mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-02-02 09:46:52 -05:00
Get rid of _t as it is POSIX reserved
This commit is contained in:
parent
201819b3bc
commit
dd891e0ed5
49 changed files with 943 additions and 943 deletions
|
@ -40,7 +40,7 @@ extern "C" {
|
|||
* Regarding randomization, either do it once at creation time (in which case
|
||||
* you do not need any locking for the other calls), or use a read-write lock.
|
||||
*/
|
||||
typedef struct secp256k1_context_struct secp256k1_context_t;
|
||||
typedef struct secp256k1_context_struct secp256k1_context;
|
||||
|
||||
/** Opaque data structure that holds a parsed and valid public key.
|
||||
*
|
||||
|
@ -55,7 +55,7 @@ typedef struct secp256k1_context_struct secp256k1_context_t;
|
|||
*/
|
||||
typedef struct {
|
||||
unsigned char data[64];
|
||||
} secp256k1_pubkey_t;
|
||||
} secp256k1_pubkey;
|
||||
|
||||
/** Opaque data structured that holds a parsed ECDSA signature.
|
||||
*
|
||||
|
@ -71,7 +71,7 @@ typedef struct {
|
|||
*/
|
||||
typedef struct {
|
||||
unsigned char data[64];
|
||||
} secp256k1_ecdsa_signature_t;
|
||||
} secp256k1_ecdsa_signature;
|
||||
|
||||
/** A pointer to a function to deterministically generate a nonce.
|
||||
*
|
||||
|
@ -89,7 +89,7 @@ typedef struct {
|
|||
* Except for test cases, this function should compute some cryptographic hash of
|
||||
* the message, the algorithm, the key and the attempt.
|
||||
*/
|
||||
typedef int (*secp256k1_nonce_function_t)(
|
||||
typedef int (*secp256k1_nonce_function)(
|
||||
unsigned char *nonce32,
|
||||
const unsigned char *msg32,
|
||||
const unsigned char *key32,
|
||||
|
@ -145,7 +145,7 @@ typedef int (*secp256k1_nonce_function_t)(
|
|||
* Returns: a newly created context object.
|
||||
* In: flags: which parts of the context to initialize.
|
||||
*/
|
||||
secp256k1_context_t* secp256k1_context_create(
|
||||
secp256k1_context* secp256k1_context_create(
|
||||
unsigned int flags
|
||||
) SECP256K1_WARN_UNUSED_RESULT;
|
||||
|
||||
|
@ -154,8 +154,8 @@ secp256k1_context_t* secp256k1_context_create(
|
|||
* Returns: a newly created context object.
|
||||
* Args: ctx: an existing context to copy (cannot be NULL)
|
||||
*/
|
||||
secp256k1_context_t* secp256k1_context_clone(
|
||||
const secp256k1_context_t* ctx
|
||||
secp256k1_context* secp256k1_context_clone(
|
||||
const secp256k1_context* ctx
|
||||
) SECP256K1_ARG_NONNULL(1) SECP256K1_WARN_UNUSED_RESULT;
|
||||
|
||||
/** Destroy a secp256k1 context object.
|
||||
|
@ -164,7 +164,7 @@ secp256k1_context_t* secp256k1_context_clone(
|
|||
* Args: ctx: an existing context to destroy (cannot be NULL)
|
||||
*/
|
||||
void secp256k1_context_destroy(
|
||||
secp256k1_context_t* ctx
|
||||
secp256k1_context* ctx
|
||||
);
|
||||
|
||||
/** Set a callback function to be called when an illegal argument is passed to
|
||||
|
@ -188,7 +188,7 @@ void secp256k1_context_destroy(
|
|||
* data: the opaque pointer to pass to fun above.
|
||||
*/
|
||||
void secp256k1_context_set_illegal_callback(
|
||||
secp256k1_context_t* ctx,
|
||||
secp256k1_context* ctx,
|
||||
void (*fun)(const char* message, void* data),
|
||||
const void* data
|
||||
) SECP256K1_ARG_NONNULL(1);
|
||||
|
@ -210,7 +210,7 @@ void secp256k1_context_set_illegal_callback(
|
|||
* data: the opaque pointer to pass to fun above.
|
||||
*/
|
||||
void secp256k1_context_set_error_callback(
|
||||
secp256k1_context_t* ctx,
|
||||
secp256k1_context* ctx,
|
||||
void (*fun)(const char* message, void* data),
|
||||
const void* data
|
||||
) SECP256K1_ARG_NONNULL(1);
|
||||
|
@ -230,8 +230,8 @@ void secp256k1_context_set_error_callback(
|
|||
* byte 0x06 or 0x07) format public keys.
|
||||
*/
|
||||
SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_parse(
|
||||
const secp256k1_context_t* ctx,
|
||||
secp256k1_pubkey_t* pubkey,
|
||||
const secp256k1_context* ctx,
|
||||
secp256k1_pubkey* pubkey,
|
||||
const unsigned char *input,
|
||||
size_t inputlen
|
||||
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
|
||||
|
@ -244,16 +244,16 @@ SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_parse(
|
|||
* compressed==1) byte array to place the serialized key in.
|
||||
* outputlen: a pointer to an integer which will contain the serialized
|
||||
* size.
|
||||
* In: pubkey: a pointer to a secp256k1_pubkey_t containing an initialized
|
||||
* In: pubkey: a pointer to a secp256k1_pubkey containing an initialized
|
||||
* public key.
|
||||
* flags: SECP256K1_EC_COMPRESSED if serialization should be in
|
||||
* compressed format.
