0
0
Fork 0
mirror of https://github.com/bitcoin/bitcoin.git synced 2025-02-08 10:31:50 -05:00

Merge bitcoin/bitcoin#27985: Add support for RFC8439 variant of ChaCha20

0bf87476f5 test: add ChaCha20 test triggering 32-bit block counter overflow (Sebastian Falbesoner)
7f2a985147 tests: improve ChaCha20 unit tests (Pieter Wuille)
511a8d406e crypto: Implement RFC8439-compatible variant of ChaCha20 (Pieter Wuille)

Pull request description:

  Based on and replaces part of #25361, part of the BIP324 project (#27634). See also #19225 for background.

  There are two variants of ChaCha20 in use. The currently implemented one uses a 64-bit nonce and a 64-bit block counter, while the one used in RFC8439 (and thus BIP324) uses a 96-bit nonce and 32-bit block counter. This PR changes the logic to use the 96-bit nonce variant, though in a way that's compatible with >256 GiB output (by automatically incrementing the first 32-bit part of the nonce when the block counter overflows).

  For those who reviewed the original PR, the biggest change is here that the 96-bit nonce is passed as a Nonce96 type (pair of 32-bit + 64-bit integer) rather than a 12-byte array.

ACKs for top commit:
  achow101:
    ACK 0bf87476f5
  theStack:
    Code-review ACK 0bf87476f5

Tree-SHA512: 62e4cbd5388b8d50ef1a0dc99b6f4ad36c7b4419032035f8e622dda63a62311dd923032217e20054bcd836865d4be5c074f9e5538ca158f94f08eab75c5519c1
This commit is contained in:
Andrew Chow 2023-07-12 12:49:37 -04:00
commit b4794740f8
No known key found for this signature in database
GPG key ID: 17565732E08E5E41
7 changed files with 174 additions and 71 deletions

View file

@ -15,8 +15,7 @@ static void CHACHA20(benchmark::Bench& bench, size_t buffersize)
{
std::vector<uint8_t> key(32,0);
ChaCha20 ctx(key.data());
ctx.SetIV(0);
ctx.Seek64(0);
ctx.Seek64({0, 0}, 0);
std::vector<uint8_t> in(buffersize,0);
std::vector<uint8_t> out(buffersize,0);
bench.batch(in.size()).unit("byte").run([&] {

View file

@ -47,16 +47,12 @@ ChaCha20Aligned::ChaCha20Aligned(const unsigned char* key32)
SetKey32(key32);
}
void ChaCha20Aligned::SetIV(uint64_t iv)
void ChaCha20Aligned::Seek64(Nonce96 nonce, uint32_t block_counter)
{
input[10] = iv;
input[11] = iv >> 32;
}
void ChaCha20Aligned::Seek64(uint64_t pos)
{
input[8] = pos;
input[9] = pos >> 32;
input[8] = block_counter;
input[9] = nonce.first;
input[10] = nonce.second;
input[11] = nonce.second >> 32;
}
inline void ChaCha20Aligned::Keystream64(unsigned char* c, size_t blocks)

