Add a queue entry with split excluded.
|
||||
queue.emplace_back(inc, und - m_depgraph.Descendants(split));
|
||||
// Update statistics to account for the candidate new_inc.
|
||||
if (new_inc.feerate > best.feerate) best = new_inc;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
return {std::move(best), max_iterations - iterations_left};
|
||||
}
|
||||
};
|
||||
|
||||
/** A very simple finder class for optimal candidate sets, which tries every subset.
|
||||
*
|
||||
* It is even simpler than SimpleCandidateFinder, and is primarily included here to test the
|
||||
* correctness of SimpleCandidateFinder, which is then used to test the correctness of
|
||||
* SearchCandidateFinder.
|
||||
*/
|
||||
template<typename SetType>
|
||||
class ExhaustiveCandidateFinder
|
||||
{
|
||||
/** Internal dependency graph. */
|
||||
const DepGraph<SetType>& m_depgraph;
|
||||
/** Which transaction are left to include. */
|
||||
SetType m_todo;
|
||||
|
||||
public:
|
||||
/** Construct an ExhaustiveCandidateFinder for a given graph. */
|
||||
ExhaustiveCandidateFinder(const DepGraph<SetType>& depgraph LIFETIMEBOUND) noexcept :
|
||||
m_depgraph(depgraph), m_todo{SetType::Fill(depgraph.TxCount())} {}
|
||||
|
||||
/** Remove a set of transactions from the set of to-be-linearized ones. */
|
||||
void MarkDone(SetType select) noexcept { m_todo -= select; }
|
||||
|
||||
/** Determine whether unlinearized transactions remain. */
|
||||
bool AllDone() const noexcept { return m_todo.None(); }
|
||||
|
||||
/** Find the optimal remaining candidate set.
|
||||
*
|
||||
* Complexity: O(N * 2^N).
|
||||
*/
|
||||
SetInfo<SetType> FindCandidateSet() const noexcept
|
||||
{
|
||||
// Best solution so far.
|
||||
SetInfo<SetType> best{m_todo, m_depgraph.FeeRate(m_todo)};
|
||||
// The number of combinations to try.
|
||||
uint64_t limit = (uint64_t{1} << m_todo.Count()) - 1;
|
||||
// Try the transitive closure of every non-empty subset of m_todo.
|
||||
for (uint64_t x = 1; x < limit; ++x) {
|
||||
// If bit number b is set in x, then the remaining ancestors of the b'th remaining
|
||||
// transaction in m_todo are included.
|
||||
SetType txn;
|
||||
auto x_shifted{x};
|
||||
for (auto i : m_todo) {
|
||||
if (x_shifted & 1) txn |= m_depgraph.Ancestors(i);
|
||||
x_shifted >>= 1;
|
||||
}
|
||||
SetInfo cur(m_depgraph, txn & m_todo);
|
||||
if (cur.feerate > best.feerate) best = cur;
|
||||
}
|
||||
return best;
|
||||
}
|
||||
};
|
||||
|
||||
/** Given a dependency graph, and a todo set, read a topological subset of todo from reader. */
|
||||
template<typename SetType>
|
||||
SetType ReadTopologicalSet(const DepGraph<SetType>& depgraph, const SetType& todo, SpanReader& reader)
|
||||
|
@ -157,3 +278,103 @@ FUZZ_TARGET(clusterlin_ancestor_finder)
|
|||
}
|
||||
assert(anc_finder.AllDone());
|
||||
}
|
||||
|
||||
static constexpr auto MAX_SIMPLE_ITERATIONS = 300000;
|
||||
|
||||
FUZZ_TARGET(clusterlin_search_finder)
|
||||
{
|
||||
// Verify that SearchCandidateFinder works as expected by sanity checking the results
|
||||
// and comparing with the results from SimpleCandidateFinder, ExhaustiveCandidateFinder, and
|
||||
// AncestorCandidateFinder.
|
||||
|
||||
// Retrieve a depgraph from the fuzz input.
|
||||
SpanReader reader(buffer);
|
||||
DepGraph<TestBitSet> depgraph;
|
||||
try {
|
||||
reader >> Using<DepGraphFormatter>(depgraph);
|
||||
} catch (const std::ios_base::failure&) {}
|
||||
|
||||
// Instantiate ALL the candidate finders.