|
||||
*/
|
||||
int secp256k1_ec_pubkey_serialize(
|
||||
const secp256k1_context_t* ctx,
|
||||
const secp256k1_context* ctx,
|
||||
unsigned char *output,
|
||||
size_t *outputlen,
|
||||
const secp256k1_pubkey_t* pubkey,
|
||||
const secp256k1_pubkey* pubkey,
|
||||
unsigned int flags
|
||||
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
|
||||
|
||||
|
@ -268,8 +268,8 @@ int secp256k1_ec_pubkey_serialize(
|
|||
* Note that this function also supports some violations of DER and even BER.
|
||||
*/
|
||||
int secp256k1_ecdsa_signature_parse_der(
|
||||
const secp256k1_context_t* ctx,
|
||||
secp256k1_ecdsa_signature_t* sig,
|
||||
const secp256k1_context* ctx,
|
||||
secp256k1_ecdsa_signature* sig,
|
||||
const unsigned char *input,
|
||||
size_t inputlen
|
||||
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
|
||||
|
@ -286,10 +286,10 @@ int secp256k1_ecdsa_signature_parse_der(
|
|||
* In: sig: a pointer to an initialized signature object
|
||||
*/
|
||||
int secp256k1_ecdsa_signature_serialize_der(
|
||||
const secp256k1_context_t* ctx,
|
||||
const secp256k1_context* ctx,
|
||||
unsigned char *output,
|
||||
size_t *outputlen,
|
||||
const secp256k1_ecdsa_signature_t* sig
|
||||
const secp256k1_ecdsa_signature* sig
|
||||
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
|
||||
|
||||
/** Verify an ECDSA signature.
|
||||
|
@ -302,20 +302,20 @@ int secp256k1_ecdsa_signature_serialize_der(
|
|||
* pubkey: pointer to an initialized public key to verify with (cannot be NULL)
|
||||
*/
|
||||
SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_verify(
|
||||
const secp256k1_context_t* ctx,
|
||||
const secp256k1_ecdsa_signature_t *sig,
|
||||
const secp256k1_context* ctx,
|
||||
const secp256k1_ecdsa_signature *sig,
|
||||
const unsigned char *msg32,
|
||||
const secp256k1_pubkey_t *pubkey
|
||||
const secp256k1_pubkey *pubkey
|
||||
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
|
||||
|
||||
/** An implementation of RFC6979 (using HMAC-SHA256) as nonce generation function.
|
||||
* If a data pointer is passed, it is assumed to be a pointer to 32 bytes of
|
||||
* extra entropy.
|
||||
*/
|
||||
extern const secp256k1_nonce_function_t secp256k1_nonce_function_rfc6979;
|
||||
extern const secp256k1_nonce_function secp256k1_nonce_function_rfc6979;
|
||||
|
||||
/** A default safe nonce generation function (currently equal to secp256k1_nonce_function_rfc6979). */
|
||||
extern const secp256k1_nonce_function_t secp256k1_nonce_function_default;
|
||||
extern const secp256k1_nonce_function secp256k1_nonce_function_default;
|
||||
|
||||
/** Create an ECDSA signature.
|
||||
*
|
||||
|
@ -356,11 +356,11 @@ extern const secp256k1_nonce_function_t secp256k1_nonce_function_default;
|
|||
* be taken when this property is required for an application.
|
||||
*/
|
||||
int secp256k1_ecdsa_sign(
|
||||
const secp256k1_context_t* ctx,
|
||||
secp256k1_ecdsa_signature_t *sig,
|
||||
const secp256k1_context* ctx,
|
||||
secp256k1_ecdsa_signature *sig,
|
||||
const unsigned char *msg32,
|
||||
const unsigned char *seckey,
|
||||
secp256k1_nonce_function_t noncefp,
|
||||
secp256k1_nonce_function noncefp,
|
||||
const void *ndata
|
||||
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
|
||||
|
||||
|
@ -372,7 +372,7 @@ int secp256k1_ecdsa_sign(
|
|||
* In: seckey: pointer to a 32-byte secret key (cannot be NULL)
|
||||
*/
|
||||
SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_seckey_verify(
|
||||
const secp256k1_context_t* ctx,
|
||||
const secp256k1_context* ctx,
|
||||
const unsigned char *seckey
|
||||
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2);
|
||||
|
||||
|
@ -385,8 +385,8 @@ SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_seckey_verify(
|
|||
* In: seckey: pointer to a 32-byte private key (cannot be NULL)
|
||||
*/
|
||||
SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_create(
|
||||
const secp256k1_context_t* ctx,
|
||||
secp256k1_pubkey_t *pubkey,
|
||||
const secp256k1_context* ctx,
|
||||
secp256k1_pubkey *pubkey,
|
||||
const unsigned char *seckey
|
||||
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
|
||||
|
||||
|
@ -411,7 +411,7 @@ SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_create(
|
|||
* guaranteed to be parsable by secp256k1_ec_privkey_import.
|
||||
*/
|
||||
SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_export(
|
||||
const secp256k1_context_t* ctx,
|
||||
const secp256k1_context* ctx,
|
||||
unsigned char *privkey,
|
||||
size_t *privkeylen,
|
||||
const unsigned char *seckey,
|
||||
|
@ -433,7 +433,7 @@ SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_export(
|
|||
* key.
|
||||
*/
|
||||
SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_import(
|
||||
const secp256k1_context_t* ctx,
|
||||
const secp256k1_context* ctx,
|
||||
unsigned char *seckey,
|
||||
const unsigned char *privkey,
|
||||
size_t privkeylen
|
||||
|
@ -449,7 +449,7 @@ SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_import(
|
|||
* In: tweak: pointer to a 32-byte tweak.
