0
0
Fork 0
mirror of https://github.com/bitcoin/bitcoin.git synced 2025-02-08 10:31:50 -05:00

Merge bitcoin/bitcoin#30160: util: add BitSet

47f705b33f tests: add fuzz tests for BitSet (Pieter Wuille)
59a6df6bd5 util: add BitSet (Pieter Wuille)

Pull request description:

  Extracted from #30126.

  This introduces the `BitSet` data structure, inspired by `std::bitset`, but with a few features that cannot be implemented on top without efficiency loss:
  * Finding the first set bit (`First`)
  * Finding the last set bit (`Last`)
  * Iterating over all set bits (`begin` and `end`).

  And a few other operators/member functions that help readability for #30126:
  * `operator-` for set subtraction
  * `Overlaps()` for testing whether intersection is non-empty
  * `IsSupersetOf()` for testing (non-strict) supersetness
  * `IsSubsetOf()` for testing (non-strict) subsetness
  * `Fill()` to construct a set with all numbers from 0 to n-1, inclusive
  * `Singleton()` to construct a set with one specific element.

  Everything is tested through a simulation-based fuzz test that compares the behavior with normal `std::bitset` equivalent operations.

ACKs for top commit:
  instagibbs:
    ACK 47f705b33f
  achow101:
    ACK 47f705b33f
  cbergqvist:
    re-ACK 47f705b33f
  theStack:
    Code-review ACK 47f705b33f

Tree-SHA512: e451bf4b801f193239ee434b6b614f5a2ac7bb49c70af5aba24c2ac0c54acbef4672556800e4ac799ae835632bdba716209c5ca8c37433a6883dab4eb7cd67c1
This commit is contained in:
Ava Chow 2024-06-11 17:28:51 -04:00
commit 91e0beede2
No known key found for this signature in database
GPG key ID: 17565732E08E5E41
5 changed files with 846 additions and 0 deletions

View file

@ -292,6 +292,7 @@ BITCOIN_CORE_H = \
util/batchpriority.h \
util/bip32.h \
util/bitdeque.h \
util/bitset.h \
util/bytevectorhash.h \
util/chaintype.h \
util/check.h \

View file

@ -294,6 +294,7 @@ test_fuzz_fuzz_SOURCES = \
test/fuzz/bech32.cpp \
test/fuzz/bip324.cpp \
test/fuzz/bitdeque.cpp \
test/fuzz/bitset.cpp \
test/fuzz/block.cpp \
test/fuzz/block_header.cpp \
test/fuzz/blockfilter.cpp \

