mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-02-02 09:46:52 -05:00
Add ChaCha20Poly1305@Bitcoin AEAD implementation
This commit is contained in:
parent
332c6134bb
commit
af5d1b5f4a
3 changed files with 275 additions and 1 deletions
|
@ -351,6 +351,8 @@ crypto_libbitcoin_crypto_base_a_CXXFLAGS = $(AM_CXXFLAGS) $(PIE_FLAGS)
|
|||
crypto_libbitcoin_crypto_base_a_SOURCES = \
|
||||
crypto/aes.cpp \
|
||||
crypto/aes.h \
|
||||
crypto/chacha_poly_aead.h \
|
||||
crypto/chacha_poly_aead.cpp \
|
||||
crypto/chacha20.h \
|
||||
crypto/chacha20.cpp \
|
||||
crypto/common.h \
|
||||
|
@ -613,7 +615,7 @@ bitcoin_wallet_LDADD += $(BOOST_LIBS) $(BDB_LIBS) $(CRYPTO_LIBS) $(EVENT_PTHREAD
|
|||
# bitcoinconsensus library #
|
||||
if BUILD_BITCOIN_LIBS
|
||||
include_HEADERS = script/bitcoinconsensus.h
|
||||
libbitcoinconsensus_la_SOURCES = $(crypto_libbitcoin_crypto_base_a_SOURCES) $(libbitcoin_consensus_a_SOURCES)
|
||||
libbitcoinconsensus_la_SOURCES = support/cleanse.cpp $(crypto_libbitcoin_crypto_base_a_SOURCES) $(libbitcoin_consensus_a_SOURCES)
|
||||
|
||||
if GLIBC_BACK_COMPAT
|
||||
libbitcoinconsensus_la_SOURCES += compat/glibc_compat.cpp
|
||||
|
|
126
src/crypto/chacha_poly_aead.cpp
Normal file
126
src/crypto/chacha_poly_aead.cpp
Normal file
|
@ -0,0 +1,126 @@
|
|||
// Copyright (c) 2019 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#include <crypto/chacha_poly_aead.h>
|
||||
|
||||
#include <crypto/common.h>
|
||||
#include <crypto/poly1305.h>
|
||||
#include <support/cleanse.h>
|
||||
|
||||
#include <assert.h>
|
||||
#include <string.h>
|
||||
|
||||
#include <cstdio>
|
||||
#include <limits>
|
||||
|
||||
#ifndef HAVE_TIMINGSAFE_BCMP
|
||||
|
||||
int timingsafe_bcmp(const unsigned char* b1, const unsigned char* b2, size_t n)
|
||||
{
|
||||
const unsigned char *p1 = b1, *p2 = b2;
|
||||
int ret = 0;
|
||||
|
||||
for (; n > 0; n--)
|
||||
ret |= *p1++ ^ *p2++;
|
||||
return (ret != 0);
|
||||
}
|
||||
|
||||
#endif // TIMINGSAFE_BCMP
|
||||
|
||||
ChaCha20Poly1305AEAD::ChaCha20Poly1305AEAD(const unsigned char* K_1, size_t K_1_len, const unsigned char* K_2, size_t K_2_len)
|
||||
{
|
||||
assert(K_1_len == CHACHA20_POLY1305_AEAD_KEY_LEN);
|
||||
assert(K_2_len == CHACHA20_POLY1305_AEAD_KEY_LEN);
|
||||
m_chacha_main.SetKey(K_1, CHACHA20_POLY1305_AEAD_KEY_LEN);
|
||||
m_chacha_header.SetKey(K_2, CHACHA20_POLY1305_AEAD_KEY_LEN);
|
||||
|
||||
// set the cached sequence number to uint64 max which hints for an unset cache.