|
||||
*/
|
||||
SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_tweak_add(
|
||||
const secp256k1_context_t* ctx,
|
||||
const secp256k1_context* ctx,
|
||||
unsigned char *seckey,
|
||||
const unsigned char *tweak
|
||||
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
|
||||
|
@ -465,8 +465,8 @@ SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_tweak_add(
|
|||
* In: tweak: pointer to a 32-byte tweak.
|
||||
*/
|
||||
SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_tweak_add(
|
||||
const secp256k1_context_t* ctx,
|
||||
secp256k1_pubkey_t *pubkey,
|
||||
const secp256k1_context* ctx,
|
||||
secp256k1_pubkey *pubkey,
|
||||
const unsigned char *tweak
|
||||
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
|
||||
|
||||
|
@ -478,7 +478,7 @@ SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_tweak_add(
|
|||
* In: tweak: pointer to a 32-byte tweak.
|
||||
*/
|
||||
SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_tweak_mul(
|
||||
const secp256k1_context_t* ctx,
|
||||
const secp256k1_context* ctx,
|
||||
unsigned char *seckey,
|
||||
const unsigned char *tweak
|
||||
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
|
||||
|
@ -492,8 +492,8 @@ SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_tweak_mul(
|
|||
* In: tweak: pointer to a 32-byte tweak.
|
||||
*/
|
||||
SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_tweak_mul(
|
||||
const secp256k1_context_t* ctx,
|
||||
secp256k1_pubkey_t *pubkey,
|
||||
const secp256k1_context* ctx,
|
||||
secp256k1_pubkey *pubkey,
|
||||
const unsigned char *tweak
|
||||
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
|
||||
|
||||
|
@ -504,7 +504,7 @@ SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_tweak_mul(
|
|||
* In: seed32: pointer to a 32-byte random seed (NULL resets to initial state)
|
||||
*/
|
||||
SECP256K1_WARN_UNUSED_RESULT int secp256k1_context_randomize(
|
||||
secp256k1_context_t* ctx,
|
||||
secp256k1_context* ctx,
|
||||
const unsigned char *seed32
|
||||
) SECP256K1_ARG_NONNULL(1);
|
||||
|
||||
|
@ -520,9 +520,9 @@ SECP256K1_WARN_UNUSED_RESULT int secp256k1_context_randomize(
|
|||
* uncompressed format is needed.
|
||||
*/
|
||||
SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_combine(
|
||||
const secp256k1_context_t* ctx,
|
||||
secp256k1_pubkey_t *out,
|
||||
const secp256k1_pubkey_t * const * ins,
|
||||
const secp256k1_context* ctx,
|
||||
secp256k1_pubkey *out,
|
||||
const secp256k1_pubkey * const * ins,
|
||||
int n
|
||||
) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
|
||||
|
||||
|
|
|
@ -17,9 +17,9 @@ extern "C" {
|
|||
* scalar: a 32-byte scalar with which to multiply the point
|
||||
*/
|
||||
SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdh(
|
||||
const secp256k1_context_t* ctx,
|
||||
const secp256k1_context* ctx,
|
||||
unsigned char *result,
|
||||
const secp256k1_pubkey_t *point,
|
||||
const secp256k1_pubkey *point,
|
||||
const unsigned char *scalar
|
||||
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
|
||||
|
||||
|
|
|
@ -23,7 +23,7 @@ extern "C" {
|
|||
*/
|
||||
typedef struct {
|
||||
unsigned char data[65];
|
||||
} secp256k1_ecdsa_recoverable_signature_t;
|
||||
} secp256k1_ecdsa_recoverable_signature;
|
||||
|
||||
/** Parse a compact ECDSA signature (64 bytes + recovery id).
|
||||
*
|
||||
|
@ -34,8 +34,8 @@ typedef struct {
|
|||
* recid: the recovery id (0, 1, 2 or 3)
|
||||
*/
|
||||
int secp256k1_ecdsa_recoverable_signature_parse_compact(
|
||||
const secp256k1_context_t* ctx,
|
||||
secp256k1_ecdsa_recoverable_signature_t* sig,
|
||||
const secp256k1_context* ctx,
|
||||
secp256k1_ecdsa_recoverable_signature* sig,
|
||||
const unsigned char *input64,
|
||||
int recid
|
||||
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
|
||||
|
@ -47,9 +47,9 @@ int secp256k1_ecdsa_recoverable_signature_parse_compact(
|
|||
* In: sigin: a pointer to a recoverable signature (cannot be NULL).
|
||||
*/
|
||||
int secp256k1_ecdsa_recoverable_signature_convert(
|
||||
const secp256k1_context_t* ctx,
|
||||
secp256k1_ecdsa_signature_t* sig,
|
||||
const secp256k1_ecdsa_recoverable_signature_t* sigin
|
||||
const secp256k1_context* ctx,
|
||||
secp256k1_ecdsa_signature* sig,
|
||||
const secp256k1_ecdsa_recoverable_signature* sigin
|
||||
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
|
||||
|
||||
/** Serialize an ECDSA signature in compact format (64 bytes + recovery id).