316
src/test/fuzz/bitset.cpp Normal file
View file

@ -0,0 +1,316 @@
// Copyright (c) The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <span.h>
#include <test/fuzz/util.h>
#include <test/util/xoroshiro128plusplus.h>
#include <util/bitset.h>
#include <bitset>
#include <vector>
namespace {
/** Pop the first byte from a Span<const uint8_t>, and return it. */
uint8_t ReadByte(Span<const uint8_t>& buffer)
{
if (buffer.empty()) return 0;
uint8_t ret = buffer.front();
buffer = buffer.subspan(1);
return ret;
}
/** Perform a simulation fuzz test on BitSet type S. */
template<typename S>
void TestType(Span<const uint8_t> buffer)
{
/** This fuzz test's design is based on the assumption that the actual bits stored in the
* bitsets and their simulations do not matter for the purpose of detecting edge cases, thus
* these are taken from a deterministically-seeded RNG instead. To provide some level of
* variation however, pick the seed based on the buffer size and size of the chosen bitset. */
XoRoShiRo128PlusPlus rng(buffer.size() + 0x10000 * S::Size());
using Sim = std::bitset<S::Size()>;
// Up to 4 real BitSets (initially 2).
std::vector<S> real(2);
// Up to 4 std::bitsets with the same corresponding contents.
std::vector<Sim> sim(2);
/* Compare sim[idx] with real[idx], using all inspector operations. */
auto compare_fn = [&](unsigned idx) {
/* iterators and operator[] */
auto it = real[idx].begin();
unsigned first = S::Size();
unsigned last = S::Size();
for (unsigned i = 0; i < S::Size(); ++i) {
bool match = (it != real[idx].end()) && *it == i;
assert(sim[idx][i] == real[idx][i]);
assert(match == real[idx][i]);
assert((it == real[idx].end()) != (it != real[idx].end()));
if (match) {
++it;
if (first == S::Size()) first = i;
last = i;
}
}
assert(it == real[idx].end());
assert(!(it != real[idx].end()));
/* Any / None */
assert(sim[idx].any() == real[idx].Any());
assert(sim[idx].none() == real[idx].None());
/* First / Last */
if (sim[idx].any()) {
assert(first == real[idx].First());
assert(last == real[idx].Last());
}
/* Count */
assert(sim[idx].count() == real[idx].Count());
};
LIMITED_WHILE(buffer.size() > 0, 1000) {
// Read one byte to determine which operation to execute on the BitSets.
int command = ReadByte(buffer) % 64;
// Read another byte that determines which bitsets will be involved.
unsigned args = ReadByte(buffer);
unsigned dest = ((args & 7) * sim.size()) >> 3;
unsigned src = (((args >> 3) & 7) * sim.size()) >> 3;
unsigned aux = (((args >> 6) & 3) * sim.size()) >> 2;
// Args are in range for non-empty sim, or sim is completely empty and will be grown
assert((sim.empty() && dest == 0 && src == 0 && aux == 0) ||
(!sim.empty() && dest < sim.size() && src < sim.size() && aux < sim.size()));
// Pick one operation based on value of command. Not all operations are always applicable.
// Loop through the applicable ones until command reaches 0 (which avoids the need to
// compute the number of applicable commands ahead of time).
while (true) {
if (dest < sim.size() && command-- == 0) {
/* Set() (true) */
unsigned val = ReadByte(buffer) % S::Size();
assert(sim[dest][val] == real[dest][val]);
sim[dest].set(val);
real[dest].Set(val);
break;
} else if (dest < sim.size() && command-- == 0) {
/* Reset() */
unsigned val = ReadByte(buffer) % S::Size();
assert(sim[dest][val] == real[dest][val]);
sim[dest].reset(val);
real[dest].Reset(val);
break;
} else if (dest < sim.size() && command-- == 0) {
/* Set() (conditional) */
unsigned val = ReadByte(buffer) % S::Size();
assert(sim[dest][val] == real[dest][val]);
sim[dest].set(val, args >> 7);
real[dest].Set(val, args >> 7);
break;
} else if (sim.size() < 4 && command-- == 0) {
/* Construct empty. */
sim.resize(sim.size() + 1);
real.resize(real.size() + 1);
break;
} else if (sim.size() < 4 && command-- == 0) {
/* Construct singleton. */
unsigned val = ReadByte(buffer) % S::Size();
std::bitset<S::Size()> newset;
newset[val] = true;
sim.push_back(newset);
real.push_back(S::Singleton(val));
break;
} else if (dest < sim.size() && command-- == 0) {
/* Make random. */
compare_fn(dest);
sim[dest].reset();
real[dest] = S{};
for (unsigned i = 0; i < S::Size(); ++i) {
if (rng() & 1) {
sim[dest][i] = true;
real[dest].Set(i);
}
}
break;
} else if (dest < sim.size() && command-- == 0) {
/* Assign initializer list. */
unsigned r1 = rng() % S::Size();
unsigned r2 = rng() % S::Size();
unsigned r3 = rng() % S::Size();
compare_fn(dest);
sim[dest].reset();
real[dest] = {r1, r2, r3};
sim[dest].set(r1);
sim[dest].set(r2);
sim[dest].set(r3);
break;
} else if (!sim.empty() && command-- == 0) {
/* Destruct. */
compare_fn(sim.size() - 1);
sim.pop_back();
real.pop_back();
break;
} else if (sim.size() < 4 && src < sim.size() && command-- == 0) {
/* Copy construct. */
sim.emplace_back(sim[src]);
real.emplace_back(real[src]);
break;
} else if (src < sim.size() && dest < sim.size() && command-- == 0) {
/* Copy assign. */
compare_fn(dest);
sim[dest] = sim[src];
real[dest] = real[src];
break;
