0
0
Fork 0
mirror of https://github.com/bitcoin/bitcoin.git synced 2025-02-12 11:19:08 -05:00

net: do not use send buffer to store/cache garbage

Before this commit the V2Transport::m_send_buffer is used to store the
garbage:
* During MAYBE_V1 state, it's there despite not being sent.
* During AWAITING_KEY state, while it is being sent.
* At the end of the AWAITING_KEY state it cannot be wiped as it's still
  needed to compute the garbage authentication packet.

Change this by introducing a separate m_send_garbage field, taking over
the first and last role listed above. This means the garbage is only in
the send buffer when it's actually being sent, removing a few special
cases related to this.
This commit is contained in:
Pieter Wuille 2023-09-08 13:55:47 -04:00
parent b6934fd03f
commit 9bde93df2c
3 changed files with 38 additions and 20 deletions

View file

@ -997,17 +997,32 @@ std::vector<uint8_t> GenerateRandomGarbage() noexcept
} // namespace } // namespace
V2Transport::V2Transport(NodeId nodeid, bool initiating, int type_in, int version_in, const CKey& key, Span<const std::byte> ent32, Span<const uint8_t> garbage) noexcept : void V2Transport::StartSendingHandshake() noexcept
{
AssertLockHeld(m_send_mutex);
Assume(m_send_state == SendState::AWAITING_KEY);
Assume(m_send_buffer.empty());
// Initialize the send buffer with ellswift pubkey + provided garbage.
m_send_buffer.resize(EllSwiftPubKey::size() + m_send_garbage.size());
std::copy(std::begin(m_cipher.GetOurPubKey()), std::end(m_cipher.GetOurPubKey()), MakeWritableByteSpan(m_send_buffer).begin());
std::copy(m_send_garbage.begin(), m_send_garbage.end(), m_send_buffer.begin() + EllSwiftPubKey::size());
// We cannot wipe m_send_garbage as it will still be used to construct the garbage
// authentication packet.
}
V2Transport::V2Transport(NodeId nodeid, bool initiating, int type_in, int version_in, const CKey& key, Span<const std::byte> ent32, std::vector<uint8_t> garbage) noexcept :
m_cipher{key, ent32}, m_initiating{initiating}, m_nodeid{nodeid}, m_cipher{key, ent32}, m_initiating{initiating}, m_nodeid{nodeid},
m_v1_fallback{nodeid, type_in, version_in}, m_recv_type{type_in}, m_recv_version{version_in}, m_v1_fallback{nodeid, type_in, version_in}, m_recv_type{type_in}, m_recv_version{version_in},
m_recv_state{initiating ? RecvState::KEY : RecvState::KEY_MAYBE_V1}, m_recv_state{initiating ? RecvState::KEY : RecvState::KEY_MAYBE_V1},
m_send_garbage{std::move(garbage)},
m_send_state{initiating ? SendState::AWAITING_KEY : SendState::MAYBE_V1} m_send_state{initiating ? SendState::AWAITING_KEY : SendState::MAYBE_V1}
{ {
assert(garbage.size() <= MAX_GARBAGE_LEN); Assume(m_send_garbage.size() <= MAX_GARBAGE_LEN);
// Initialize the send buffer with ellswift pubkey + provided garbage. // Start sending immediately if we're the initiator of the connection.
m_send_buffer.resize(EllSwiftPubKey::size() + garbage.size()); if (initiating) {
std::copy(std::begin(m_cipher.GetOurPubKey()), std::end(m_cipher.GetOurPubKey()), MakeWritableByteSpan(m_send_buffer).begin()); LOCK(m_send_mutex);
std::copy(garbage.begin(), garbage.end(), m_send_buffer.begin() + EllSwiftPubKey::size()); StartSendingHandshake();
}
} }
V2Transport::V2Transport(NodeId nodeid, bool initiating, int type_in, int version_in) noexcept : V2Transport::V2Transport(NodeId nodeid, bool initiating, int type_in, int version_in) noexcept :
@ -1092,9 +1107,10 @@ void V2Transport::ProcessReceivedMaybeV1Bytes() noexcept
if (!std::equal(m_recv_buffer.begin(), m_recv_buffer.end(), v1_prefix.begin())) { if (!std::equal(m_recv_buffer.begin(), m_recv_buffer.end(), v1_prefix.begin())) {
// Mismatch with v1 prefix, so we can assume a v2 connection. // Mismatch with v1 prefix, so we can assume a v2 connection.
