0
0
Fork 0
mirror of https://github.com/bitcoin/bitcoin.git synced 2025-02-08 10:31:50 -05:00

Merge bitcoin/bitcoin#27993: Make poly1305 support incremental computation + modernize

4e5c933f6a Switch all callers from poly1305_auth to Poly1305 class (Pieter Wuille)
8871f7d1ae tests: add more Poly1305 test vectors (Pieter Wuille)
40e6c5b9fc crypto: add Poly1305 class with std::byte Span interface (Pieter Wuille)
50269b391f crypto: switch poly1305 to incremental implementation (Pieter Wuille)

Pull request description:

  Our current Poly1305 code (src/crypto/poly1305.*) only supports computing the entire tag in one go (the `poly1305_auth` function takes a key and message, and outputs the tag). However, the RFC8439 authenticated encryption (as used in BIP324, see #27634) scheme makes use of Poly1305 in a way where the message consists of 3 different pieces:
  * The additionally authenticated data (AAD), padded to 16 bytes.
  * The ciphertext, padded to 16 bytes.
  * The length of the AAD and the length of the ciphertext, together another 16 bytes.

  Implementing RFC8439 using the existing `poly1305_auth` function requires creating a temporary copy with all these pieces of data concatenated just for the purpose of computing the tag (the approach used in #25361).

  This PR replaces the poly1305 code with new code from https://github.com/floodyberry/poly1305-donna (with minor adjustments to make it match our coding style and use our utility functions, documented in the commit) which supports incremental operation, and then adds a C++ wrapper interface using std::byte Spans around it, and adds tests that incremental and all-at-once computation match.

ACKs for top commit:
  achow101:
    ACK 4e5c933f6a
  theStack:
    ACK 4e5c933f6a
  stratospher:
    tested ACK 4e5c933.

Tree-SHA512: df6e9a2a4a38a480f9e4360d3e3def5311673a727a4a85b008a084cf6843b260dc82cec7c73e1cecaaccbf10f3521a0ae7dba388b65d0b086770f7fbc5223e2a
This commit is contained in:
Andrew Chow 2023-07-17 18:20:37 -04:00
commit 306157ae92
No known key found for this signature in database
GPG key ID: 17565732E08E5E41
8 changed files with 386 additions and 148 deletions

View file

@ -23,8 +23,8 @@ static ChaCha20Poly1305AEAD aead(k1, 32, k2, 32);
static void CHACHA20_POLY1305_AEAD(benchmark::Bench& bench, size_t buffersize, bool include_decryption)
{
std::vector<unsigned char> in(buffersize + CHACHA20_POLY1305_AEAD_AAD_LEN + POLY1305_TAGLEN, 0);
std::vector<unsigned char> out(buffersize + CHACHA20_POLY1305_AEAD_AAD_LEN + POLY1305_TAGLEN, 0);
std::vector<unsigned char> in(buffersize + CHACHA20_POLY1305_AEAD_AAD_LEN + Poly1305::TAGLEN, 0);
std::vector<unsigned char> out(buffersize + CHACHA20_POLY1305_AEAD_AAD_LEN + Poly1305::TAGLEN, 0);
uint64_t seqnr_payload = 0;
uint64_t seqnr_aad = 0;
int aad_pos = 0;

View file

@ -6,6 +6,8 @@
#include <bench/bench.h>
#include <crypto/poly1305.h>
#include <span.h>
/* Number of bytes to process per iteration */
static constexpr uint64_t BUFFER_SIZE_TINY = 64;
static constexpr uint64_t BUFFER_SIZE_SMALL = 256;
@ -13,11 +15,11 @@ static constexpr uint64_t BUFFER_SIZE_LARGE = 1024*1024;
static void POLY1305(benchmark::Bench& bench, size_t buffersize)
{
std::vector<unsigned char> tag(POLY1305_TAGLEN, 0);
std::vector<unsigned char> key(POLY1305_KEYLEN, 0);
std::vector<unsigned char> in(buffersize, 0);
std::vector<std::byte> tag(Poly1305::TAGLEN, {});
std::vector<std::byte> key(Poly1305::KEYLEN, {});
std::vector<std::byte> in(buffersize, {});
bench.batch(in.size()).unit("byte").run([&] {
poly1305_auth(tag.data(), in.data(), in.size(), key.data());
Poly1305{key}.Update(in).Finalize(tag);
});
}