} else if (src < sim.size() && dest < sim.size() && command-- == 0) {
/* swap() function. */
swap(sim[dest], sim[src]);
swap(real[dest], real[src]);
break;
} else if (sim.size() < 4 && command-- == 0) {
/* Construct with initializer list. */
unsigned r1 = rng() % S::Size();
unsigned r2 = rng() % S::Size();
sim.emplace_back();
sim.back().set(r1);
sim.back().set(r2);
real.push_back(S{r1, r2});
break;
} else if (dest < sim.size() && command-- == 0) {
/* Fill() + copy assign. */
unsigned len = ReadByte(buffer) % S::Size();
compare_fn(dest);
sim[dest].reset();
for (unsigned i = 0; i < len; ++i) sim[dest][i] = true;
real[dest] = S::Fill(len);
break;
} else if (src < sim.size() && command-- == 0) {
/* Iterator copy based compare. */
unsigned val = ReadByte(buffer) % S::Size();
/* In a first loop, compare begin..end, and copy to it_copy at some point. */
auto it = real[src].begin(), it_copy = it;
for (unsigned i = 0; i < S::Size(); ++i) {
if (i == val) it_copy = it;
bool match = (it != real[src].end()) && *it == i;
assert(match == sim[src][i]);
if (match) ++it;
}
assert(it == real[src].end());
/* Then compare from the copied point again to end. */
for (unsigned i = val; i < S::Size(); ++i) {
bool match = (it_copy != real[src].end()) && *it_copy == i;
assert(match == sim[src][i]);
if (match) ++it_copy;
}
assert(it_copy == real[src].end());
break;
} else if (src < sim.size() && dest < sim.size() && command-- == 0) {
/* operator|= */
compare_fn(dest);
sim[dest] |= sim[src];
real[dest] |= real[src];
break;
} else if (src < sim.size() && dest < sim.size() && command-- == 0) {
/* operator&= */
compare_fn(dest);
sim[dest] &= sim[src];
real[dest] &= real[src];
break;
} else if (src < sim.size() && dest < sim.size() && command-- == 0) {
/* operator-= */
compare_fn(dest);
sim[dest] &= ~sim[src];
real[dest] -= real[src];
break;
} else if (src < sim.size() && dest < sim.size() && command-- == 0) {
/* operator^= */
compare_fn(dest);
sim[dest] ^= sim[src];
real[dest] ^= real[src];
break;
} else if (src < sim.size() && dest < sim.size() && aux < sim.size() && command-- == 0) {
/* operator| */
compare_fn(dest);
sim[dest] = sim[src] | sim[aux];
real[dest] = real[src] | real[aux];
break;
} else if (src < sim.size() && dest < sim.size() && aux < sim.size() && command-- == 0) {
/* operator& */
compare_fn(dest);
sim[dest] = sim[src] & sim[aux];
real[dest] = real[src] & real[aux];
break;
} else if (src < sim.size() && dest < sim.size() && aux < sim.size() && command-- == 0) {
/* operator- */
compare_fn(dest);
sim[dest] = sim[src] & ~sim[aux];
real[dest] = real[src] - real[aux];
break;
} else if (src < sim.size() && dest < sim.size() && aux < sim.size() && command-- == 0) {
/* operator^ */
compare_fn(dest);
sim[dest] = sim[src] ^ sim[aux];
real[dest] = real[src] ^ real[aux];
break;
} else if (src < sim.size() && aux < sim.size() && command-- == 0) {
/* IsSupersetOf() and IsSubsetOf() */
bool is_superset = (sim[aux] & ~sim[src]).none();
bool is_subset = (sim[src] & ~sim[aux]).none();
assert(real[src].IsSupersetOf(real[aux]) == is_superset);
assert(real[src].IsSubsetOf(real[aux]) == is_subset);
assert(real[aux].IsSupersetOf(real[src]) == is_subset);
assert(real[aux].IsSubsetOf(real[src]) == is_superset);
break;
} else if (src < sim.size() && aux < sim.size() && command-- == 0) {
/* operator== and operator!= */
assert((sim[src] == sim[aux]) == (real[src] == real[aux]));
assert((sim[src] != sim[aux]) == (real[src] != real[aux]));
break;
} else if (src < sim.size() && aux < sim.size() && command-- == 0) {
/* Overlaps() */
assert((sim[src] & sim[aux]).any() == real[src].Overlaps(real[aux]));
assert((sim[src] & sim[aux]).any() == real[aux].Overlaps(real[src]));
break;
}
}
}
/* Fully compare the final state. */
for (unsigned i = 0; i < sim.size(); ++i) {
compare_fn(i);
}
}
} // namespace
FUZZ_TARGET(bitset)
{
unsigned typdat = ReadByte(buffer) % 8;
if (typdat == 0) {
/* 16 bits */
TestType<bitset_detail::IntBitSet<uint16_t>>(buffer);
TestType<bitset_detail::MultiIntBitSet<uint16_t, 1>>(buffer);
} else if (typdat == 1) {
/* 32 bits */
TestType<bitset_detail::MultiIntBitSet<uint16_t, 2>>(buffer);
TestType<bitset_detail::IntBitSet<uint32_t>>(buffer);
} else if (typdat == 2) {
/* 48 bits */
TestType<bitset_detail::MultiIntBitSet<uint16_t, 3>>(buffer);
} else if (typdat == 3) {
/* 64 bits */
TestType<bitset_detail::IntBitSet<uint64_t>>(buffer);
TestType<bitset_detail::MultiIntBitSet<uint64_t, 1>>(buffer);
TestType<bitset_detail::MultiIntBitSet<uint32_t, 2>>(buffer);
TestType<bitset_detail::MultiIntBitSet<uint16_t, 4>>(buffer);
} else if (typdat == 4) {
/* 96 bits */
TestType<bitset_detail::MultiIntBitSet<uint32_t, 3>>(buffer);
} else if (typdat == 5) {
/* 128 bits */
TestType<bitset_detail::MultiIntBitSet<uint64_t, 2>>(buffer);
TestType<bitset_detail::MultiIntBitSet<uint32_t, 4>>(buffer);
} else if (typdat == 6) {
/* 192 bits */
TestType<bitset_detail::MultiIntBitSet<uint64_t, 3>>(buffer);
} else if (typdat == 7) {
/* 256 bits */
TestType<bitset_detail::MultiIntBitSet<uint64_t, 4>>(buffer);
}
}