View file

@ -7,9 +7,15 @@
#include <cstdlib>
#include <stdint.h>
#include <utility>
// classes for ChaCha20 256-bit stream cipher developed by Daniel J. Bernstein
// https://cr.yp.to/chacha/chacha-20080128.pdf */
// https://cr.yp.to/chacha/chacha-20080128.pdf.
//
// The 128-bit input is here implemented as a 96-bit nonce and a 32-bit block
// counter, as in RFC8439 Section 2.3. When the 32-bit block counter overflows
// the first 32-bit part of the nonce is automatically incremented, making it
// conceptually compatible with variants that use a 64/64 split instead.
/** ChaCha20 cipher that only operates on multiples of 64 bytes. */
class ChaCha20Aligned
@ -26,11 +32,22 @@ public:
/** set 32-byte key. */
void SetKey32(const unsigned char* key32);
/** set the 64-bit nonce. */
void SetIV(uint64_t iv);
/** Type for 96-bit nonces used by the Set function below.
*
* The first field corresponds to the LE32-encoded first 4 bytes of the nonce, also referred
* to as the '32-bit fixed-common part' in Example 2.8.2 of RFC8439.
*
* The second field corresponds to the LE64-encoded last 8 bytes of the nonce.
*
*/
using Nonce96 = std::pair<uint32_t, uint64_t>;
/** set the 64bit block counter (pos seeks to byte position 64*pos). */
void Seek64(uint64_t pos);
/** Set the 96-bit nonce and 32-bit block counter.
*
* Block_counter selects a position to seek to (to byte 64*block_counter). After 256 GiB, the
* block counter overflows, and nonce.first is incremented.
*/
void Seek64(Nonce96 nonce, uint32_t block_counter);
/** outputs the keystream of size <64*blocks> into <c> */
void Keystream64(unsigned char* c, size_t blocks);
@ -62,13 +79,13 @@ public:
m_bufleft = 0;
}
/** set the 64-bit nonce. */
void SetIV(uint64_t iv) { m_aligned.SetIV(iv); }
/** 96-bit nonce type. */
using Nonce96 = ChaCha20Aligned::Nonce96;
/** set the 64bit block counter (pos seeks to byte position 64*pos). */
void Seek64(uint64_t pos)
/** Set the 96-bit nonce and 32-bit block counter. */
void Seek64(Nonce96 nonce, uint32_t block_counter)
{
m_aligned.Seek64(pos);
m_aligned.Seek64(nonce, block_counter);
m_bufleft = 0;
}

View file

@ -58,12 +58,11 @@ bool ChaCha20Poly1305AEAD::Crypt(uint64_t seqnr_payload, uint64_t seqnr_aad, int
unsigned char expected_tag[POLY1305_TAGLEN], poly_key[POLY1305_KEYLEN];
memset(poly_key, 0, sizeof(poly_key));
m_chacha_main.SetIV(seqnr_payload);
// block counter 0 for the poly1305 key
// use lower 32bytes for the poly1305 key
// (throws away 32 unused bytes (upper 32) from this ChaCha20 round)
m_chacha_main.Seek64(0);
m_chacha_main.Seek64({0, seqnr_payload}, 0);
m_chacha_main.Crypt(poly_key, poly_key, sizeof(poly_key));
// if decrypting, verify the tag prior to decryption
@ -85,8 +84,7 @@ bool ChaCha20Poly1305AEAD::Crypt(uint64_t seqnr_payload, uint64_t seqnr_aad, int
// calculate and cache the next 64byte keystream block if requested sequence number is not yet the cache
if (m_cached_aad_seqnr != seqnr_aad) {
m_cached_aad_seqnr = seqnr_aad;
m_chacha_header.SetIV(seqnr_aad);
m_chacha_header.Seek64(0);
m_chacha_header.Seek64({0, seqnr_aad}, 0);
m_chacha_header.Keystream(m_aad_keystream_buffer, CHACHA20_ROUND_OUTPUT);
}
// crypt the AAD (3 bytes message length) with given position in AAD cipher instance keystream
@ -95,7 +93,7 @@ bool ChaCha20Poly1305AEAD::Crypt(uint64_t seqnr_payload, uint64_t seqnr_aad, int
dest[2] = src[2] ^ m_aad_keystream_buffer[aad_pos + 2];
// Set the playload ChaCha instance block counter to 1 and crypt the payload
m_chacha_main.Seek64(1);
m_chacha_main.Seek64({0, seqnr_payload}, 1);
m_chacha_main.Crypt(src + CHACHA20_POLY1305_AEAD_AAD_LEN, dest + CHACHA20_POLY1305_AEAD_AAD_LEN, src_len - CHACHA20_POLY1305_AEAD_AAD_LEN);
// If encrypting, calculate and append tag
@ -117,8 +115,7 @@ bool ChaCha20Poly1305AEAD::GetLength(uint32_t* len24_out, uint64_t seqnr_aad, in
if (m_cached_aad_seqnr != seqnr_aad) {
// we need to calculate the 64 keystream bytes since we reached a new aad sequence number
m_cached_aad_seqnr = seqnr_aad;
m_chacha_header.SetIV(seqnr_aad); // use LE for the nonce
m_chacha_header.Seek64(0); // block counter 0
m_chacha_header.Seek64({0, seqnr_aad}, 0); // use LE for the nonce
m_chacha_header.Keystream(m_aad_keystream_buffer, CHACHA20_ROUND_OUTPUT); // write keystream to the cache
}