SetReceiveState(RecvState::KEY); // Convert to KEY state, leaving received bytes around. SetReceiveState(RecvState::KEY); // Convert to KEY state, leaving received bytes around.
// Transition the sender to AWAITING_KEY state (if not already). // Transition the sender to AWAITING_KEY state and start sending.
LOCK(m_send_mutex); LOCK(m_send_mutex);
SetSendState(SendState::AWAITING_KEY); SetSendState(SendState::AWAITING_KEY);
StartSendingHandshake();
} else if (m_recv_buffer.size() == v1_prefix.size()) { } else if (m_recv_buffer.size() == v1_prefix.size()) {
// Full match with the v1 prefix, so fall back to v1 behavior. // Full match with the v1 prefix, so fall back to v1 behavior.
LOCK(m_send_mutex); LOCK(m_send_mutex);
@ -1154,7 +1170,6 @@ bool V2Transport::ProcessReceivedKeyBytes() noexcept
SetSendState(SendState::READY); SetSendState(SendState::READY);
// Append the garbage terminator to the send buffer. // Append the garbage terminator to the send buffer.
size_t garbage_len = m_send_buffer.size() - EllSwiftPubKey::size();
m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::GARBAGE_TERMINATOR_LEN); m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
std::copy(m_cipher.GetSendGarbageTerminator().begin(), std::copy(m_cipher.GetSendGarbageTerminator().begin(),
m_cipher.GetSendGarbageTerminator().end(), m_cipher.GetSendGarbageTerminator().end(),
@ -1165,9 +1180,12 @@ bool V2Transport::ProcessReceivedKeyBytes() noexcept
m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::EXPANSION); m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::EXPANSION);
m_cipher.Encrypt( m_cipher.Encrypt(
/*contents=*/{}, /*contents=*/{},
/*aad=*/MakeByteSpan(m_send_buffer).subspan(EllSwiftPubKey::size(), garbage_len), /*aad=*/MakeByteSpan(m_send_garbage),
/*ignore=*/false, /*ignore=*/false,
/*output=*/MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::EXPANSION)); /*output=*/MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::EXPANSION));
// We no longer need the garbage.
m_send_garbage.clear();
m_send_garbage.shrink_to_fit();
// Construct version packet in the send buffer. // Construct version packet in the send buffer.
m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::EXPANSION + VERSION_CONTENTS.size()); m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::EXPANSION + VERSION_CONTENTS.size());
@ -1537,9 +1555,7 @@ Transport::BytesToSend V2Transport::GetBytesToSend(bool have_next_message) const
LOCK(m_send_mutex); LOCK(m_send_mutex);
if (m_send_state == SendState::V1) return m_v1_fallback.GetBytesToSend(have_next_message); if (m_send_state == SendState::V1) return m_v1_fallback.GetBytesToSend(have_next_message);
// We do not send anything in MAYBE_V1 state (as we don't know if the peer is v1 or v2), if (m_send_state == SendState::MAYBE_V1) Assume(m_send_buffer.empty());
// despite there being data in the send buffer in that state.
if (m_send_state == SendState::MAYBE_V1) return {{}, false, m_send_type};
Assume(m_send_pos <= m_send_buffer.size()); Assume(m_send_pos <= m_send_buffer.size());
return { return {
Span{m_send_buffer}.subspan(m_send_pos), Span{m_send_buffer}.subspan(m_send_pos),
@ -1558,10 +1574,8 @@ void V2Transport::MarkBytesSent(size_t bytes_sent) noexcept
m_send_pos += bytes_sent; m_send_pos += bytes_sent;
Assume(m_send_pos <= m_send_buffer.size()); Assume(m_send_pos <= m_send_buffer.size());
// Only wipe the buffer when everything is sent in the READY state. In the AWAITING_KEY state // Wipe the buffer when everything is sent.
// we still need the garbage that's in the send buffer to construct the garbage authentication if (m_send_pos == m_send_buffer.size()) {
// packet.
if (m_send_state == SendState::READY && m_send_pos == m_send_buffer.size()) {
m_send_pos = 0; m_send_pos = 0;
m_send_buffer = {}; m_send_buffer = {};
} }