527
src/util/bitset.h Normal file
View file

@ -0,0 +1,527 @@
// Copyright (c) The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_UTIL_BITSET_H
#define BITCOIN_UTIL_BITSET_H
#include <util/check.h>
#include <array>
#include <bit>
#include <cstdint>
#include <limits>
#include <type_traits>
/* This file provides data types similar to std::bitset, but adds the following functionality:
*
* - Efficient iteration over all set bits (compatible with range-based for loops).
* - Efficient search for the first and last set bit (First() and Last()).
* - Efficient set subtraction: (a - b) implements "a and not b".
* - Efficient non-strict subset/superset testing: IsSubsetOf() and IsSupersetOf().
* - Efficient set overlap testing: a.Overlaps(b)
* - Efficient construction of set containing 0..N-1 (S::Fill).
* - Efficient construction of a single set (S::Singleton).
* - Construction from initializer lists.
*
* Other differences:
* - BitSet<N> is a bitset that supports at least N elements, but may support more (Size() reports
* the actual number). Because the actual number is unpredictable, there are no operations that
* affect all positions (like std::bitset's operator~, flip(), or all()).
* - Various other unimplemented features.
*/
namespace bitset_detail {
/** Count the number of bits set in an unsigned integer type. */
template<typename I>
unsigned inline constexpr PopCount(I v)
{
static_assert(std::is_integral_v<I> && std::is_unsigned_v<I> && std::numeric_limits<I>::radix == 2);
constexpr auto BITS = std::numeric_limits<I>::digits;
// Algorithms from https://en.wikipedia.org/wiki/Hamming_weight#Efficient_implementation.
// These seem to be faster than std::popcount when compiling for non-SSE4 on x86_64.
if constexpr (BITS <= 32) {
v -= (v >> 1) & 0x55555555;
v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
v = (v + (v >> 4)) & 0x0f0f0f0f;
if constexpr (BITS > 8) v += v >> 8;
if constexpr (BITS > 16) v += v >> 16;
return v & 0x3f;
} else {
static_assert(BITS <= 64);
v -= (v >> 1) & 0x5555555555555555;
v = (v & 0x3333333333333333) + ((v >> 2) & 0x3333333333333333);
v = (v + (v >> 4)) & 0x0f0f0f0f0f0f0f0f;
return (v * uint64_t{0x0101010101010101}) >> 56;
}
}
/** A bitset implementation backed by a single integer of type I. */
template<typename I>
class IntBitSet
{
// Only binary, unsigned, integer, types allowed.
static_assert(std::is_integral_v<I> && std::is_unsigned_v<I> && std::numeric_limits<I>::radix == 2);
/** The maximum number of bits this bitset supports. */
static constexpr unsigned MAX_SIZE = std::numeric_limits<I>::digits;
/** Integer whose bits represent this bitset. */
I m_val;
/** Internal constructor with a given integer as contents. */
IntBitSet(I val) noexcept : m_val{val} {}
/** Dummy type to return using end(). Only used for comparing with Iterator. */
class IteratorEnd
{
friend class IntBitSet;
constexpr IteratorEnd() = default;
public:
constexpr IteratorEnd(const IteratorEnd&) = default;
};
/** Iterator type returned by begin(), which efficiently iterates all 1 positions. */
class Iterator
{
friend class IntBitSet;
I m_val; /**< The original integer's remaining bits. */
unsigned m_pos; /** Last reported 1 position (if m_pos != 0). */
constexpr Iterator(I val) noexcept : m_val(val), m_pos(0)
{
if (m_val != 0) m_pos = std::countr_zero(m_val);
}
public:
/** Do not allow external code to construct an Iterator. */
Iterator() = delete;
// Copying is allowed.
constexpr Iterator(const Iterator&) noexcept = default;
constexpr Iterator& operator=(const Iterator&) noexcept = default;
/** Test whether we are done (can only compare with IteratorEnd). */
constexpr friend bool operator==(const Iterator& a, const IteratorEnd&) noexcept
{
return a.m_val == 0;
}
/** Progress to the next 1 bit (only if != IteratorEnd). */