View file

@ -50,13 +50,13 @@ bool ChaCha20Poly1305AEAD::Crypt(uint64_t seqnr_payload, uint64_t seqnr_aad, int
// check buffer boundaries
if (
// if we encrypt, make sure the source contains at least the expected AAD and the destination has at least space for the source + MAC
(is_encrypt && (src_len < CHACHA20_POLY1305_AEAD_AAD_LEN || dest_len < src_len + POLY1305_TAGLEN)) ||
(is_encrypt && (src_len < CHACHA20_POLY1305_AEAD_AAD_LEN || dest_len < src_len + Poly1305::TAGLEN)) ||
// if we decrypt, make sure the source contains at least the expected AAD+MAC and the destination has at least space for the source - MAC
(!is_encrypt && (src_len < CHACHA20_POLY1305_AEAD_AAD_LEN + POLY1305_TAGLEN || dest_len < src_len - POLY1305_TAGLEN))) {
(!is_encrypt && (src_len < CHACHA20_POLY1305_AEAD_AAD_LEN + Poly1305::TAGLEN || dest_len < src_len - Poly1305::TAGLEN))) {
return false;
}
unsigned char expected_tag[POLY1305_TAGLEN], poly_key[POLY1305_KEYLEN];
unsigned char expected_tag[Poly1305::TAGLEN], poly_key[Poly1305::KEYLEN];
memset(poly_key, 0, sizeof(poly_key));
// block counter 0 for the poly1305 key
@ -67,18 +67,20 @@ bool ChaCha20Poly1305AEAD::Crypt(uint64_t seqnr_payload, uint64_t seqnr_aad, int
// if decrypting, verify the tag prior to decryption
if (!is_encrypt) {
const unsigned char* tag = src + src_len - POLY1305_TAGLEN;
poly1305_auth(expected_tag, src, src_len - POLY1305_TAGLEN, poly_key);
const unsigned char* tag = src + src_len - Poly1305::TAGLEN;
Poly1305{MakeByteSpan(poly_key)}
.Update(AsBytes(Span{src, src_len - Poly1305::TAGLEN}))
.Finalize(MakeWritableByteSpan(expected_tag));
// constant time compare the calculated MAC with the provided MAC
if (timingsafe_bcmp(expected_tag, tag, POLY1305_TAGLEN) != 0) {
if (timingsafe_bcmp(expected_tag, tag, Poly1305::TAGLEN) != 0) {
memory_cleanse(expected_tag, sizeof(expected_tag));
memory_cleanse(poly_key, sizeof(poly_key));
return false;
}
memory_cleanse(expected_tag, sizeof(expected_tag));
// MAC has been successfully verified, make sure we don't convert it in decryption
src_len -= POLY1305_TAGLEN;
src_len -= Poly1305::TAGLEN;
}
// calculate and cache the next 64byte keystream block if requested sequence number is not yet the cache
@ -99,7 +101,9 @@ bool ChaCha20Poly1305AEAD::Crypt(uint64_t seqnr_payload, uint64_t seqnr_aad, int
// If encrypting, calculate and append tag
if (is_encrypt) {
// the poly1305 tag expands over the AAD (3 bytes length) & encrypted payload
poly1305_auth(dest + src_len, dest, src_len, poly_key);
Poly1305{MakeByteSpan(poly_key)}
.Update(AsBytes(Span{dest, src_len}))
.Finalize(AsWritableBytes(Span{dest + src_len, Poly1305::TAGLEN}));
}
// cleanse no longer required MAC and polykey