|
||||
|
@ -61,10 +61,10 @@ int secp256k1_ecdsa_recoverable_signature_convert(
|
|||
* In: sig: a pointer to an initialized signature object (cannot be NULL)
|
||||
*/
|
||||
int secp256k1_ecdsa_recoverable_signature_serialize_compact(
|
||||
const secp256k1_context_t* ctx,
|
||||
const secp256k1_context* ctx,
|
||||
unsigned char *output64,
|
||||
int *recid,
|
||||
const secp256k1_ecdsa_recoverable_signature_t* sig
|
||||
const secp256k1_ecdsa_recoverable_signature* sig
|
||||
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(4);
|
||||
|
||||
/** Create a recoverable ECDSA signature.
|
||||
|
@ -79,11 +79,11 @@ int secp256k1_ecdsa_recoverable_signature_serialize_compact(
|
|||
* ndata: pointer to arbitrary data used by the nonce generation function (can be NULL)
|
||||
*/
|
||||
int secp256k1_ecdsa_sign_recoverable(
|
||||
const secp256k1_context_t* ctx,
|
||||
secp256k1_ecdsa_recoverable_signature_t *sig,
|
||||
const secp256k1_context* ctx,
|
||||
secp256k1_ecdsa_recoverable_signature *sig,
|
||||
const unsigned char *msg32,
|
||||
const unsigned char *seckey,
|
||||
secp256k1_nonce_function_t noncefp,
|
||||
secp256k1_nonce_function noncefp,
|
||||
const void *ndata
|
||||
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
|
||||
|
||||
|
@ -97,9 +97,9 @@ int secp256k1_ecdsa_sign_recoverable(
|
|||
* msg32: the 32-byte message hash assumed to be signed (cannot be NULL)
|
||||
*/
|
||||
SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_recover(
|
||||
const secp256k1_context_t* ctx,
|
||||
secp256k1_pubkey_t *pubkey,
|
||||
const secp256k1_ecdsa_recoverable_signature_t *sig,
|
||||
const secp256k1_context* ctx,
|
||||
secp256k1_pubkey *pubkey,
|
||||
const secp256k1_ecdsa_recoverable_signature *sig,
|
||||
const unsigned char *msg32
|
||||
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
|
||||
|
||||
|
|
|
@ -25,11 +25,11 @@ extern "C" {
|
|||
* function (can be NULL)
|
||||
*/
|
||||
int secp256k1_schnorr_sign(
|
||||
const secp256k1_context_t* ctx,
|
||||
const secp256k1_context* ctx,
|
||||
unsigned char *sig64,
|
||||
const unsigned char *msg32,
|
||||
const unsigned char *seckey,
|
||||
secp256k1_nonce_function_t noncefp,
|
||||
secp256k1_nonce_function noncefp,
|
||||
const void *ndata
|
||||
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
|
||||
|
||||
|
@ -42,10 +42,10 @@ int secp256k1_schnorr_sign(
|
|||
* pubkey: the public key to verify with (cannot be NULL)
|
||||
*/
|
||||
SECP256K1_WARN_UNUSED_RESULT int secp256k1_schnorr_verify(
|
||||
const secp256k1_context_t* ctx,
|
||||
const secp256k1_context* ctx,
|
||||
const unsigned char *sig64,
|
||||
const unsigned char *msg32,
|
||||
const secp256k1_pubkey_t *pubkey
|
||||
const secp256k1_pubkey *pubkey
|
||||
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
|
||||
|
||||
/** Recover an EC public key from a Schnorr signature created using
|
||||
|
@ -62,8 +62,8 @@ SECP256K1_WARN_UNUSED_RESULT int secp256k1_schnorr_verify(
|
|||
* be NULL)
|
||||
*/
|
||||
int secp256k1_schnorr_recover(
|
||||
const secp256k1_context_t* ctx,
|
||||
secp256k1_pubkey_t *pubkey,
|
||||
const secp256k1_context* ctx,
|
||||
secp256k1_pubkey *pubkey,
|
||||
const unsigned char *sig64,
|
||||
const unsigned char *msg32
|
||||
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
|
||||
|
@ -87,12 +87,12 @@ int secp256k1_schnorr_recover(
|
|||
* Do not use the output as a private/public key pair for signing/validation.
|
||||
*/
|
||||
int secp256k1_schnorr_generate_nonce_pair(
|
||||
const secp256k1_context_t* ctx,
|
||||
secp256k1_pubkey_t *pubnonce,
|
||||
const secp256k1_context* ctx,
|
||||
secp256k1_pubkey *pubnonce,
|
||||
unsigned char *privnonce32,
|
||||
const unsigned char *msg32,
|
||||
const unsigned char *sec32,
|
||||
secp256k1_nonce_function_t noncefp,
|
||||
secp256k1_nonce_function noncefp,
|
||||
const void* noncedata
|
||||
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(6) SECP256K1_ARG_NONNULL(7);
|
||||
|
||||
|
@ -139,11 +139,11 @@ int secp256k1_schnorr_generate_nonce_pair(
|
|||
* by calling the function again (they are commutative and associative).