View file

@ -131,14 +131,13 @@ static void TestAES256CBC(const std::string &hexkey, const std::string &hexiv, b
}
}
static void TestChaCha20(const std::string &hex_message, const std::string &hexkey, uint64_t nonce, uint64_t seek, const std::string& hexout)
static void TestChaCha20(const std::string &hex_message, const std::string &hexkey, ChaCha20::Nonce96 nonce, uint32_t seek, const std::string& hexout)
{
std::vector<unsigned char> key = ParseHex(hexkey);
assert(key.size() == 32);
std::vector<unsigned char> m = ParseHex(hex_message);
ChaCha20 rng(key.data());
rng.SetIV(nonce);
rng.Seek64(seek);
rng.Seek64(nonce, seek);
std::vector<unsigned char> outres;
outres.resize(hexout.size() / 2);
assert(hex_message.empty() || m.size() * 2 == hexout.size());
@ -152,8 +151,7 @@ static void TestChaCha20(const std::string &hex_message, const std::string &hexk
BOOST_CHECK_EQUAL(hexout, HexStr(outres));
if (!hex_message.empty()) {
// Manually XOR with the keystream and compare the output
rng.SetIV(nonce);
rng.Seek64(seek);
rng.Seek64(nonce, seek);
std::vector<unsigned char> only_keystream(outres.size());
rng.Keystream(only_keystream.data(), only_keystream.size());
for (size_t i = 0; i != m.size(); i++) {
@ -169,7 +167,7 @@ static void TestChaCha20(const std::string &hex_message, const std::string &hexk
lens[1] = InsecureRandRange(hexout.size() / 2U + 1U - lens[0]);
lens[2] = hexout.size() / 2U - lens[0] - lens[1];
rng.Seek64(seek);
rng.Seek64(nonce, seek);
outres.assign(hexout.size() / 2U, 0);
size_t pos = 0;
for (int j = 0; j < 3; ++j) {
@ -482,38 +480,57 @@ BOOST_AUTO_TEST_CASE(aes_cbc_testvectors) {
BOOST_AUTO_TEST_CASE(chacha20_testvector)
{
/* Example from RFC8439 section 2.3.2. */
TestChaCha20("",
"000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f",
{0x09000000, 0x4a000000}, 1,
"10f1e7e4d13b5915500fdd1fa32071c4c7d1f4c733c068030422aa9ac3d46c4e"
"d2826446079faa0914c2d705d98b02a2b5129cd1de164eb9cbd083e8a2503c4e");
/* Example from RFC8439 section 2.4.2. */
TestChaCha20("4c616469657320616e642047656e746c656d656e206f662074686520636c6173"
"73206f66202739393a204966204920636f756c64206f6666657220796f75206f"
"6e6c79206f6e652074697020666f7220746865206675747572652c2073756e73"
"637265656e20776f756c642062652069742e",
"000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f",
{0, 0x4a000000}, 1,
"6e2e359a2568f98041ba0728dd0d6981e97e7aec1d4360c20a27afccfd9fae0b"
"f91b65c5524733ab8f593dabcd62b3571639d624e65152ab8f530c359f0861d8"
"07ca0dbf500d6a6156a38e088a22b65e52bc514d16ccf806818ce91ab7793736"
"5af90bbf74a35be6b40b8eedf2785e42874d");
// RFC 7539/8439 A.1 Test Vector #1:
TestChaCha20("",
"0000000000000000000000000000000000000000000000000000000000000000",
0, 0,
{0, 0}, 0,
"76b8e0ada0f13d90405d6ae55386bd28bdd219b8a08ded1aa836efcc8b770dc7"
"da41597c5157488d7724e03fb8d84a376a43b8f41518a11cc387b669b2ee6586");
// RFC 7539/8439 A.1 Test Vector #2:
TestChaCha20("",
"0000000000000000000000000000000000000000000000000000000000000000",
0, 1,
{0, 0}, 1,
"9f07e7be5551387a98ba977c732d080dcb0f29a048e3656912c6533e32ee7aed"
"29b721769ce64e43d57133b074d839d531ed1f28510afb45ace10a1f4b794d6f");
// RFC 7539/8439 A.1 Test Vector #3:
TestChaCha20("",
"0000000000000000000000000000000000000000000000000000000000000001",
0, 1,
{0, 0}, 1,
"3aeb5224ecf849929b9d828db1ced4dd832025e8018b8160b82284f3c949aa5a"
"8eca00bbb4a73bdad192b5c42f73f2fd4e273644c8b36125a64addeb006c13a0");
// RFC 7539/8439 A.1 Test Vector #4:
TestChaCha20("",
"00ff000000000000000000000000000000000000000000000000000000000000",
0, 2,
{0, 0}, 2,
"72d54dfbf12ec44b362692df94137f328fea8da73990265ec1bbbea1ae9af0ca"