View file

@ -2,140 +2,222 @@
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
// Based on the public domain implementation by Andrew Moon
// poly1305-donna-unrolled.c from https://github.com/floodyberry/poly1305-donna
#include <crypto/common.h>
#include <crypto/poly1305.h>
#include <string.h>
#define mul32x32_64(a,b) ((uint64_t)(a) * (b))
namespace poly1305_donna {
void poly1305_auth(unsigned char out[POLY1305_TAGLEN], const unsigned char *m, size_t inlen, const unsigned char key[POLY1305_KEYLEN]) {
uint32_t t0,t1,t2,t3;
uint32_t h0,h1,h2,h3,h4;
// Based on the public domain implementation by Andrew Moon
// poly1305-donna-32.h from https://github.com/floodyberry/poly1305-donna
void poly1305_init(poly1305_context *st, const unsigned char key[32]) noexcept {
/* r &= 0xffffffc0ffffffc0ffffffc0fffffff */
st->r[0] = (ReadLE32(&key[ 0]) ) & 0x3ffffff;
st->r[1] = (ReadLE32(&key[ 3]) >> 2) & 0x3ffff03;
st->r[2] = (ReadLE32(&key[ 6]) >> 4) & 0x3ffc0ff;
st->r[3] = (ReadLE32(&key[ 9]) >> 6) & 0x3f03fff;
st->r[4] = (ReadLE32(&key[12]) >> 8) & 0x00fffff;
/* h = 0 */
st->h[0] = 0;
st->h[1] = 0;
st->h[2] = 0;
st->h[3] = 0;
st->h[4] = 0;
/* save pad for later */
st->pad[0] = ReadLE32(&key[16]);
st->pad[1] = ReadLE32(&key[20]);
st->pad[2] = ReadLE32(&key[24]);
st->pad[3] = ReadLE32(&key[28]);
st->leftover = 0;
st->final = 0;
}
static void poly1305_blocks(poly1305_context *st, const unsigned char *m, size_t bytes) noexcept {
const uint32_t hibit = (st->final) ? 0 : (1UL << 24); /* 1 << 128 */
uint32_t r0,r1,r2,r3,r4;
uint32_t s1,s2,s3,s4;
uint32_t b, nb;
size_t j;
uint64_t t[5];
uint64_t f0,f1,f2,f3;
uint64_t g0,g1,g2,g3,g4;
uint64_t c;
unsigned char mp[16];
uint32_t h0,h1,h2,h3,h4;
uint64_t d0,d1,d2,d3,d4;
uint32_t c;
/* clamp key */
t0 = ReadLE32(key+0);
t1 = ReadLE32(key+4);
t2 = ReadLE32(key+8);
t3 = ReadLE32(key+12);
/* precompute multipliers */
r0 = t0 & 0x3ffffff; t0 >>= 26; t0 |= t1 << 6;
r1 = t0 & 0x3ffff03; t1 >>= 20; t1 |= t2 << 12;
r2 = t1 & 0x3ffc0ff; t2 >>= 14; t2 |= t3 << 18;
r3 = t2 & 0x3f03fff; t3 >>= 8;
r4 = t3 & 0x00fffff;
r0 = st->r[0];
r1 = st->r[1];
r2 = st->r[2];
r3 = st->r[3];
r4 = st->r[4];
s1 = r1 * 5;
s2 = r2 * 5;
s3 = r3 * 5;
s4 = r4 * 5;
/* init state */
h0 = 0;
h1 = 0;
h2 = 0;
h3 = 0;
h4 = 0;
h0 = st->h[0];
h1 = st->h[1];
h2 = st->h[2];
h3 = st->h[3];
h4 = st->h[4];
/* full blocks */
if (inlen < 16) goto poly1305_donna_atmost15bytes;
poly1305_donna_16bytes:
m += 16;
inlen -= 16;
while (bytes >= POLY1305_BLOCK_SIZE) {
/* h += m[i] */
h0 += (ReadLE32(m+ 0) ) & 0x3ffffff;
h1 += (ReadLE32(m+ 3) >> 2) & 0x3ffffff;
h2 += (ReadLE32(m+ 6) >> 4) & 0x3ffffff;
h3 += (ReadLE32(m+ 9) >> 6) & 0x3ffffff;
h4 += (ReadLE32(m+12) >> 8) | hibit;
t0 = ReadLE32(m-16);
t1 = ReadLE32(m-12);
t2 = ReadLE32(m-8);
t3 = ReadLE32(m-4);
/* h *= r */
d0 = ((uint64_t)h0 * r0) + ((uint64_t)h1 * s4) + ((uint64_t)h2 * s3) + ((uint64_t)h3 * s2) + ((uint64_t)h4 * s1);
d1 = ((uint64_t)h0 * r1) + ((uint64_t)h1 * r0) + ((uint64_t)h2 * s4) + ((uint64_t)h3 * s3) + ((uint64_t)h4 * s2);
d2 = ((uint64_t)h0 * r2) + ((uint64_t)h1 * r1) + ((uint64_t)h2 * r0) + ((uint64_t)h3 * s4) + ((uint64_t)h4 * s3);