constexpr Iterator& operator++() noexcept
{
Assume(m_val != 0);
m_val &= m_val - I{1U};
if (m_val != 0) m_pos = std::countr_zero(m_val);
return *this;
}
/** Get the current bit position (only if != IteratorEnd). */
constexpr unsigned operator*() const noexcept
{
Assume(m_val != 0);
return m_pos;
}
};
public:
/** Construct an all-zero bitset. */
constexpr IntBitSet() noexcept : m_val{0} {}
/** Copy construct a bitset. */
constexpr IntBitSet(const IntBitSet&) noexcept = default;
/** Construct from a list of values. */
constexpr IntBitSet(std::initializer_list<unsigned> ilist) noexcept : m_val(0)
{
for (auto pos : ilist) Set(pos);
}
/** Copy assign a bitset. */
constexpr IntBitSet& operator=(const IntBitSet&) noexcept = default;
/** Assign from a list of positions (which will be made true, all others false). */
constexpr IntBitSet& operator=(std::initializer_list<unsigned> ilist) noexcept
{
m_val = 0;
for (auto pos : ilist) Set(pos);
return *this;
}
/** Construct a bitset with the singleton i. */
static constexpr IntBitSet Singleton(unsigned i) noexcept
{
Assume(i < MAX_SIZE);
return IntBitSet(I(1U) << i);
}
/** Construct a bitset with bits 0..count-1 (inclusive) set to 1. */
static constexpr IntBitSet Fill(unsigned count) noexcept
{
IntBitSet ret;
Assume(count <= MAX_SIZE);
if (count) ret.m_val = I(~I{0}) >> (MAX_SIZE - count);
return ret;
}
/** Set a bit to 1. */
constexpr void Set(unsigned pos) noexcept
{
Assume(pos < MAX_SIZE);
m_val |= I{1U} << pos;
}
/** Set a bit to the specified value. */
constexpr void Set(unsigned pos, bool val) noexcept
{
Assume(pos < MAX_SIZE);
m_val = (m_val & ~I(I{1U} << pos)) | (I(val) << pos);
}
/** Set a bit to 0. */
constexpr void Reset(unsigned pos) noexcept
{
Assume(pos < MAX_SIZE);
m_val &= ~I(I{1U} << pos);
}
/** Retrieve a bit at the given position. */
constexpr bool operator[](unsigned pos) const noexcept
{
Assume(pos < MAX_SIZE);
return (m_val >> pos) & 1U;
}
/** Compute the number of 1 bits in the bitset. */
constexpr unsigned Count() const noexcept { return PopCount(m_val); }
/** Return the number of bits that this object holds. */
static constexpr unsigned Size() noexcept { return MAX_SIZE; }
/** Check if all bits are 0. */
constexpr bool None() const noexcept { return m_val == 0; }
/** Check if any bits are 1. */
constexpr bool Any() const noexcept { return !None(); }
/** Return an object that iterates over all 1 bits (++ and * only allowed when != end()). */
constexpr Iterator begin() const noexcept { return Iterator(m_val); }
/** Return a dummy object to compare Iterators with. */
constexpr IteratorEnd end() const noexcept { return IteratorEnd(); }
/** Find the first element (requires Any()). */
constexpr unsigned First() const noexcept
{
Assume(m_val != 0);
return std::countr_zero(m_val);
}
/** Find the last element (requires Any()). */
constexpr unsigned Last() const noexcept
{
Assume(m_val != 0);
return std::bit_width(m_val) - 1;
}
/** Set this object's bits to be the binary AND between respective bits from this and a. */
constexpr IntBitSet& operator|=(const IntBitSet& a) noexcept { m_val |= a.m_val; return *this; }
/** Set this object's bits to be the binary OR between respective bits from this and a. */
constexpr IntBitSet& operator&=(const IntBitSet& a) noexcept { m_val &= a.m_val; return *this; }
/** Set this object's bits to be the binary AND NOT between respective bits from this and a. */
constexpr IntBitSet& operator-=(const IntBitSet& a) noexcept { m_val &= ~a.m_val; return *this; }
/** Set this object's bits to be the binary XOR between respective bits from this as a. */
constexpr IntBitSet& operator^=(const IntBitSet& a) noexcept { m_val ^= a.m_val; return *this; }
/** Check if the intersection between two sets is non-empty. */