|
||||
// we can't hit uint64 max since the rekey rule (which resets the sequence number) is 1GB
|
||||
m_cached_aad_seqnr = std::numeric_limits<uint64_t>::max();
|
||||
}
|
||||
|
||||
bool ChaCha20Poly1305AEAD::Crypt(uint64_t seqnr_payload, uint64_t seqnr_aad, int aad_pos, unsigned char* dest, size_t dest_len /* length of the output buffer for sanity checks */, const unsigned char* src, size_t src_len, bool is_encrypt)
|
||||
{
|
||||
// check buffer boundaries
|
||||
if (
|
||||
// if we encrypt, make sure the source contains at least the expected AAD and the destination has at least space for the source + MAC
|
||||
(is_encrypt && (src_len < CHACHA20_POLY1305_AEAD_AAD_LEN || dest_len < src_len + POLY1305_TAGLEN)) ||
|
||||
// if we decrypt, make sure the source contains at least the expected AAD+MAC and the destination has at least space for the source - MAC
|
||||
(!is_encrypt && (src_len < CHACHA20_POLY1305_AEAD_AAD_LEN + POLY1305_TAGLEN || dest_len < src_len - POLY1305_TAGLEN))) {
|
||||
return false;
|
||||
}
|
||||
|
||||
unsigned char expected_tag[POLY1305_TAGLEN], poly_key[POLY1305_KEYLEN];
|
||||
memset(poly_key, 0, sizeof(poly_key));
|
||||
m_chacha_main.SetIV(seqnr_payload);
|
||||
|
||||
// block counter 0 for the poly1305 key
|
||||
// use lower 32bytes for the poly1305 key
|
||||
// (throws away 32 unused bytes (upper 32) from this ChaCha20 round)
|
||||
m_chacha_main.Seek(0);
|
||||
m_chacha_main.Crypt(poly_key, poly_key, sizeof(poly_key));
|
||||
|
||||
// if decrypting, verify the tag prior to decryption
|
||||
if (!is_encrypt) {
|
||||
const unsigned char* tag = src + src_len - POLY1305_TAGLEN;
|
||||
poly1305_auth(expected_tag, src, src_len - POLY1305_TAGLEN, poly_key);
|
||||
|
||||
// constant time compare the calculated MAC with the provided MAC
|
||||
if (timingsafe_bcmp(expected_tag, tag, POLY1305_TAGLEN) != 0) {
|
||||
memory_cleanse(expected_tag, sizeof(expected_tag));
|
||||
memory_cleanse(poly_key, sizeof(poly_key));
|
||||
return false;
|
||||
}
|
||||
memory_cleanse(expected_tag, sizeof(expected_tag));
|
||||
// MAC has been successfully verified, make sure we don't covert it in decryption
|
||||
src_len -= POLY1305_TAGLEN;
|
||||
}
|
||||
|
||||
// calculate and cache the next 64byte keystream block if requested sequence number is not yet the cache
|
||||
if (m_cached_aad_seqnr != seqnr_aad) {
|
||||
m_cached_aad_seqnr = seqnr_aad;
|
||||
m_chacha_header.SetIV(seqnr_aad);
|
||||
m_chacha_header.Seek(0);
|
||||
m_chacha_header.Keystream(m_aad_keystream_buffer, CHACHA20_ROUND_OUTPUT);
|
||||
}
|
||||
// crypt the AAD (3 bytes message length) with given position in AAD cipher instance keystream
|
||||
dest[0] = src[0] ^ m_aad_keystream_buffer[aad_pos];
|
||||
dest[1] = src[1] ^ m_aad_keystream_buffer[aad_pos + 1];
|
||||
dest[2] = src[2] ^ m_aad_keystream_buffer[aad_pos + 2];
|
||||
|
||||
// Set the playload ChaCha instance block counter to 1 and crypt the payload
|
||||
m_chacha_main.Seek(1);
|
||||