d3 = ((uint64_t)h0 * r3) + ((uint64_t)h1 * r2) + ((uint64_t)h2 * r1) + ((uint64_t)h3 * r0) + ((uint64_t)h4 * s4);
d4 = ((uint64_t)h0 * r4) + ((uint64_t)h1 * r3) + ((uint64_t)h2 * r2) + ((uint64_t)h3 * r1) + ((uint64_t)h4 * r0);
h0 += t0 & 0x3ffffff;
h1 += ((((uint64_t)t1 << 32) | t0) >> 26) & 0x3ffffff;
h2 += ((((uint64_t)t2 << 32) | t1) >> 20) & 0x3ffffff;
h3 += ((((uint64_t)t3 << 32) | t2) >> 14) & 0x3ffffff;
h4 += (t3 >> 8) | (1 << 24);
/* (partial) h %= p */
c = (uint32_t)(d0 >> 26); h0 = (uint32_t)d0 & 0x3ffffff;
d1 += c; c = (uint32_t)(d1 >> 26); h1 = (uint32_t)d1 & 0x3ffffff;
d2 += c; c = (uint32_t)(d2 >> 26); h2 = (uint32_t)d2 & 0x3ffffff;
d3 += c; c = (uint32_t)(d3 >> 26); h3 = (uint32_t)d3 & 0x3ffffff;
d4 += c; c = (uint32_t)(d4 >> 26); h4 = (uint32_t)d4 & 0x3ffffff;
h0 += c * 5; c = (h0 >> 26); h0 = h0 & 0x3ffffff;
h1 += c;
m += POLY1305_BLOCK_SIZE;
bytes -= POLY1305_BLOCK_SIZE;
}
poly1305_donna_mul:
t[0] = mul32x32_64(h0,r0) + mul32x32_64(h1,s4) + mul32x32_64(h2,s3) + mul32x32_64(h3,s2) + mul32x32_64(h4,s1);
t[1] = mul32x32_64(h0,r1) + mul32x32_64(h1,r0) + mul32x32_64(h2,s4) + mul32x32_64(h3,s3) + mul32x32_64(h4,s2);
t[2] = mul32x32_64(h0,r2) + mul32x32_64(h1,r1) + mul32x32_64(h2,r0) + mul32x32_64(h3,s4) + mul32x32_64(h4,s3);
t[3] = mul32x32_64(h0,r3) + mul32x32_64(h1,r2) + mul32x32_64(h2,r1) + mul32x32_64(h3,r0) + mul32x32_64(h4,s4);
t[4] = mul32x32_64(h0,r4) + mul32x32_64(h1,r3) + mul32x32_64(h2,r2) + mul32x32_64(h3,r1) + mul32x32_64(h4,r0);
h0 = (uint32_t)t[0] & 0x3ffffff; c = (t[0] >> 26);
t[1] += c; h1 = (uint32_t)t[1] & 0x3ffffff; b = (uint32_t)(t[1] >> 26);
t[2] += b; h2 = (uint32_t)t[2] & 0x3ffffff; b = (uint32_t)(t[2] >> 26);
t[3] += b; h3 = (uint32_t)t[3] & 0x3ffffff; b = (uint32_t)(t[3] >> 26);
t[4] += b; h4 = (uint32_t)t[4] & 0x3ffffff; b = (uint32_t)(t[4] >> 26);
h0 += b * 5;
if (inlen >= 16) goto poly1305_donna_16bytes;
/* final bytes */
poly1305_donna_atmost15bytes:
if (!inlen) goto poly1305_donna_finish;
for (j = 0; j < inlen; j++) mp[j] = m[j];
mp[j++] = 1;
for (; j < 16; j++) mp[j] = 0;
inlen = 0;
t0 = ReadLE32(mp+0);
t1 = ReadLE32(mp+4);
t2 = ReadLE32(mp+8);
t3 = ReadLE32(mp+12);
h0 += t0 & 0x3ffffff;
h1 += ((((uint64_t)t1 << 32) | t0) >> 26) & 0x3ffffff;
h2 += ((((uint64_t)t2 << 32) | t1) >> 20) & 0x3ffffff;
h3 += ((((uint64_t)t3 << 32) | t2) >> 14) & 0x3ffffff;
h4 += (t3 >> 8);
goto poly1305_donna_mul;
poly1305_donna_finish:
b = h0 >> 26; h0 = h0 & 0x3ffffff;
h1 += b; b = h1 >> 26; h1 = h1 & 0x3ffffff;
h2 += b; b = h2 >> 26; h2 = h2 & 0x3ffffff;
h3 += b; b = h3 >> 26; h3 = h3 & 0x3ffffff;
h4 += b; b = h4 >> 26; h4 = h4 & 0x3ffffff;
h0 += b * 5; b = h0 >> 26; h0 = h0 & 0x3ffffff;
h1 += b;
g0 = h0 + 5; b = g0 >> 26; g0 &= 0x3ffffff;
g1 = h1 + b; b = g1 >> 26; g1 &= 0x3ffffff;
g2 = h2 + b; b = g2 >> 26; g2 &= 0x3ffffff;
g3 = h3 + b; b = g3 >> 26; g3 &= 0x3ffffff;
g4 = h4 + b - (1 << 26);
b = (g4 >> 31) - 1;
nb = ~b;
h0 = (h0 & nb) | (g0 & b);
h1 = (h1 & nb) | (g1 & b);
h2 = (h2 & nb) | (g2 & b);
h3 = (h3 & nb) | (g3 & b);
h4 = (h4 & nb) | (g4 & b);
f0 = ((h0 ) | (h1 << 26)) + (uint64_t)ReadLE32(&key[16]);
f1 = ((h1 >> 6) | (h2 << 20)) + (uint64_t)ReadLE32(&key[20]);