|
||||
*/
|
||||
SECP256K1_WARN_UNUSED_RESULT int secp256k1_schnorr_partial_sign(
|
||||
const secp256k1_context_t* ctx,
|
||||
const secp256k1_context* ctx,
|
||||
unsigned char *sig64,
|
||||
const unsigned char *msg32,
|
||||
const unsigned char *sec32,
|
||||
const secp256k1_pubkey_t *pubnonce_others,
|
||||
const secp256k1_pubkey *pubnonce_others,
|
||||
const unsigned char *secnonce32
|
||||
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5) SECP256K1_ARG_NONNULL(6);
|
||||
|
||||
|
@ -160,7 +160,7 @@ SECP256K1_WARN_UNUSED_RESULT int secp256k1_schnorr_partial_sign(
|
|||
* n: the number of signatures to combine (at least 1)
|
||||
*/
|
||||
SECP256K1_WARN_UNUSED_RESULT int secp256k1_schnorr_partial_combine(
|
||||
const secp256k1_context_t* ctx,
|
||||
const secp256k1_context* ctx,
|
||||
unsigned char *sig64,
|
||||
const unsigned char * const * sig64sin,
|
||||
int n
|
||||
|
|
|
@ -12,8 +12,8 @@
|
|||
#include "bench.h"
|
||||
|
||||
typedef struct {
|
||||
secp256k1_context_t *ctx;
|
||||
secp256k1_pubkey_t point;
|
||||
secp256k1_context *ctx;
|
||||
secp256k1_pubkey point;
|
||||
unsigned char scalar[32];
|
||||
} bench_ecdh_t;
|
||||
|
||||
|
|
|
@ -19,10 +19,10 @@
|
|||
#include "secp256k1.c"
|
||||
|
||||
typedef struct {
|
||||
secp256k1_scalar_t scalar_x, scalar_y;
|
||||
secp256k1_fe_t fe_x, fe_y;
|
||||
secp256k1_ge_t ge_x, ge_y;
|
||||
secp256k1_gej_t gej_x, gej_y;
|
||||
secp256k1_scalar scalar_x, scalar_y;
|
||||
secp256k1_fe fe_x, fe_y;
|
||||
secp256k1_ge ge_x, ge_y;
|
||||
secp256k1_gej gej_x, gej_y;
|
||||
unsigned char data[64];
|
||||
int wnaf[256];
|
||||
} bench_inv_t;
|
||||
|
@ -98,7 +98,7 @@ void bench_scalar_split(void* arg) {
|
|||
bench_inv_t *data = (bench_inv_t*)arg;
|
||||
|
||||
for (i = 0; i < 20000; i++) {
|
||||
secp256k1_scalar_t l, r;
|
||||
secp256k1_scalar l, r;
|
||||
secp256k1_scalar_split_lambda(&l, &r, &data->scalar_x);
|
||||
secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y);
|
||||
}
|
||||
|
|
|
@ -10,7 +10,7 @@
|
|||
#include "bench.h"
|
||||
|
||||
typedef struct {
|
||||
secp256k1_context_t *ctx;
|
||||
secp256k1_context *ctx;
|
||||
unsigned char msg[32];
|
||||
unsigned char sig[64];
|
||||
} bench_recover_t;
|
||||
|
@ -18,13 +18,13 @@ typedef struct {
|
|||
void bench_recover(void* arg) {
|
||||
int i;
|
||||
bench_recover_t *data = (bench_recover_t*)arg;
|
||||
secp256k1_pubkey_t pubkey;
|
||||
secp256k1_pubkey pubkey;
|
||||
unsigned char pubkeyc[33];
|
||||
|
||||
for (i = 0; i < 20000; i++) {
|
||||
int j;
|
||||
size_t pubkeylen = 33;
|
||||
secp256k1_ecdsa_recoverable_signature_t sig;
|
||||
secp256k1_ecdsa_recoverable_signature sig;
|
||||
CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(data->ctx, &sig, data->sig, i % 2));
|
||||
CHECK(secp256k1_ecdsa_recover(data->ctx, &pubkey, &sig, data->msg));
|
||||
CHECK(secp256k1_ec_pubkey_serialize(data->ctx, pubkeyc, &pubkeylen, &pubkey, SECP256K1_EC_COMPRESSED));
|
||||
|
|
|
@ -20,7 +20,7 @@ typedef struct {
|
|||
} benchmark_schnorr_sig_t;
|
||||
|
||||
typedef struct {
|
||||
secp256k1_context_t *ctx;
|
||||
secp256k1_context *ctx;
|
||||
unsigned char msg[32];
|
||||
benchmark_schnorr_sig_t sigs[64];
|
||||
int numsigs;
|
||||
|
@ -34,7 +34,7 @@ static void benchmark_schnorr_init(void* arg) {
|
|||
data->msg[i] = 1 + i;
|
||||
}
|
||||
for (k = 0; k < data->numsigs; k++) {
|
||||
secp256k1_pubkey_t pubkey;
|
||||
secp256k1_pubkey pubkey;
|
||||
for (i = 0; i < 32; i++) {
|
||||
data->sigs[k].key[i] = 33 + i + k;
|
||||
}
|
||||
|
@ -50,7 +50,7 @@ static void benchmark_schnorr_verify(void* arg) {
|
|||
benchmark_schnorr_verify_t* data = (benchmark_schnorr_verify_t*)arg;
|
||||
|
||||
for (i = 0; i < 20000 / data->numsigs; i++) {
|
||||
secp256k1_pubkey_t pubkey;
|
||||
secp256k1_pubkey pubkey;
|
||||
data->sigs[0].sig[(i >> 8) % 64] ^= (i & 0xFF);
|
||||
CHECK(secp256k1_ec_pubkey_parse(data->ctx, &pubkey, data->sigs[0].pubkey, data->sigs[0].pubkeylen));
|
||||