m_chacha_main.Crypt(src + CHACHA20_POLY1305_AEAD_AAD_LEN, dest + CHACHA20_POLY1305_AEAD_AAD_LEN, src_len - CHACHA20_POLY1305_AEAD_AAD_LEN);
|
||||
|
||||
// If encrypting, calculate and append tag
|
||||
if (is_encrypt) {
|
||||
// the poly1305 tag expands over the AAD (3 bytes length) & encrypted payload
|
||||
poly1305_auth(dest + src_len, dest, src_len, poly_key);
|
||||
}
|
||||
|
||||
// cleanse no longer required MAC and polykey
|
||||
memory_cleanse(poly_key, sizeof(poly_key));
|
||||
return true;
|
||||
}
|
||||
|
||||
bool ChaCha20Poly1305AEAD::GetLength(uint32_t* len24_out, uint64_t seqnr_aad, int aad_pos, const uint8_t* ciphertext)
|
||||
{
|
||||
// enforce valid aad position to avoid accessing outside of the 64byte keystream cache
|
||||
// (there is space for 21 times 3 bytes)
|
||||
assert(aad_pos >= 0 && aad_pos < CHACHA20_ROUND_OUTPUT - CHACHA20_POLY1305_AEAD_AAD_LEN);
|
||||
if (m_cached_aad_seqnr != seqnr_aad) {
|
||||
// we need to calculate the 64 keystream bytes since we reached a new aad sequence number
|
||||
m_cached_aad_seqnr = seqnr_aad;
|
||||
m_chacha_header.SetIV(seqnr_aad); // use LE for the nonce
|
||||
m_chacha_header.Seek(0); // block counter 0
|
||||
m_chacha_header.Keystream(m_aad_keystream_buffer, CHACHA20_ROUND_OUTPUT); // write keystream to the cache
|
||||
}
|
||||
|
||||
// decrypt the ciphertext length by XORing the right position of the 64byte keystream cache with the ciphertext
|
||||
*len24_out = (ciphertext[0] ^ m_aad_keystream_buffer[aad_pos + 0]) |
|
||||
(ciphertext[1] ^ m_aad_keystream_buffer[aad_pos + 1]) << 8 |
|
||||
(ciphertext[2] ^ m_aad_keystream_buffer[aad_pos + 2]) << 16;
|
||||
|
||||
return true;
|
||||
}
|
146
src/crypto/chacha_poly_aead.h
Normal file
146
src/crypto/chacha_poly_aead.h
Normal file
|
@ -0,0 +1,146 @@
|
|||
// Copyright (c) 2019 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#ifndef BITCOIN_CRYPTO_CHACHA_POLY_AEAD_H
|
||||
#define BITCOIN_CRYPTO_CHACHA_POLY_AEAD_H
|
||||
|
||||
#include <crypto/chacha20.h>
|
||||
|
||||
#include <cmath>
|
||||
|
||||
static constexpr int CHACHA20_POLY1305_AEAD_KEY_LEN = 32;
|
||||
static constexpr int CHACHA20_POLY1305_AEAD_AAD_LEN = 3; /* 3 bytes length */
|
||||
static constexpr int CHACHA20_ROUND_OUTPUT = 64; /* 64 bytes per round */
|
||||
static constexpr int AAD_PACKAGES_PER_ROUND = 21; /* 64 / 3 round down*/
|
||||
|
||||
/* A AEAD class for ChaCha20-Poly1305@bitcoin.
|
||||
*
|
||||
* ChaCha20 is a stream cipher designed by Daniel Bernstein and described in
|
||||
* <ref>[http://cr.yp.to/chacha/chacha-20080128.pdf ChaCha20]</ref>. It operates
|
||||
* by permuting 128 fixed bits, 128 or 256 bits of key, a 64 bit nonce and a 64
|
||||
* bit counter into 64 bytes of output. This output is used as a keystream, with
|
||||
* any unused bytes simply discarded.
|
||||
*
|
||||
* Poly1305 <ref>[http://cr.yp.to/mac/poly1305-20050329.pdf Poly1305]</ref>, also
|
||||
* by Daniel Bernstein, is a one-time Carter-Wegman MAC that computes a 128 bit
|
||||
* integrity tag given a message and a single-use 256 bit secret key.