constexpr bool Overlaps(const IntBitSet& a) const noexcept { return m_val & a.m_val; }
/** Return an object with the binary AND between respective bits from a and b. */
friend constexpr IntBitSet operator&(const IntBitSet& a, const IntBitSet& b) noexcept { return I(a.m_val & b.m_val); }
/** Return an object with the binary OR between respective bits from a and b. */
friend constexpr IntBitSet operator|(const IntBitSet& a, const IntBitSet& b) noexcept { return I(a.m_val | b.m_val); }
/** Return an object with the binary AND NOT between respective bits from a and b. */
friend constexpr IntBitSet operator-(const IntBitSet& a, const IntBitSet& b) noexcept { return I(a.m_val & ~b.m_val); }
/** Return an object with the binary XOR between respective bits from a and b. */
friend constexpr IntBitSet operator^(const IntBitSet& a, const IntBitSet& b) noexcept { return I(a.m_val ^ b.m_val); }
/** Check if bitset a and bitset b are identical. */
friend constexpr bool operator==(const IntBitSet& a, const IntBitSet& b) noexcept = default;
/** Check if bitset a is a superset of bitset b (= every 1 bit in b is also in a). */
constexpr bool IsSupersetOf(const IntBitSet& a) const noexcept { return (a.m_val & ~m_val) == 0; }
/** Check if bitset a is a subset of bitset b (= every 1 bit in a is also in b). */
constexpr bool IsSubsetOf(const IntBitSet& a) const noexcept { return (m_val & ~a.m_val) == 0; }
/** Swap two bitsets. */
friend constexpr void swap(IntBitSet& a, IntBitSet& b) noexcept { std::swap(a.m_val, b.m_val); }
};
/** A bitset implementation backed by N integers of type I. */
template<typename I, unsigned N>
class MultiIntBitSet
{
// Only binary, unsigned, integer, types allowed.
static_assert(std::is_integral_v<I> && std::is_unsigned_v<I> && std::numeric_limits<I>::radix == 2);
// Cannot be empty.
static_assert(N > 0);
/** The number of bits per integer. */
static constexpr unsigned LIMB_BITS = std::numeric_limits<I>::digits;
/** Number of elements this set type supports. */
static constexpr unsigned MAX_SIZE = LIMB_BITS * N;
// No overflow allowed here.
static_assert(MAX_SIZE / LIMB_BITS == N);
/** Array whose member integers store the bits of the set. */
std::array<I, N> m_val;
/** Dummy type to return using end(). Only used for comparing with Iterator. */
class IteratorEnd
{
friend class MultiIntBitSet;
constexpr IteratorEnd() = default;
public:
constexpr IteratorEnd(const IteratorEnd&) = default;
};
/** Iterator type returned by begin(), which efficiently iterates all 1 positions. */
class Iterator
{
friend class MultiIntBitSet;
const std::array<I, N>* m_ptr; /**< Pointer to array to fetch bits from. */
I m_val; /**< The remaining bits of (*m_ptr)[m_idx]. */
unsigned m_pos; /**< The last reported position. */
unsigned m_idx; /**< The index in *m_ptr currently being iterated over. */
constexpr Iterator(const std::array<I, N>& ref) noexcept : m_ptr(&ref), m_idx(0)
{
do {
m_val = (*m_ptr)[m_idx];
if (m_val) {
m_pos = std::countr_zero(m_val) + m_idx * LIMB_BITS;
break;
}
++m_idx;
} while(m_idx < N);
}
public:
/** Do not allow external code to construct an Iterator. */
Iterator() = delete;
// Copying is allowed.
constexpr Iterator(const Iterator&) noexcept = default;
constexpr Iterator& operator=(const Iterator&) noexcept = default;
/** Test whether we are done (can only compare with IteratorEnd). */
friend constexpr bool operator==(const Iterator& a, const IteratorEnd&) noexcept
{
return a.m_idx == N;
}
/** Progress to the next 1 bit (only if != IteratorEnd). */
constexpr Iterator& operator++() noexcept
{
Assume(m_idx < N);
m_val &= m_val - I{1U};
if (m_val == 0) {
while (true) {
++m_idx;
if (m_idx == N) break;
m_val = (*m_ptr)[m_idx];
if (m_val) {
m_pos = std::countr_zero(m_val) + m_idx * LIMB_BITS;
break;
}
}
} else {