View file

@ -540,8 +540,8 @@ private:
enum class SendState : uint8_t { enum class SendState : uint8_t {
/** (Responder only) Not sending until v1 or v2 is detected. /** (Responder only) Not sending until v1 or v2 is detected.
* *
* This is the initial state for responders. The send buffer contains the public key to * This is the initial state for responders. The send buffer is empty.
* send, but nothing is sent in this state yet. When the receiver determines whether this * When the receiver determines whether this
* is a V1 or V2 connection, the sender state becomes AWAITING_KEY (for v2) or V1 (for v1). * is a V1 or V2 connection, the sender state becomes AWAITING_KEY (for v2) or V1 (for v1).
*/ */
MAYBE_V1, MAYBE_V1,
@ -601,6 +601,8 @@ private:
std::vector<uint8_t> m_send_buffer GUARDED_BY(m_send_mutex); std::vector<uint8_t> m_send_buffer GUARDED_BY(m_send_mutex);
/** How many bytes from the send buffer have been sent so far. */ /** How many bytes from the send buffer have been sent so far. */
uint32_t m_send_pos GUARDED_BY(m_send_mutex) {0}; uint32_t m_send_pos GUARDED_BY(m_send_mutex) {0};
/** The garbage sent, or to be sent (MAYBE_V1 and AWAITING_KEY state only). */
std::vector<uint8_t> m_send_garbage GUARDED_BY(m_send_mutex);
/** Type of the message being sent. */ /** Type of the message being sent. */
std::string m_send_type GUARDED_BY(m_send_mutex); std::string m_send_type GUARDED_BY(m_send_mutex);
/** Current sender state. */ /** Current sender state. */
@ -614,6 +616,8 @@ private:
static std::optional<std::string> GetMessageType(Span<const uint8_t>& contents) noexcept; static std::optional<std::string> GetMessageType(Span<const uint8_t>& contents) noexcept;
/** Determine how many received bytes can be processed in one go (not allowed in V1 state). */ /** Determine how many received bytes can be processed in one go (not allowed in V1 state). */
size_t GetMaxBytesToProcess() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex); size_t GetMaxBytesToProcess() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex);
/** Put our public key + garbage in the send buffer. */
void StartSendingHandshake() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_send_mutex);
/** Process bytes in m_recv_buffer, while in KEY_MAYBE_V1 state. */ /** Process bytes in m_recv_buffer, while in KEY_MAYBE_V1 state. */
void ProcessReceivedMaybeV1Bytes() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex, !m_send_mutex); void ProcessReceivedMaybeV1Bytes() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex, !m_send_mutex);
/** Process bytes in m_recv_buffer, while in KEY state. */ /** Process bytes in m_recv_buffer, while in KEY state. */
@ -636,7 +640,7 @@ public:
V2Transport(NodeId nodeid, bool initiating, int type_in, int version_in) noexcept; V2Transport(NodeId nodeid, bool initiating, int type_in, int version_in) noexcept;
/** Construct a V2 transport with specified keys and garbage (test use only). */ /** Construct a V2 transport with specified keys and garbage (test use only). */
V2Transport(NodeId nodeid, bool initiating, int type_in, int version_in, const CKey& key, Span<const std::byte> ent32, Span<const uint8_t> garbage) noexcept; V2Transport(NodeId nodeid, bool initiating, int type_in, int version_in, const CKey& key, Span<const std::byte> ent32, std::vector<uint8_t> garbage) noexcept;
// Receive side functions. // Receive side functions.
bool ReceivedMessageComplete() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex); bool ReceivedMessageComplete() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex);

View file

@ -366,7 +366,7 @@ std::unique_ptr<Transport> MakeV2Transport(NodeId nodeid, bool initiator, RNG& r
.Write(garb.data(), garb.size()) .Write(garb.data(), garb.size())
.Finalize(UCharCast(ent.data())); .Finalize(UCharCast(ent.data()));
return std::make_unique<V2Transport>(nodeid, initiator, SER_NETWORK, INIT_PROTO_VERSION, key, ent, garb); return std::make_unique<V2Transport>(nodeid, initiator, SER_NETWORK, INIT_PROTO_VERSION, key, ent, std::move(garb));
} }
} // namespace } // namespace