CHECK(secp256k1_schnorr_verify(data->ctx, data->sigs[0].sig, data->msg, &pubkey) == ((i & 0xFF) == 0));
|
||||
|
|
|
@ -9,7 +9,7 @@
|
|||
#include "bench.h"
|
||||
|
||||
typedef struct {
|
||||
secp256k1_context_t* ctx;
|
||||
secp256k1_context* ctx;
|
||||
unsigned char msg[32];
|
||||
unsigned char key[32];
|
||||
} bench_sign_t;
|
||||
|
@ -34,7 +34,7 @@ static void bench_sign(void* arg) {
|
|||
for (i = 0; i < 20000; i++) {
|
||||
size_t siglen = 74;
|
||||
int j;
|
||||
secp256k1_ecdsa_signature_t signature;
|
||||
secp256k1_ecdsa_signature signature;
|
||||
CHECK(secp256k1_ecdsa_sign(data->ctx, &signature, data->msg, data->key, NULL, NULL));
|
||||
CHECK(secp256k1_ecdsa_signature_serialize_der(data->ctx, sig, &siglen, &signature));
|
||||
for (j = 0; j < 32; j++) {
|
||||
|
|
|
@ -12,7 +12,7 @@
|
|||
#include "bench.h"
|
||||
|
||||
typedef struct {
|
||||
secp256k1_context_t *ctx;
|
||||
secp256k1_context *ctx;
|
||||
unsigned char msg[32];
|
||||
unsigned char key[32];
|
||||
unsigned char sig[72];
|
||||
|
@ -26,8 +26,8 @@ static void benchmark_verify(void* arg) {
|
|||
benchmark_verify_t* data = (benchmark_verify_t*)arg;
|
||||
|
||||
for (i = 0; i < 20000; i++) {
|
||||
secp256k1_pubkey_t pubkey;
|
||||
secp256k1_ecdsa_signature_t sig;
|
||||
secp256k1_pubkey pubkey;
|
||||
secp256k1_ecdsa_signature sig;
|
||||
data->sig[data->siglen - 1] ^= (i & 0xFF);
|
||||
data->sig[data->siglen - 2] ^= ((i >> 8) & 0xFF);
|
||||
data->sig[data->siglen - 3] ^= ((i >> 16) & 0xFF);
|
||||
|
@ -42,8 +42,8 @@ static void benchmark_verify(void* arg) {
|
|||
|
||||
int main(void) {
|
||||
int i;
|
||||
secp256k1_pubkey_t pubkey;
|
||||
secp256k1_ecdsa_signature_t sig;
|
||||
secp256k1_pubkey pubkey;
|
||||
secp256k1_ecdsa_signature sig;
|
||||
benchmark_verify_t data;
|
||||
|
||||
data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
|
||||
|
|
10
src/ecdsa.h
10
src/ecdsa.h
|
@ -13,10 +13,10 @@
|
|||
#include "group.h"
|
||||
#include "ecmult.h"
|
||||
|
||||
static int secp256k1_ecdsa_sig_parse(secp256k1_scalar_t *r, secp256k1_scalar_t *s, const unsigned char *sig, size_t size);
|
||||
static int secp256k1_ecdsa_sig_serialize(unsigned char *sig, size_t *size, const secp256k1_scalar_t *r, const secp256k1_scalar_t *s);
|
||||
static int secp256k1_ecdsa_sig_verify(const secp256k1_ecmult_context_t *ctx, const secp256k1_scalar_t* r, const secp256k1_scalar_t* s, const secp256k1_ge_t *pubkey, const secp256k1_scalar_t *message);
|
||||
static int secp256k1_ecdsa_sig_sign(const secp256k1_ecmult_gen_context_t *ctx, secp256k1_scalar_t* r, secp256k1_scalar_t* s, const secp256k1_scalar_t *seckey, const secp256k1_scalar_t *message, const secp256k1_scalar_t *nonce, int *recid);
|
||||
static int secp256k1_ecdsa_sig_recover(const secp256k1_ecmult_context_t *ctx, const secp256k1_scalar_t* r, const secp256k1_scalar_t* s, secp256k1_ge_t *pubkey, const secp256k1_scalar_t *message, int recid);
|
||||
static int secp256k1_ecdsa_sig_parse(secp256k1_scalar *r, secp256k1_scalar *s, const unsigned char *sig, size_t size);
|
||||
static int secp256k1_ecdsa_sig_serialize(unsigned char *sig, size_t *size, const secp256k1_scalar *r, const secp256k1_scalar *s);
|
||||
static int secp256k1_ecdsa_sig_verify(const secp256k1_ecmult_context *ctx, const secp256k1_scalar* r, const secp256k1_scalar* s, const secp256k1_ge *pubkey, const secp256k1_scalar *message);
|
||||
static int secp256k1_ecdsa_sig_sign(const secp256k1_ecmult_gen_context *ctx, secp256k1_scalar* r, secp256k1_scalar* s, const secp256k1_scalar *seckey, const secp256k1_scalar *message, const secp256k1_scalar *nonce, int *recid);
|
||||
static int secp256k1_ecdsa_sig_recover(const secp256k1_ecmult_context *ctx, const secp256k1_scalar* r, const secp256k1_scalar* s, secp256k1_ge *pubkey, const secp256k1_scalar *message, int recid);
|
||||
|
||||
#endif
|
||||
|
|
|
@ -28,7 +28,7 @@
|
|||
* sage: '%x' % (EllipticCurve ([F (a), F (b)]).order())
|
||||
* 'fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141'
|
||||
*/
|
||||
static const secp256k1_fe_t secp256k1_ecdsa_const_order_as_fe = SECP256K1_FE_CONST(