|
||||
SearchCandidateFinder src_finder(depgraph);
|
||||
SimpleCandidateFinder smp_finder(depgraph);
|
||||
ExhaustiveCandidateFinder exh_finder(depgraph);
|
||||
AncestorCandidateFinder anc_finder(depgraph);
|
||||
|
||||
auto todo = TestBitSet::Fill(depgraph.TxCount());
|
||||
while (todo.Any()) {
|
||||
assert(!src_finder.AllDone());
|
||||
assert(!smp_finder.AllDone());
|
||||
assert(!exh_finder.AllDone());
|
||||
assert(!anc_finder.AllDone());
|
||||
|
||||
// For each iteration, read an iteration count limit from the fuzz input.
|
||||
uint64_t max_iterations = 1;
|
||||
try {
|
||||
reader >> VARINT(max_iterations);
|
||||
} catch (const std::ios_base::failure&) {}
|
||||
max_iterations &= 0xfffff;
|
||||
|
||||
// Read an initial subset from the fuzz input.
|
||||
SetInfo init_best(depgraph, ReadTopologicalSet(depgraph, todo, reader));
|
||||
|
||||
// Call the search finder's FindCandidateSet for what remains of the graph.
|
||||
auto [found, iterations_done] = src_finder.FindCandidateSet(max_iterations, init_best);
|
||||
|
||||
// Sanity check the result.
|
||||
assert(iterations_done <= max_iterations);
|
||||
assert(found.transactions.Any());
|
||||
assert(found.transactions.IsSubsetOf(todo));
|
||||
assert(depgraph.FeeRate(found.transactions) == found.feerate);
|
||||
if (!init_best.feerate.IsEmpty()) assert(found.feerate >= init_best.feerate);
|
||||
// Check that it is topologically valid.
|
||||
for (auto i : found.transactions) {
|
||||
assert(found.transactions.IsSupersetOf(depgraph.Ancestors(i) & todo));
|
||||
}
|
||||
|
||||
// At most 2^N-1 iterations can be required: the number of non-empty subsets a graph with N
|
||||
// transactions has.
|
||||
assert(iterations_done <= ((uint64_t{1} << todo.Count()) - 1));
|
||||
|
||||
// Perform quality checks only if SearchCandidateFinder claims an optimal result.
|
||||
if (iterations_done < max_iterations) {
|
||||
// Compare with SimpleCandidateFinder.
|
||||
auto [simple, simple_iters] = smp_finder.FindCandidateSet(MAX_SIMPLE_ITERATIONS);
|
||||
assert(found.feerate >= simple.feerate);
|
||||
if (simple_iters < MAX_SIMPLE_ITERATIONS) {
|
||||
assert(found.feerate == simple.feerate);
|
||||
}
|
||||
|
||||
// Compare with AncestorCandidateFinder;
|
||||
auto anc = anc_finder.FindCandidateSet();
|
||||
assert(found.feerate >= anc.feerate);
|
||||
|
||||
// Compare with ExhaustiveCandidateFinder. This quickly gets computationally expensive
|
||||
// for large clusters (O(2^n)), so only do it for sufficiently small ones.
|
||||
if (todo.Count() <= 12) {
|
||||
auto exhaustive = exh_finder.FindCandidateSet();
|
||||
assert(exhaustive.feerate == found.feerate);
|
||||
// Also compare ExhaustiveCandidateFinder with SimpleCandidateFinder (this is
|
||||
// primarily a test for SimpleCandidateFinder's correctness).
|
||||
assert(exhaustive.feerate >= simple.feerate);
|
||||
if (simple_iters < MAX_SIMPLE_ITERATIONS) {
|
||||
assert(exhaustive.feerate == simple.feerate);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Find a topologically valid subset of transactions to remove from the graph.
|
||||
auto del_set = ReadTopologicalSet(depgraph, todo, reader);
|
||||
// If we did not find anything, use found itself, because we should remove something.
|
||||
if (del_set.None()) del_set = found.transactions;
|
||||
todo -= del_set;
|
||||
src_finder.MarkDone(del_set);
|
||||
smp_finder.MarkDone(del_set);
|
||||
exh_finder.MarkDone(del_set);
|
||||
anc_finder.MarkDone(del_set);
|
||||
}
|
||||
|
||||
assert(src_finder.AllDone());
|
||||
assert(smp_finder.AllDone());
|
||||
assert(exh_finder.AllDone());
|
||||
assert(anc_finder.AllDone());
|
||||
}
|
||||
|
|
Loading…
Add table
Reference in a new issue