f2 = ((h2 >> 12) | (h3 << 14)) + (uint64_t)ReadLE32(&key[24]);
f3 = ((h3 >> 18) | (h4 << 8)) + (uint64_t)ReadLE32(&key[28]);
WriteLE32(&out[ 0], f0); f1 += (f0 >> 32);
WriteLE32(&out[ 4], f1); f2 += (f1 >> 32);
WriteLE32(&out[ 8], f2); f3 += (f2 >> 32);
WriteLE32(&out[12], f3);
st->h[0] = h0;
st->h[1] = h1;
st->h[2] = h2;
st->h[3] = h3;
st->h[4] = h4;
}
void poly1305_finish(poly1305_context *st, unsigned char mac[16]) noexcept {
uint32_t h0,h1,h2,h3,h4,c;
uint32_t g0,g1,g2,g3,g4;
uint64_t f;
uint32_t mask;
/* process the remaining block */
if (st->leftover) {
size_t i = st->leftover;
st->buffer[i++] = 1;
for (; i < POLY1305_BLOCK_SIZE; i++) {
st->buffer[i] = 0;
}
st->final = 1;
poly1305_blocks(st, st->buffer, POLY1305_BLOCK_SIZE);
}
/* fully carry h */
h0 = st->h[0];
h1 = st->h[1];
h2 = st->h[2];
h3 = st->h[3];
h4 = st->h[4];
c = h1 >> 26; h1 = h1 & 0x3ffffff;
h2 += c; c = h2 >> 26; h2 = h2 & 0x3ffffff;
h3 += c; c = h3 >> 26; h3 = h3 & 0x3ffffff;
h4 += c; c = h4 >> 26; h4 = h4 & 0x3ffffff;
h0 += c * 5; c = h0 >> 26; h0 = h0 & 0x3ffffff;
h1 += c;
/* compute h + -p */
g0 = h0 + 5; c = g0 >> 26; g0 &= 0x3ffffff;
g1 = h1 + c; c = g1 >> 26; g1 &= 0x3ffffff;
g2 = h2 + c; c = g2 >> 26; g2 &= 0x3ffffff;
g3 = h3 + c; c = g3 >> 26; g3 &= 0x3ffffff;
g4 = h4 + c - (1UL << 26);
/* select h if h < p, or h + -p if h >= p */
mask = (g4 >> ((sizeof(uint32_t) * 8) - 1)) - 1;
g0 &= mask;
g1 &= mask;
g2 &= mask;
g3 &= mask;
g4 &= mask;
mask = ~mask;
h0 = (h0 & mask) | g0;
h1 = (h1 & mask) | g1;
h2 = (h2 & mask) | g2;
h3 = (h3 & mask) | g3;
h4 = (h4 & mask) | g4;
/* h = h % (2^128) */
h0 = ((h0 ) | (h1 << 26)) & 0xffffffff;
h1 = ((h1 >> 6) | (h2 << 20)) & 0xffffffff;
h2 = ((h2 >> 12) | (h3 << 14)) & 0xffffffff;
h3 = ((h3 >> 18) | (h4 << 8)) & 0xffffffff;
/* mac = (h + pad) % (2^128) */
f = (uint64_t)h0 + st->pad[0] ; h0 = (uint32_t)f;
f = (uint64_t)h1 + st->pad[1] + (f >> 32); h1 = (uint32_t)f;
f = (uint64_t)h2 + st->pad[2] + (f >> 32); h2 = (uint32_t)f;
f = (uint64_t)h3 + st->pad[3] + (f >> 32); h3 = (uint32_t)f;
WriteLE32(mac + 0, h0);
WriteLE32(mac + 4, h1);
WriteLE32(mac + 8, h2);
WriteLE32(mac + 12, h3);
/* zero out the state */
st->h[0] = 0;
st->h[1] = 0;
st->h[2] = 0;
st->h[3] = 0;
st->h[4] = 0;
st->r[0] = 0;
st->r[1] = 0;
st->r[2] = 0;
st->r[3] = 0;
st->r[4] = 0;
st->pad[0] = 0;
st->pad[1] = 0;
st->pad[2] = 0;
st->pad[3] = 0;
}
void poly1305_update(poly1305_context *st, const unsigned char *m, size_t bytes) noexcept {
size_t i;
/* handle leftover */
if (st->leftover) {
size_t want = (POLY1305_BLOCK_SIZE - st->leftover);
if (want > bytes) {
want = bytes;
}
for (i = 0; i < want; i++) {
st->buffer[st->leftover + i] = m[i];
}
bytes -= want;
m += want;
st->leftover += want;
if (st->leftover < POLY1305_BLOCK_SIZE) return;
poly1305_blocks(st, st->buffer, POLY1305_BLOCK_SIZE);
st->leftover = 0;
}
/* process full blocks */
if (bytes >= POLY1305_BLOCK_SIZE) {
size_t want = (bytes & ~(POLY1305_BLOCK_SIZE - 1));
poly1305_blocks(st, m, want);
m += want;
bytes -= want;
}
/* store leftover */
if (bytes) {
for (i = 0; i < bytes; i++) {
st->buffer[st->leftover + i] = m[i];
}
st->leftover += bytes;
}
}
} // namespace poly1305_donna