"13b25aa26cb4a648cb9b9d1be65b2c0924a66c54d545ec1b7374f4872e99f096");
// RFC 7539/8439 A.1 Test Vector #5:
TestChaCha20("",
"0000000000000000000000000000000000000000000000000000000000000000",
0x200000000000000, 0,
{0, 0x200000000000000}, 0,
"c2c64d378cd536374ae204b9ef933fcd1a8b2288b3dfa49672ab765b54ee27c7"
"8a970e0e955c14f3a88e741b97c286f75f8fc299e8148362fa198a39531bed6d");
@ -521,7 +538,7 @@ BOOST_AUTO_TEST_CASE(chacha20_testvector)
TestChaCha20("0000000000000000000000000000000000000000000000000000000000000000"
"0000000000000000000000000000000000000000000000000000000000000000",
"0000000000000000000000000000000000000000000000000000000000000000",
0, 0,
{0, 0}, 0,
"76b8e0ada0f13d90405d6ae55386bd28bdd219b8a08ded1aa836efcc8b770dc7"
"da41597c5157488d7724e03fb8d84a376a43b8f41518a11cc387b669b2ee6586");
@ -539,7 +556,7 @@ BOOST_AUTO_TEST_CASE(chacha20_testvector)
"74696f6e73206d61646520617420616e792074696d65206f7220706c6163652c"
"207768696368206172652061646472657373656420746f",
"0000000000000000000000000000000000000000000000000000000000000001",
0x200000000000000, 1,
{0, 0x200000000000000}, 1,
"a3fbf07df3fa2fde4f376ca23e82737041605d9f4f4f57bd8cff2c1d4b7955ec"
"2a97948bd3722915c8f3d337f7d370050e9e96d647b7c39f56e031ca5eb6250d"
"4042e02785ececfa4b4bb5e8ead0440e20b6e8db09d881a7c6132f420e527950"
@ -559,27 +576,93 @@ BOOST_AUTO_TEST_CASE(chacha20_testvector)
"6162653a0a416c6c206d696d737920776572652074686520626f726f676f7665"
"732c0a416e6420746865206d6f6d65207261746873206f757467726162652e",
"1c9240a5eb55d38af333888604f6b5f0473917c1402b80099dca5cbc207075c0",
0x200000000000000, 42,
{0, 0x200000000000000}, 42,
"62e6347f95ed87a45ffae7426f27a1df5fb69110044c0d73118effa95b01e5cf"
"166d3df2d721caf9b21e5fb14c616871fd84c54f9d65b283196c7fe4f60553eb"
"f39c6402c42234e32a356b3e764312a61a5532055716ead6962568f87d3f3f77"
"04c6a8d1bcd1bf4d50d6154b6da731b187b58dfd728afa36757a797ac188d1");
// RFC 7539/8439 A.4 Test Vector #1:
TestChaCha20("",
"0000000000000000000000000000000000000000000000000000000000000000",
{0, 0}, 0,
"76b8e0ada0f13d90405d6ae55386bd28bdd219b8a08ded1aa836efcc8b770dc7");
// RFC 7539/8439 A.4 Test Vector #2:
TestChaCha20("",
"0000000000000000000000000000000000000000000000000000000000000001",
{0, 0x200000000000000}, 0,
"ecfa254f845f647473d3cb140da9e87606cb33066c447b87bc2666dde3fbb739");
// RFC 7539/8439 A.4 Test Vector #3:
TestChaCha20("",
"1c9240a5eb55d38af333888604f6b5f0473917c1402b80099dca5cbc207075c0",
{0, 0x200000000000000}, 0,
"965e3bc6f9ec7ed9560808f4d229f94b137ff275ca9b3fcbdd59deaad23310ae");
// test encryption
TestChaCha20("4c616469657320616e642047656e746c656d656e206f662074686520636c617373206f66202739393a204966204920636f756"
"c64206f6666657220796f75206f6e6c79206f6e652074697020666f7220746865206675747572652c2073756e73637265656e"
"20776f756c642062652069742e",
"000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f", 0x4a000000UL, 1,
"000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f", {0, 0x4a000000UL}, 1,
"6e2e359a2568f98041ba0728dd0d6981e97e7aec1d4360c20a27afccfd9fae0bf91b65c5524733ab8f593dabcd62b3571639d"
"624e65152ab8f530c359f0861d807ca0dbf500d6a6156a38e088a22b65e52bc514d16ccf806818ce91ab77937365af90bbf74"
"a35be6b40b8eedf2785e42874d"
);
// test keystream output
TestChaCha20("", "000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f", 0x4a000000UL, 1,
TestChaCha20("", "000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f", {0, 0x4a000000UL}, 1,
"224f51f3401bd9e12fde276fb8631ded8c131f823d2c06e27e4fcaec9ef3cf788a3b0aa372600a92b57974cded2b9334794cb"
"a40c63e34cdea212c4cf07d41b769a6749f3f630f4122cafe28ec4dc47e26d4346d70b98c73f3e9c53ac40c5945398b6eda1a"