|
||||
static const secp256k1_fe secp256k1_ecdsa_const_order_as_fe = SECP256K1_FE_CONST(
|
||||
0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL,
|
||||
0xBAAEDCE6UL, 0xAF48A03BUL, 0xBFD25E8CUL, 0xD0364141UL
|
||||
);
|
||||
|
@ -42,11 +42,11 @@ static const secp256k1_fe_t secp256k1_ecdsa_const_order_as_fe = SECP256K1_FE_CON
|
|||
* sage: '%x' % (p - EllipticCurve ([F (a), F (b)]).order())
|
||||
* '14551231950b75fc4402da1722fc9baee'
|
||||
*/
|
||||
static const secp256k1_fe_t secp256k1_ecdsa_const_p_minus_order = SECP256K1_FE_CONST(
|
||||
static const secp256k1_fe secp256k1_ecdsa_const_p_minus_order = SECP256K1_FE_CONST(
|
||||
0, 0, 0, 1, 0x45512319UL, 0x50B75FC4UL, 0x402DA172UL, 0x2FC9BAEEUL
|
||||
);
|
||||
|
||||
static int secp256k1_ecdsa_sig_parse(secp256k1_scalar_t *rr, secp256k1_scalar_t *rs, const unsigned char *sig, size_t size) {
|
||||
static int secp256k1_ecdsa_sig_parse(secp256k1_scalar *rr, secp256k1_scalar *rs, const unsigned char *sig, size_t size) {
|
||||
unsigned char ra[32] = {0}, sa[32] = {0};
|
||||
const unsigned char *rp;
|
||||
const unsigned char *sp;
|
||||
|
@ -109,7 +109,7 @@ static int secp256k1_ecdsa_sig_parse(secp256k1_scalar_t *rr, secp256k1_scalar_t
|
|||
return 1;
|
||||
}
|
||||
|
||||
static int secp256k1_ecdsa_sig_serialize(unsigned char *sig, size_t *size, const secp256k1_scalar_t* ar, const secp256k1_scalar_t* as) {
|
||||
static int secp256k1_ecdsa_sig_serialize(unsigned char *sig, size_t *size, const secp256k1_scalar* ar, const secp256k1_scalar* as) {
|
||||
unsigned char r[33] = {0}, s[33] = {0};
|
||||
unsigned char *rp = r, *sp = s;
|
||||
size_t lenR = 33, lenS = 33;
|
||||
|
@ -133,12 +133,12 @@ static int secp256k1_ecdsa_sig_serialize(unsigned char *sig, size_t *size, const
|
|||
return 1;
|
||||
}
|
||||
|
||||
static int secp256k1_ecdsa_sig_verify(const secp256k1_ecmult_context_t *ctx, const secp256k1_scalar_t *sigr, const secp256k1_scalar_t *sigs, const secp256k1_ge_t *pubkey, const secp256k1_scalar_t *message) {
|
||||
static int secp256k1_ecdsa_sig_verify(const secp256k1_ecmult_context *ctx, const secp256k1_scalar *sigr, const secp256k1_scalar *sigs, const secp256k1_ge *pubkey, const secp256k1_scalar *message) {
|
||||
unsigned char c[32];
|
||||
secp256k1_scalar_t sn, u1, u2;
|
||||
secp256k1_fe_t xr;
|
||||
secp256k1_gej_t pubkeyj;
|
||||
secp256k1_gej_t pr;
|
||||
secp256k1_scalar sn, u1, u2;
|
||||
secp256k1_fe xr;
|
||||
secp256k1_gej pubkeyj;
|
||||
secp256k1_gej pr;
|
||||
|
||||
if (secp256k1_scalar_is_zero(sigr) || secp256k1_scalar_is_zero(sigs)) {
|
||||
return 0;
|
||||
|
@ -187,13 +187,13 @@ static int secp256k1_ecdsa_sig_verify(const secp256k1_ecmult_context_t *ctx, con
|
|||
return 0;
|
||||
}
|
||||
|
||||
static int secp256k1_ecdsa_sig_recover(const secp256k1_ecmult_context_t *ctx, const secp256k1_scalar_t *sigr, const secp256k1_scalar_t* sigs, secp256k1_ge_t *pubkey, const secp256k1_scalar_t *message, int recid) {
|
||||
static int secp256k1_ecdsa_sig_recover(const secp256k1_ecmult_context *ctx, const secp256k1_scalar *sigr, const secp256k1_scalar* sigs, secp256k1_ge *pubkey, const secp256k1_scalar *message, int recid) {
|
||||
unsigned char brx[32];
|
||||
secp256k1_fe_t fx;
|
||||
secp256k1_ge_t x;
|
||||
secp256k1_gej_t xj;
|
||||
secp256k1_scalar_t rn, u1, u2;
|
||||
secp256k1_gej_t qj;
|
||||
secp256k1_fe fx;
|
||||
secp256k1_ge x;
|
||||
secp256k1_gej xj;
|
||||
secp256k1_scalar rn, u1, u2;
|
||||
secp256k1_gej qj;
|
||||
|
||||
if (secp256k1_scalar_is_zero(sigr) || secp256k1_scalar_is_zero(sigs)) {
|
||||
return 0;
|
||||
|
@ -220,11 +220,11 @@ static int secp256k1_ecdsa_sig_recover(const secp256k1_ecmult_context_t *ctx, co
|
|||
return !secp256k1_gej_is_infinity(&qj);
|
||||
}
|
||||
|
||||
static int secp256k1_ecdsa_sig_sign(const secp256k1_ecmult_gen_context_t *ctx, secp256k1_scalar_t *sigr, secp256k1_scalar_t *sigs, const secp256k1_scalar_t *seckey, const secp256k1_scalar_t *message, const secp256k1_scalar_t *nonce, int *recid) {