View file

@ -5,13 +5,66 @@
#ifndef BITCOIN_CRYPTO_POLY1305_H
#define BITCOIN_CRYPTO_POLY1305_H
#include <span.h>
#include <cassert>
#include <cstdlib>
#include <stdint.h>
#define POLY1305_KEYLEN 32
#define POLY1305_TAGLEN 16
#define POLY1305_BLOCK_SIZE 16
void poly1305_auth(unsigned char out[POLY1305_TAGLEN], const unsigned char *m, size_t inlen,
const unsigned char key[POLY1305_KEYLEN]);
namespace poly1305_donna {
// Based on the public domain implementation by Andrew Moon
// poly1305-donna-32.h from https://github.com/floodyberry/poly1305-donna
typedef struct {
uint32_t r[5];
uint32_t h[5];
uint32_t pad[4];
size_t leftover;
unsigned char buffer[POLY1305_BLOCK_SIZE];
unsigned char final;
} poly1305_context;
void poly1305_init(poly1305_context *st, const unsigned char key[32]) noexcept;
void poly1305_update(poly1305_context *st, const unsigned char *m, size_t bytes) noexcept;
void poly1305_finish(poly1305_context *st, unsigned char mac[16]) noexcept;
} // namespace poly1305_donna
/** C++ wrapper with std::byte Span interface around poly1305_donna code. */
class Poly1305
{
poly1305_donna::poly1305_context m_ctx;
public:
/** Length of the output produced by Finalize(). */
static constexpr unsigned TAGLEN{16};
/** Length of the keys expected by the constructor. */
static constexpr unsigned KEYLEN{32};
/** Construct a Poly1305 object with a given 32-byte key. */
Poly1305(Span<const std::byte> key) noexcept
{
assert(key.size() == KEYLEN);
poly1305_donna::poly1305_init(&m_ctx, UCharCast(key.data()));
}
/** Process message bytes. */
Poly1305& Update(Span<const std::byte> msg) noexcept
{
poly1305_donna::poly1305_update(&m_ctx, UCharCast(msg.data()), msg.size());
return *this;
}
/** Write authentication tag to 16-byte out. */
void Finalize(Span<std::byte> out) noexcept
{
assert(out.size() == TAGLEN);
poly1305_donna::poly1305_finish(&m_ctx, UCharCast(out.data()));
}
};
#endif // BITCOIN_CRYPTO_POLY1305_H