"832c89c167eacd901d7e2bf363");
// Test vectors from https://tools.ietf.org/html/draft-agl-tls-chacha20poly1305-04#section-7
// The first one is identical to the above one from the RFC8439 A.1 vectors, but repeated here
// for completeness.
TestChaCha20("",
"0000000000000000000000000000000000000000000000000000000000000000",
{0, 0}, 0,
"76b8e0ada0f13d90405d6ae55386bd28bdd219b8a08ded1aa836efcc8b770dc7"
"da41597c5157488d7724e03fb8d84a376a43b8f41518a11cc387b669b2ee6586");
TestChaCha20("",
"0000000000000000000000000000000000000000000000000000000000000001",
{0, 0}, 0,
"4540f05a9f1fb296d7736e7b208e3c96eb4fe1834688d2604f450952ed432d41"
"bbe2a0b6ea7566d2a5d1e7e20d42af2c53d792b1c43fea817e9ad275ae546963");
TestChaCha20("",
"0000000000000000000000000000000000000000000000000000000000000000",
{0, 0x0100000000000000ULL}, 0,
"de9cba7bf3d69ef5e786dc63973f653a0b49e015adbff7134fcb7df137821031"
"e85a050278a7084527214f73efc7fa5b5277062eb7a0433e445f41e3");
TestChaCha20("",
"0000000000000000000000000000000000000000000000000000000000000000",
{0, 1}, 0,
"ef3fdfd6c61578fbf5cf35bd3dd33b8009631634d21e42ac33960bd138e50d32"
"111e4caf237ee53ca8ad6426194a88545ddc497a0b466e7d6bbdb0041b2f586b");
TestChaCha20("",
"000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f",
{0, 0x0706050403020100ULL}, 0,
"f798a189f195e66982105ffb640bb7757f579da31602fc93ec01ac56f85ac3c1"
"34a4547b733b46413042c9440049176905d3be59ea1c53f15916155c2be8241a"
"38008b9a26bc35941e2444177c8ade6689de95264986d95889fb60e84629c9bd"
"9a5acb1cc118be563eb9b3a4a472f82e09a7e778492b562ef7130e88dfe031c7"
"9db9d4f7c7a899151b9a475032b63fc385245fe054e3dd5a97a5f576fe064025"
"d3ce042c566ab2c507b138db853e3d6959660996546cc9c4a6eafdc777c040d7"
"0eaf46f76dad3979e5c5360c3317166a1c894c94a371876a94df7628fe4eaaf2"
"ccb27d5aaae0ad7ad0f9d4b6ad3b54098746d4524d38407a6deb3ab78fab78c9");
// Test overflow of 32-bit block counter, should increment the first 32-bit
// part of the nonce to retain compatibility with >256 GiB output.
// The test data was generated with an implementation that uses a 64-bit
// counter and a 64-bit initialization vector (PyCryptodome's ChaCha20 class
// with 8 bytes nonce length).
TestChaCha20("",
"000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f",
{0, 0xdeadbeef12345678}, 0xffffffff,
"2d292c880513397b91221c3a647cfb0765a4815894715f411e3df5e0dd0ba9df"
"fd565dea5addbdb914208fde7950f23e0385f9a727143f6a6ac51d84b1c0fb3e"
"2e3b00b63d6841a1cc6d1538b1d3a74bef1eb2f54c7b7281e36e484dba89b351"
"c8f572617e61e342879f211b0e4c515df50ea9d0771518fad96cd0baee62deb6");
}
BOOST_AUTO_TEST_CASE(chacha20_midblock)
@ -730,8 +813,7 @@ static void TestChaCha20Poly1305AEAD(bool must_succeed, unsigned int expected_aa
BOOST_CHECK(memcmp(ciphertext_buf.data(), expected_ciphertext_and_mac.data(), ciphertext_buf.size()) == 0);
// manually construct the AAD keystream
cmp_ctx.SetIV(seqnr_aad);
cmp_ctx.Seek64(0);
cmp_ctx.Seek64({0, seqnr_aad}, 0);
cmp_ctx.Keystream(cmp_ctx_buffer.data(), 64);
BOOST_CHECK(memcmp(expected_aad_keystream.data(), cmp_ctx_buffer.data(), expected_aad_keystream.size()) == 0);
// crypt the 3 length bytes and compare the length
@ -758,8 +840,7 @@ static void TestChaCha20Poly1305AEAD(bool must_succeed, unsigned int expected_aa
BOOST_CHECK(memcmp(ciphertext_buf.data(), expected_ciphertext_and_mac_sequence999.data(), expected_ciphertext_and_mac_sequence999.size()) == 0);
}
// set nonce and block counter, output the keystream
cmp_ctx.SetIV(seqnr_aad);
cmp_ctx.Seek64(0);
cmp_ctx.Seek64({0, seqnr_aad}, 0);
cmp_ctx.Keystream(cmp_ctx_buffer.data(), 64);
// crypt the 3 length bytes and compare the length

