mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-02-08 10:31:50 -05:00
test: Add python ellswift implementation to test framework
Co-authored-by: Pieter Wuille <pieter.wuille@gmail.com>
This commit is contained in:
parent
626d346469
commit
714fb2c02a
1 changed files with 85 additions and 0 deletions
85
test/functional/test_framework/ellswift.py
Normal file
85
test/functional/test_framework/ellswift.py
Normal file
|
@ -0,0 +1,85 @@
|
|||
#!/usr/bin/env python3
|
||||
# Copyright (c) 2022 The Bitcoin Core developers
|
||||
# Distributed under the MIT software license, see the accompanying
|
||||
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
"""Test-only Elligator Swift implementation
|
||||
|
||||
WARNING: This code is slow and uses bad randomness.
|
||||
Do not use for anything but tests."""
|
||||
|
||||
import random
|
||||
|
||||
from test_framework.secp256k1 import FE, G, GE
|
||||
|
||||
# Precomputed constant square root of -3 (mod p).
|
||||
MINUS_3_SQRT = FE(-3).sqrt()
|
||||
|
||||
def xswiftec(u, t):
|
||||
"""Decode field elements (u, t) to an X coordinate on the curve."""
|
||||
if u == 0:
|
||||
u = FE(1)
|
||||
if t == 0:
|
||||
t = FE(1)
|
||||
if u**3 + t**2 + 7 == 0:
|
||||
t = 2 * t
|
||||
X = (u**3 + 7 - t**2) / (2 * t)
|
||||
Y = (X + t) / (MINUS_3_SQRT * u)
|
||||
for x in (u + 4 * Y**2, (-X / Y - u) / 2, (X / Y - u) / 2):
|
||||
if GE.is_valid_x(x):
|
||||
return x
|
||||
assert False
|
||||
|
||||
def xswiftec_inv(x, u, case):
|
||||
"""Given x and u, find t such that xswiftec(u, t) = x, or return None.
|
||||
|
||||
Case selects which of the up to 8 results to return."""
|
||||
|
||||
if case & 2 == 0:
|
||||
if GE.is_valid_x(-x - u):
|
||||
return None
|
||||
v = x
|
||||
s = -(u**3 + 7) / (u**2 + u*v + v**2)
|
||||
else:
|
||||
s = x - u
|
||||
if s == 0:
|
||||
return None
|
||||
r = (-s * (4 * (u**3 + 7) + 3 * s * u**2)).sqrt()
|
||||
if r is None:
|
||||
return None
|
||||
if case & 1 and r == 0:
|
||||
return None
|
||||
v = (-u + r / s) / 2
|
||||
w = s.sqrt()
|
||||
if w is None:
|
||||
return None
|
||||
if case & 5 == 0:
|
||||
return -w * (u * (1 - MINUS_3_SQRT) / 2 + v)
|
||||
if case & 5 == 1:
|
||||
return w * (u * (1 + MINUS_3_SQRT) / 2 + v)
|
||||
if case & 5 == 4:
|
||||
return w * (u * (1 - MINUS_3_SQRT) / 2 + v)
|
||||
if case & 5 == 5:
|
||||
return -w * (u * (1 + MINUS_3_SQRT) / 2 + v)
|
||||
|
||||
def xelligatorswift(x):
|
||||
"""Given a field element X on the curve, find (u, t) that encode them."""
|
||||
assert GE.is_valid_x(x)
|
||||
while True:
|
||||
u = FE(random.randrange(1, FE.SIZE))
|
||||
case = random.randrange(0, 8)
|
||||
t = xswiftec_inv(x, u, case)
|
||||
if t is not None:
|
||||
return u, t
|
||||
|
||||
def ellswift_create():
|
||||
"""Generate a (privkey, ellswift_pubkey) pair."""
|
||||
priv = random.randrange(1, GE.ORDER)
|
||||
u, t = xelligatorswift((priv * G).x)
|
||||
return priv.to_bytes(32, 'big'), u.to_bytes() + t.to_bytes()
|
||||
|
||||
def ellswift_ecdh_xonly(pubkey_theirs, privkey):
|
||||
"""Compute X coordinate of shared ECDH point between ellswift pubkey and privkey."""
|
||||
u = FE(int.from_bytes(pubkey_theirs[:32], 'big'))
|
||||
t = FE(int.from_bytes(pubkey_theirs[32:], 'big'))
|
||||
d = int.from_bytes(privkey, 'big')
|
||||
return (d * GE.lift_x(xswiftec(u, t))).x.to_bytes()
|
Loading…
Add table
Reference in a new issue