m_pos = std::countr_zero(m_val) + m_idx * LIMB_BITS;
}
return *this;
}
/** Get the current bit position (only if != IteratorEnd). */
constexpr unsigned operator*() const noexcept
{
Assume(m_idx < N);
return m_pos;
}
};
public:
/** Construct an all-zero bitset. */
constexpr MultiIntBitSet() noexcept : m_val{} {}
/** Copy construct a bitset. */
constexpr MultiIntBitSet(const MultiIntBitSet&) noexcept = default;
/** Copy assign a bitset. */
constexpr MultiIntBitSet& operator=(const MultiIntBitSet&) noexcept = default;
/** Set a bit to 1. */
void constexpr Set(unsigned pos) noexcept
{
Assume(pos < MAX_SIZE);
m_val[pos / LIMB_BITS] |= I{1U} << (pos % LIMB_BITS);
}
/** Set a bit to the specified value. */
void constexpr Set(unsigned pos, bool val) noexcept
{
Assume(pos < MAX_SIZE);
m_val[pos / LIMB_BITS] = (m_val[pos / LIMB_BITS] & ~I(I{1U} << (pos % LIMB_BITS))) |
(I{val} << (pos % LIMB_BITS));
}
/** Construct a bitset from a list of values. */
constexpr MultiIntBitSet(std::initializer_list<unsigned> ilist) noexcept : m_val{}
{
for (auto pos : ilist) Set(pos);
}
/** Set a bitset to a list of values. */
constexpr MultiIntBitSet& operator=(std::initializer_list<unsigned> ilist) noexcept
{
m_val.fill(0);
for (auto pos : ilist) Set(pos);
return *this;
}
/** Set a bit to 0. */
void constexpr Reset(unsigned pos) noexcept
{
Assume(pos < MAX_SIZE);
m_val[pos / LIMB_BITS] &= ~I(I{1U} << (pos % LIMB_BITS));
}
/** Retrieve a bit at the given position. */
bool constexpr operator[](unsigned pos) const noexcept
{
Assume(pos < MAX_SIZE);
return (m_val[pos / LIMB_BITS] >> (pos % LIMB_BITS)) & 1U;
}
/** Construct a bitset with the singleton pos. */
static constexpr MultiIntBitSet Singleton(unsigned pos) noexcept
{
Assume(pos < MAX_SIZE);
MultiIntBitSet ret;
ret.m_val[pos / LIMB_BITS] = I{1U} << (pos % LIMB_BITS);
return ret;
}
/** Construct a bitset with bits 0..count-1 (inclusive) set to 1. */
static constexpr MultiIntBitSet Fill(unsigned count) noexcept
{
Assume(count <= MAX_SIZE);
MultiIntBitSet ret;
if (count) {
unsigned i = 0;
while (count > LIMB_BITS) {
ret.m_val[i++] = ~I{0};
count -= LIMB_BITS;
}
ret.m_val[i] = I(~I{0}) >> (LIMB_BITS - count);
}
return ret;
}
/** Return the number of bits that this object holds. */
static constexpr unsigned Size() noexcept { return MAX_SIZE; }
/** Compute the number of 1 bits in the bitset. */
unsigned constexpr Count() const noexcept
{
unsigned ret{0};
for (I v : m_val) ret += PopCount(v);
return ret;
}
/** Check if all bits are 0. */
bool constexpr None() const noexcept
{
for (auto v : m_val) {
if (v != 0) return false;
}
return true;
}
/** Check if any bits are 1. */
bool constexpr Any() const noexcept { return !None(); }
/** Return an object that iterates over all 1 bits (++ and * only allowed when != end()). */
Iterator constexpr begin() const noexcept { return Iterator(m_val); }
/** Return a dummy object to compare Iterators with. */
IteratorEnd constexpr end() const noexcept { return IteratorEnd(); }
/** Find the first element (requires Any()). */
unsigned constexpr First() const noexcept
{
unsigned p = 0;
while (m_val[p] == 0) {
++p;
Assume(p < N);
}
return std::countr_zero(m_val[p]) + p * LIMB_BITS;
}
/** Find the last element (requires Any()). */
unsigned constexpr Last() const noexcept
{
unsigned p = N - 1;
while (m_val[p] == 0) {
Assume(p > 0);
--p;
}
return std::bit_width(m_val[p]) - 1 + p * LIMB_BITS;
}
/** Set this object's bits to be the binary OR between respective bits from this and a. */
constexpr MultiIntBitSet& operator|=(const MultiIntBitSet& a) noexcept
{
for (unsigned i = 0; i < N; ++i) {
m_val[i] |= a.m_val[i];
}
return *this;
}
/** Set this object's bits to be the binary AND between respective bits from this and a. */
constexpr MultiIntBitSet& operator&=(const MultiIntBitSet& a) noexcept