|
||||
*
|
||||
* The chacha20-poly1305@bitcoin combines these two primitives into an
|
||||
* authenticated encryption mode. The construction used is based on that proposed
|
||||
* for TLS by Adam Langley in
|
||||
* <ref>[http://tools.ietf.org/html/draft-agl-tls-chacha20poly1305-03 "ChaCha20
|
||||
* and Poly1305 based Cipher Suites for TLS", Adam Langley]</ref>, but differs in
|
||||
* the layout of data passed to the MAC and in the addition of encryption of the
|
||||
* packet lengths.
|
||||
*
|
||||
* ==== Detailed Construction ====
|
||||
*
|
||||
* The chacha20-poly1305@bitcoin cipher requires two 256 bits of key material as
|
||||
* output from the key exchange. Each key (K_1 and K_2) are used by two separate
|
||||
* instances of chacha20.
|
||||
*
|
||||
* The instance keyed by K_1 is a stream cipher that is used only to encrypt the 3
|
||||
* byte packet length field and has its own sequence number. The second instance,
|
||||
* keyed by K_2, is used in conjunction with poly1305 to build an AEAD
|
||||
* (Authenticated Encryption with Associated Data) that is used to encrypt and
|
||||
* authenticate the entire packet.
|
||||
*
|
||||
* Two separate cipher instances are used here so as to keep the packet lengths
|
||||
* confidential but not create an oracle for the packet payload cipher by
|
||||
* decrypting and using the packet length prior to checking the MAC. By using an
|
||||
* independently-keyed cipher instance to encrypt the length, an active attacker
|
||||
* seeking to exploit the packet input handling as a decryption oracle can learn
|
||||
* nothing about the payload contents or its MAC (assuming key derivation,
|
||||
* ChaCha20 and Poly1305 are secure).
|
||||
*
|
||||
* The AEAD is constructed as follows: for each packet, generate a Poly1305 key by
|
||||
* taking the first 256 bits of ChaCha20 stream output generated using K_2, an IV
|
||||
* consisting of the packet sequence number encoded as an LE uint64 and a ChaCha20
|
||||
* block counter of zero. The K_2 ChaCha20 block counter is then set to the
|
||||
* little-endian encoding of 1 (i.e. {1, 0, 0, 0, 0, 0, 0, 0}) and this instance
|
||||
* is used for encryption of the packet payload.
|
||||
*
|
||||
* ==== Packet Handling ====
|
||||
*
|
||||
* When receiving a packet, the length must be decrypted first. When 3 bytes of
|
||||
* ciphertext length have been received, they may be decrypted.
|
||||
*
|
||||
* A ChaCha20 round always calculates 64bytes which is sufficient to crypt 21
|
||||
* times a 3 bytes length field (21*3 = 63). The length field sequence number can
|
||||
* thus be used 21 times (keystream caching).
|
||||
*
|
||||
* The length field must be enc-/decrypted with the ChaCha20 keystream keyed with
|
||||
* K_1 defined by block counter 0, the length field sequence number in little
|
||||
* endian and a keystream position from 0 to 60.
|
||||
*
|
||||
* Once the entire packet has been received, the MAC MUST be checked before
|
||||
* decryption. A per-packet Poly1305 key is generated as described above and the
|
||||
* MAC tag calculated using Poly1305 with this key over the ciphertext of the
|
||||
* packet length and the payload together. The calculated MAC is then compared in
|
||||
* constant time with the one appended to the packet and the packet decrypted
|
||||
* using ChaCha20 as described above (with K_2, the packet sequence number as
|
||||
* nonce and a starting block counter of 1).
|
||||
*
|
||||
* Detection of an invalid MAC MUST lead to immediate connection termination.
|
||||
*
|
||||
* To send a packet, first encode the 3 byte length and encrypt it using K_1 as
|
||||
* described above. Encrypt the packet payload (using K_2) and append it to the
|
||||
* encrypted length. Finally, calculate a MAC tag and append it.