View file

@ -28,10 +28,11 @@ FUZZ_TARGET(crypto_chacha20)
chacha20.SetKey32(key.data());
},
[&] {
chacha20.SetIV(fuzzed_data_provider.ConsumeIntegral<uint64_t>());
},
[&] {
chacha20.Seek64(fuzzed_data_provider.ConsumeIntegral<uint64_t>());
chacha20.Seek64(
{
fuzzed_data_provider.ConsumeIntegral<uint32_t>(),
fuzzed_data_provider.ConsumeIntegral<uint64_t>()
}, fuzzed_data_provider.ConsumeIntegral<uint32_t>());
},
[&] {
std::vector<uint8_t> output(fuzzed_data_provider.ConsumeIntegralInRange<size_t>(0, 4096));
@ -63,17 +64,16 @@ void ChaCha20SplitFuzz(FuzzedDataProvider& provider)
auto key_bytes = provider.ConsumeBytes<unsigned char>(32);
std::copy(key_bytes.begin(), key_bytes.end(), key);
uint64_t iv = provider.ConsumeIntegral<uint64_t>();
uint32_t iv_prefix = provider.ConsumeIntegral<uint32_t>();
uint64_t total_bytes = provider.ConsumeIntegralInRange<uint64_t>(0, 1000000);
/* ~x = 2^64 - 1 - x, so ~(total_bytes >> 6) is the maximal seek position. */
uint64_t seek = provider.ConsumeIntegralInRange<uint64_t>(0, ~(total_bytes >> 6));
/* ~x = 2^BITS - 1 - x, so ~(total_bytes >> 6) is the maximal seek position. */
uint32_t seek = provider.ConsumeIntegralInRange<uint32_t>(0, ~(uint32_t)(total_bytes >> 6));
// Initialize two ChaCha20 ciphers, with the same key/iv/position.
ChaCha20 crypt1(key);
ChaCha20 crypt2(key);
crypt1.SetIV(iv);
crypt1.Seek64(seek);
crypt2.SetIV(iv);
crypt2.Seek64(seek);
crypt1.Seek64({iv_prefix, iv}, seek);
crypt2.Seek64({iv_prefix, iv}, seek);
// Construct vectors with data.
std::vector<unsigned char> data1, data2;