{
for (unsigned i = 0; i < N; ++i) {
m_val[i] &= a.m_val[i];
}
return *this;
}
/** Set this object's bits to be the binary AND NOT between respective bits from this and a. */
constexpr MultiIntBitSet& operator-=(const MultiIntBitSet& a) noexcept
{
for (unsigned i = 0; i < N; ++i) {
m_val[i] &= ~a.m_val[i];
}
return *this;
}
/** Set this object's bits to be the binary XOR between respective bits from this and a. */
constexpr MultiIntBitSet& operator^=(const MultiIntBitSet& a) noexcept
{
for (unsigned i = 0; i < N; ++i) {
m_val[i] ^= a.m_val[i];
}
return *this;
}
/** Check whether the intersection between two sets is non-empty. */
constexpr bool Overlaps(const MultiIntBitSet& a) const noexcept
{
for (unsigned i = 0; i < N; ++i) {
if (m_val[i] & a.m_val[i]) return true;
}
return false;
}
/** Return an object with the binary AND between respective bits from a and b. */
friend constexpr MultiIntBitSet operator&(const MultiIntBitSet& a, const MultiIntBitSet& b) noexcept
{
MultiIntBitSet r;
for (unsigned i = 0; i < N; ++i) {
r.m_val[i] = a.m_val[i] & b.m_val[i];
}
return r;
}
/** Return an object with the binary OR between respective bits from a and b. */
friend constexpr MultiIntBitSet operator|(const MultiIntBitSet& a, const MultiIntBitSet& b) noexcept
{
MultiIntBitSet r;
for (unsigned i = 0; i < N; ++i) {
r.m_val[i] = a.m_val[i] | b.m_val[i];
}
return r;
}
/** Return an object with the binary AND NOT between respective bits from a and b. */
friend constexpr MultiIntBitSet operator-(const MultiIntBitSet& a, const MultiIntBitSet& b) noexcept
{
MultiIntBitSet r;
for (unsigned i = 0; i < N; ++i) {
r.m_val[i] = a.m_val[i] & ~b.m_val[i];
}
return r;
}
/** Return an object with the binary XOR between respective bits from a and b. */
friend constexpr MultiIntBitSet operator^(const MultiIntBitSet& a, const MultiIntBitSet& b) noexcept
{
MultiIntBitSet r;
for (unsigned i = 0; i < N; ++i) {
r.m_val[i] = a.m_val[i] ^ b.m_val[i];
}
return r;
}
/** Check if bitset a is a superset of bitset b (= every 1 bit in b is also in a). */
constexpr bool IsSupersetOf(const MultiIntBitSet& a) const noexcept
{
for (unsigned i = 0; i < N; ++i) {
if (a.m_val[i] & ~m_val[i]) return false;
}
return true;
}
/** Check if bitset a is a subset of bitset b (= every 1 bit in a is also in b). */
constexpr bool IsSubsetOf(const MultiIntBitSet& a) const noexcept
{
for (unsigned i = 0; i < N; ++i) {
if (m_val[i] & ~a.m_val[i]) return false;
}
return true;
}
/** Check if bitset a and bitset b are identical. */
friend constexpr bool operator==(const MultiIntBitSet& a, const MultiIntBitSet& b) noexcept = default;
/** Swap two bitsets. */
friend constexpr void swap(MultiIntBitSet& a, MultiIntBitSet& b) noexcept { std::swap(a.m_val, b.m_val); }
};
} // namespace bitset_detail
// BitSet dispatches to IntBitSet or MultiIntBitSet as appropriate for the requested minimum number
// of bits. Use IntBitSet up to 32-bit, or up to 64-bit on 64-bit platforms; above that, use a
// MultiIntBitSet of size_t.
template<unsigned BITS>
using BitSet = std::conditional_t<(BITS <= 32), bitset_detail::IntBitSet<uint32_t>,
std::conditional_t<(BITS <= std::numeric_limits<size_t>::digits), bitset_detail::IntBitSet<size_t>,
bitset_detail::MultiIntBitSet<size_t, (BITS + std::numeric_limits<size_t>::digits - 1) / std::numeric_limits<size_t>::digits>>>;
#endif // BITCOIN_UTIL_BITSET_H

View file

@ -58,6 +58,7 @@ unsigned-integer-overflow:TxConfirmStats::EstimateMedianVal
unsigned-integer-overflow:prevector.h
unsigned-integer-overflow:EvalScript
unsigned-integer-overflow:xoroshiro128plusplus.h
unsigned-integer-overflow:bitset_detail::PopCount
implicit-integer-sign-change:CBlockPolicyEstimator::processBlockTx
implicit-integer-sign-change:SetStdinEcho
implicit-integer-sign-change:compressor.h