|
||||
*
|
||||
* The initiating peer MUST use <code>K_1_A, K_2_A</code> to encrypt messages on
|
||||
* the send channel, <code>K_1_B, K_2_B</code> MUST be used to decrypt messages on
|
||||
* the receive channel.
|
||||
*
|
||||
* The responding peer MUST use <code>K_1_A, K_2_A</code> to decrypt messages on
|
||||
* the receive channel, <code>K_1_B, K_2_B</code> MUST be used to encrypt messages
|
||||
* on the send channel.
|
||||
*
|
||||
* Optimized implementations of ChaCha20-Poly1305@bitcoin are relatively fast in
|
||||
* general, therefore it is very likely that encrypted messages require not more
|
||||
* CPU cycles per bytes then the current unencrypted p2p message format
|
||||
* (ChaCha20/Poly1305 versus double SHA256).
|
||||
*
|
||||
* The initial packet sequence numbers are 0.
|
||||
*
|
||||
* K_2 ChaCha20 cipher instance (payload) must never reuse a {key, nonce} for
|
||||
* encryption nor may it be used to encrypt more than 2^70 bytes under the same
|
||||
* {key, nonce}.
|
||||
*
|
||||
* K_1 ChaCha20 cipher instance (length field/AAD) must never reuse a {key, nonce,
|
||||
* position-in-keystream} for encryption nor may it be used to encrypt more than
|
||||
* 2^70 bytes under the same {key, nonce}.
|
||||
*
|
||||
* We use message sequence numbers for both communication directions.
|
||||
*/
|
||||
|
||||
class ChaCha20Poly1305AEAD
|
||||
{
|
||||
private:
|
||||
ChaCha20 m_chacha_main; // payload and poly1305 key-derivation cipher instance
|
||||
ChaCha20 m_chacha_header; // AAD cipher instance (encrypted length)
|
||||
unsigned char m_aad_keystream_buffer[CHACHA20_ROUND_OUTPUT]; // aad keystream cache
|
||||
uint64_t m_cached_aad_seqnr; // aad keystream cache hint
|
||||
|
||||
public:
|
||||
ChaCha20Poly1305AEAD(const unsigned char* K_1, size_t K_1_len, const unsigned char* K_2, size_t K_2_len);
|
||||
|
||||
explicit ChaCha20Poly1305AEAD(const ChaCha20Poly1305AEAD&) = delete;
|
||||
|
||||
/** Encrypts/decrypts a packet
|
||||
seqnr_payload, the message sequence number
|
||||
seqnr_aad, the messages AAD sequence number which allows reuse of the AAD keystream
|
||||
aad_pos, position to use in the AAD keystream to encrypt the AAD
|
||||
dest, output buffer, must be of a size equal or larger then CHACHA20_POLY1305_AEAD_AAD_LEN + payload (+ POLY1305_TAG_LEN in encryption) bytes
|
||||
destlen, length of the destination buffer
|
||||
src, the AAD+payload to encrypt or the AAD+payload+MAC to decrypt
|
||||
src_len, the length of the source buffer
|
||||
is_encrypt, set to true if we encrypt (creates and appends the MAC instead of verifying it)
|
||||
*/
|
||||
bool Crypt(uint64_t seqnr_payload, uint64_t seqnr_aad, int aad_pos, unsigned char* dest, size_t dest_len, const unsigned char* src, size_t src_len, bool is_encrypt);
|
||||
|
||||
/** decrypts the 3 bytes AAD data and decodes it into a uint32_t field */
|
||||
bool GetLength(uint32_t* len24_out, uint64_t seqnr_aad, int aad_pos, const uint8_t* ciphertext);
|
||||
};
|
||||
|
||||
#endif // BITCOIN_CRYPTO_CHACHA_POLY_AEAD_H
|
Loading…
Add table
Reference in a new issue