View file

@ -184,13 +184,28 @@ static void TestChaCha20(const std::string &hex_message, const std::string &hexk
static void TestPoly1305(const std::string &hexmessage, const std::string &hexkey, const std::string& hextag)
{
std::vector<unsigned char> key = ParseHex(hexkey);
std::vector<unsigned char> m = ParseHex(hexmessage);
std::vector<unsigned char> tag = ParseHex(hextag);
std::vector<unsigned char> tagres;
tagres.resize(POLY1305_TAGLEN);
poly1305_auth(tagres.data(), m.data(), m.size(), key.data());
auto key = ParseHex<std::byte>(hexkey);
auto m = ParseHex<std::byte>(hexmessage);
auto tag = ParseHex<std::byte>(hextag);
std::vector<std::byte> tagres(Poly1305::TAGLEN);
Poly1305{key}.Update(m).Finalize(tagres);
BOOST_CHECK(tag == tagres);
// Test incremental interface
for (int splits = 0; splits < 10; ++splits) {
for (int iter = 0; iter < 10; ++iter) {
auto data = Span{m};
Poly1305 poly1305{key};
for (int chunk = 0; chunk < splits; ++chunk) {
size_t now = InsecureRandRange(data.size() + 1);
poly1305.Update(data.first(now));
data = data.subspan(now);
}
tagres.assign(Poly1305::TAGLEN, std::byte{});
poly1305.Update(data).Finalize(tagres);
BOOST_CHECK(tag == tagres);
}
}
}
static void TestHKDF_SHA256_32(const std::string &ikm_hex, const std::string &salt_hex, const std::string &info_hex, const std::string &okm_check_hex) {
@ -751,6 +766,57 @@ BOOST_AUTO_TEST_CASE(poly1305_testvector)
TestPoly1305("e33594d7505e43b900000000000000003394d7505e4379cd010000000000000000000000000000000000000000000000",
"0100000000000000040000000000000000000000000000000000000000000000",
"13000000000000000000000000000000");
// Tests from https://github.com/floodyberry/poly1305-donna/blob/master/poly1305-donna.c
TestPoly1305("8e993b9f48681273c29650ba32fc76ce48332ea7164d96a4476fb8c531a1186a"
"c0dfc17c98dce87b4da7f011ec48c97271d2c20f9b928fe2270d6fb863d51738"
"b48eeee314a7cc8ab932164548e526ae90224368517acfeabd6bb3732bc0e9da"
"99832b61ca01b6de56244a9e88d5f9b37973f622a43d14a6599b1f654cb45a74"
"e355a5",
"eea6a7251c1e72916d11c2cb214d3c252539121d8e234e652d651fa4c8cff880",
"f3ffc7703f9400e52a7dfb4b3d3305d9");
{
// mac of the macs of messages of length 0 to 256, where the key and messages have all
// their values set to the length.
auto total_key = ParseHex<std::byte>("01020304050607fffefdfcfbfaf9ffffffffffffffffffffffffffff00000000");
Poly1305 total_ctx(total_key);
for (unsigned i = 0; i < 256; ++i) {
std::vector<std::byte> key(32, std::byte{(uint8_t)i});
std::vector<std::byte> msg(i, std::byte{(uint8_t)i});
std::array<std::byte, Poly1305::TAGLEN> tag;
Poly1305{key}.Update(msg).Finalize(tag);
total_ctx.Update(tag);
}
std::vector<std::byte> total_tag(Poly1305::TAGLEN);
total_ctx.Finalize(total_tag);
BOOST_CHECK(total_tag == ParseHex<std::byte>("64afe2e8d6ad7bbdd287f97c44623d39"));
}
// Tests with sparse messages and random keys.
TestPoly1305("000000000000000000000094000000000000b07c4300000000002c002600d500"
"00000000000000000000000000bc58000000000000000000c9000000dd000000"
"00000000000000d34c000000000000000000000000f9009100000000000000c2"
"4b0000e900000000000000000000000000000000000e00000027000074000000"
"0000000003000000000000f1000000000000dce2000000000000003900000000"
"0000000000000000000000000000000000000000000000520000000000000000"
"000000000000000000000000009500000000000000000000000000cf00826700"
"000000a900000000000000000000000000000000000000000079000000000000"
"0000de0000004c000000000033000000000000000000000000002800aa000000"
"00003300860000e000000000",
"6e543496db3cf677592989891ab021f58390feb84fb419fbc7bb516a60bfa302",
"7ea80968354d40d9d790b45310caf7f3");
TestPoly1305("0000005900000000c40000002f00000000000000000000000000000029690000"
"0000e8000037000000000000000000000000000b000000000000000000000000"
"000000000000000000000000001800006e0000000000a4000000000000000000"
"00000000000000004d00000000000000b0000000000000000000005a00000000"
"0000000000b7c300000000000000540000000000000000000000000a00000000"
"00005b0000000000000000000000000000000000002d00e70000000000000000"
"000000000000003400006800d700000000000000000000360000000000000000"
"00eb000000000000000000000000000000000000000000000000000028000000"
"37000000000000000000000000000000000000000000000000000000008f0000"
"000000000000000000000000",
"f0b659a4f3143d8a1e1dacb9a409fe7e7cd501dfb58b16a2623046c5d337922a",
"0e410fa9d7a40ac582e77546be9a72bb");
}
BOOST_AUTO_TEST_CASE(hkdf_hmac_sha256_l32_tests)
@ -791,7 +857,7 @@ static void TestChaCha20Poly1305AEAD(bool must_succeed, unsigned int expected_aa
std::vector<unsigned char> expected_ciphertext_and_mac = ParseHex(hex_encrypted_message);
std::vector<unsigned char> expected_ciphertext_and_mac_sequence999 = ParseHex(hex_encrypted_message_seq_999);
std::vector<unsigned char> ciphertext_buf(plaintext_buf.size() + POLY1305_TAGLEN, 0);
std::vector<unsigned char> ciphertext_buf(plaintext_buf.size() + Poly1305::TAGLEN, 0);
std::vector<unsigned char> plaintext_buf_new(plaintext_buf.size(), 0);
std::vector<unsigned char> cmp_ctx_buffer(64);
uint32_t out_len = 0;