View file

@ -284,6 +284,8 @@ FUZZ_TARGET(crypto_diff_fuzz_chacha20)
// ECRYPT_keysetup() doesn't set the counter and nonce to 0 while SetKey32() does
static const uint8_t iv[8] = {0, 0, 0, 0, 0, 0, 0, 0};
ChaCha20::Nonce96 nonce{0, 0};
uint32_t counter{0};
ECRYPT_ivsetup(&ctx, iv);
LIMITED_WHILE (fuzzed_data_provider.ConsumeBool(), 3000) {
@ -292,45 +294,56 @@ FUZZ_TARGET(crypto_diff_fuzz_chacha20)
[&] {
const std::vector<unsigned char> key = ConsumeFixedLengthByteVector(fuzzed_data_provider, 32);
chacha20.SetKey32(key.data());
nonce = {0, 0};
counter = 0;
ECRYPT_keysetup(&ctx, key.data(), key.size() * 8, 0);
// ECRYPT_keysetup() doesn't set the counter and nonce to 0 while SetKey32() does
uint8_t iv[8] = {0, 0, 0, 0, 0, 0, 0, 0};
ECRYPT_ivsetup(&ctx, iv);
},
[&] {
uint32_t iv_prefix = fuzzed_data_provider.ConsumeIntegral<uint32_t>();
uint64_t iv = fuzzed_data_provider.ConsumeIntegral<uint64_t>();
chacha20.SetIV(iv);
nonce = {iv_prefix, iv};
counter = fuzzed_data_provider.ConsumeIntegral<uint32_t>();
chacha20.Seek64(nonce, counter);
ctx.input[12] = counter;
ctx.input[13] = iv_prefix;
ctx.input[14] = iv;
ctx.input[15] = iv >> 32;
},
[&] {
uint64_t counter = fuzzed_data_provider.ConsumeIntegral<uint64_t>();
chacha20.Seek64(counter);
ctx.input[12] = counter;
ctx.input[13] = counter >> 32;
},
[&] {
uint32_t integralInRange = fuzzed_data_provider.ConsumeIntegralInRange<size_t>(0, 4096);
// DJB's version seeks forward to a multiple of 64 bytes after every operation. Correct for that.
uint64_t pos = ctx.input[12] + (((uint64_t)ctx.input[13]) << 32) + ((integralInRange + 63) >> 6);
std::vector<uint8_t> output(integralInRange);
chacha20.Keystream(output.data(), output.size());
std::vector<uint8_t> djb_output(integralInRange);
ECRYPT_keystream_bytes(&ctx, djb_output.data(), djb_output.size());
assert(output == djb_output);
chacha20.Seek64(pos);
// DJB's version seeks forward to a multiple of 64 bytes after every operation. Correct for that.
uint32_t old_counter = counter;
counter += (integralInRange + 63) >> 6;
if (counter < old_counter) ++nonce.first;
if (integralInRange & 63) {
chacha20.Seek64(nonce, counter);
}
assert(counter == ctx.input[12]);
},
[&] {
uint32_t integralInRange = fuzzed_data_provider.ConsumeIntegralInRange<size_t>(0, 4096);
// DJB's version seeks forward to a multiple of 64 bytes after every operation. Correct for that.
uint64_t pos = ctx.input[12] + (((uint64_t)ctx.input[13]) << 32) + ((integralInRange + 63) >> 6);
std::vector<uint8_t> output(integralInRange);
const std::vector<uint8_t> input = ConsumeFixedLengthByteVector(fuzzed_data_provider, output.size());
chacha20.Crypt(input.data(), output.data(), input.size());
std::vector<uint8_t> djb_output(integralInRange);
ECRYPT_encrypt_bytes(&ctx, input.data(), djb_output.data(), input.size());
assert(output == djb_output);
chacha20.Seek64(pos);
// DJB's version seeks forward to a multiple of 64 bytes after every operation. Correct for that.
uint32_t old_counter = counter;
counter += (integralInRange + 63) >> 6;
if (counter < old_counter) ++nonce.first;
if (integralInRange & 63) {
chacha20.Seek64(nonce, counter);
}
assert(counter == ctx.input[12]);
});
}
}