View file

@ -26,16 +26,16 @@ FUZZ_TARGET(crypto_chacha20_poly1305_aead)
uint64_t seqnr_aad = 0;
int aad_pos = 0;
size_t buffer_size = fuzzed_data_provider.ConsumeIntegralInRange<size_t>(0, 4096);
std::vector<uint8_t> in(buffer_size + CHACHA20_POLY1305_AEAD_AAD_LEN + POLY1305_TAGLEN, 0);
std::vector<uint8_t> out(buffer_size + CHACHA20_POLY1305_AEAD_AAD_LEN + POLY1305_TAGLEN, 0);
std::vector<uint8_t> in(buffer_size + CHACHA20_POLY1305_AEAD_AAD_LEN + Poly1305::TAGLEN, 0);
std::vector<uint8_t> out(buffer_size + CHACHA20_POLY1305_AEAD_AAD_LEN + Poly1305::TAGLEN, 0);
bool is_encrypt = fuzzed_data_provider.ConsumeBool();
LIMITED_WHILE(fuzzed_data_provider.ConsumeBool(), 10000) {
CallOneOf(
fuzzed_data_provider,
[&] {
buffer_size = fuzzed_data_provider.ConsumeIntegralInRange<size_t>(64, 4096);
in = std::vector<uint8_t>(buffer_size + CHACHA20_POLY1305_AEAD_AAD_LEN + POLY1305_TAGLEN, 0);
out = std::vector<uint8_t>(buffer_size + CHACHA20_POLY1305_AEAD_AAD_LEN + POLY1305_TAGLEN, 0);
in = std::vector<uint8_t>(buffer_size + CHACHA20_POLY1305_AEAD_AAD_LEN + Poly1305::TAGLEN, 0);
out = std::vector<uint8_t>(buffer_size + CHACHA20_POLY1305_AEAD_AAD_LEN + Poly1305::TAGLEN, 0);
},
[&] {
(void)aead.Crypt(seqnr_payload, seqnr_aad, aad_pos, out.data(), out.size(), in.data(), buffer_size, is_encrypt);

View file

@ -14,9 +14,40 @@ FUZZ_TARGET(crypto_poly1305)
{
FuzzedDataProvider fuzzed_data_provider{buffer.data(), buffer.size()};
const std::vector<uint8_t> key = ConsumeFixedLengthByteVector(fuzzed_data_provider, POLY1305_KEYLEN);
const std::vector<uint8_t> key = ConsumeFixedLengthByteVector(fuzzed_data_provider, Poly1305::KEYLEN);
const std::vector<uint8_t> in = ConsumeRandomLengthByteVector(fuzzed_data_provider);
std::vector<uint8_t> tag_out(POLY1305_TAGLEN);
poly1305_auth(tag_out.data(), in.data(), in.size(), key.data());
std::vector<std::byte> tag_out(Poly1305::TAGLEN);
Poly1305{MakeByteSpan(key)}.Update(MakeByteSpan(in)).Finalize(tag_out);
}
FUZZ_TARGET(crypto_poly1305_split)
{
FuzzedDataProvider provider{buffer.data(), buffer.size()};
// Read key and instantiate two Poly1305 objects with it.
auto key = provider.ConsumeBytes<std::byte>(Poly1305::KEYLEN);
key.resize(Poly1305::KEYLEN);
Poly1305 poly_full{key}, poly_split{key};
// Vector that holds all bytes processed so far.
std::vector<std::byte> total_input;
// Process input in pieces.
LIMITED_WHILE(provider.remaining_bytes(), 100) {
auto in = provider.ConsumeRandomLengthString();
poly_split.Update(MakeByteSpan(in));
// Update total_input to match what was processed.
total_input.insert(total_input.end(), MakeByteSpan(in).begin(), MakeByteSpan(in).end());
}
// Process entire input at once.
poly_full.Update(total_input);
// Verify both agree.
std::array<std::byte, Poly1305::TAGLEN> tag_split, tag_full;
poly_split.Finalize(tag_split);
poly_full.Finalize(tag_full);
assert(tag_full == tag_split);
}