|
||||
static int secp256k1_ecdsa_sig_sign(const secp256k1_ecmult_gen_context *ctx, secp256k1_scalar *sigr, secp256k1_scalar *sigs, const secp256k1_scalar *seckey, const secp256k1_scalar *message, const secp256k1_scalar *nonce, int *recid) {
|
||||
unsigned char b[32];
|
||||
secp256k1_gej_t rp;
|
||||
secp256k1_ge_t r;
|
||||
secp256k1_scalar_t n;
|
||||
secp256k1_gej rp;
|
||||
secp256k1_ge r;
|
||||
secp256k1_scalar n;
|
||||
int overflow = 0;
|
||||
|
||||
secp256k1_ecmult_gen(ctx, &rp, nonce);
|
||||
|
|
16
src/eckey.h
16
src/eckey.h
|
@ -14,15 +14,15 @@
|
|||
#include "ecmult.h"
|
||||
#include "ecmult_gen.h"
|
||||
|
||||
static int secp256k1_eckey_pubkey_parse(secp256k1_ge_t *elem, const unsigned char *pub, size_t size);
|
||||
static int secp256k1_eckey_pubkey_serialize(secp256k1_ge_t *elem, unsigned char *pub, size_t *size, unsigned int flags);
|
||||
static int secp256k1_eckey_pubkey_parse(secp256k1_ge *elem, const unsigned char *pub, size_t size);
|
||||
static int secp256k1_eckey_pubkey_serialize(secp256k1_ge *elem, unsigned char *pub, size_t *size, unsigned int flags);
|
||||
|
||||
static int secp256k1_eckey_privkey_parse(secp256k1_scalar_t *key, const unsigned char *privkey, size_t privkeylen);
|
||||
static int secp256k1_eckey_privkey_serialize(const secp256k1_ecmult_gen_context_t *ctx, unsigned char *privkey, size_t *privkeylen, const secp256k1_scalar_t *key, unsigned int flags);
|
||||
static int secp256k1_eckey_privkey_parse(secp256k1_scalar *key, const unsigned char *privkey, size_t privkeylen);
|
||||
static int secp256k1_eckey_privkey_serialize(const secp256k1_ecmult_gen_context *ctx, unsigned char *privkey, size_t *privkeylen, const secp256k1_scalar *key, unsigned int flags);
|
||||
|
||||
static int secp256k1_eckey_privkey_tweak_add(secp256k1_scalar_t *key, const secp256k1_scalar_t *tweak);
|
||||
static int secp256k1_eckey_pubkey_tweak_add(const secp256k1_ecmult_context_t *ctx, secp256k1_ge_t *key, const secp256k1_scalar_t *tweak);
|
||||
static int secp256k1_eckey_privkey_tweak_mul(secp256k1_scalar_t *key, const secp256k1_scalar_t *tweak);
|
||||
static int secp256k1_eckey_pubkey_tweak_mul(const secp256k1_ecmult_context_t *ctx, secp256k1_ge_t *key, const secp256k1_scalar_t *tweak);
|
||||
static int secp256k1_eckey_privkey_tweak_add(secp256k1_scalar *key, const secp256k1_scalar *tweak);
|
||||
static int secp256k1_eckey_pubkey_tweak_add(const secp256k1_ecmult_context *ctx, secp256k1_ge *key, const secp256k1_scalar *tweak);
|
||||
static int secp256k1_eckey_privkey_tweak_mul(secp256k1_scalar *key, const secp256k1_scalar *tweak);
|
||||
static int secp256k1_eckey_pubkey_tweak_mul(const secp256k1_ecmult_context *ctx, secp256k1_ge *key, const secp256k1_scalar *tweak);
|
||||
|
||||
#endif
|
||||
|
|
|
@ -14,12 +14,12 @@
|
|||
#include "group.h"
|
||||
#include "ecmult_gen.h"
|
||||
|
||||
static int secp256k1_eckey_pubkey_parse(secp256k1_ge_t *elem, const unsigned char *pub, size_t size) {
|
||||
static int secp256k1_eckey_pubkey_parse(secp256k1_ge *elem, const unsigned char *pub, size_t size) {
|
||||
if (size == 33 && (pub[0] == 0x02 || pub[0] == 0x03)) {
|
||||
secp256k1_fe_t x;
|
||||
secp256k1_fe x;
|
||||
return secp256k1_fe_set_b32(&x, pub+1) && secp256k1_ge_set_xo_var(elem, &x, pub[0] == 0x03);
|
||||
} else if (size == 65 && (pub[0] == 0x04 || pub[0] == 0x06 || pub[0] == 0x07)) {
|
||||
secp256k1_fe_t x, y;
|
||||
secp256k1_fe x, y;
|
||||
if (!secp256k1_fe_set_b32(&x, pub+1) || !secp256k1_fe_set_b32(&y, pub+33)) {
|
||||
return 0;
|
||||
}
|
||||
|
@ -33,7 +33,7 @@ static int secp256k1_eckey_pubkey_parse(secp256k1_ge_t *elem, const unsigned cha
|
|||
}
|
||||
}
|
||||
|
||||
static int secp256k1_eckey_pubkey_serialize(secp256k1_ge_t *elem, unsigned char *pub, size_t *size, unsigned int flags) {
|
||||
static int secp256k1_eckey_pubkey_serialize(secp256k1_ge *elem, unsigned char *pub, size_t *size, unsigned int flags) {
|
||||
if (secp256k1_ge_is_infinity(elem)) {
|
||||
return 0;
|
||||
}
|
||||
|
@ -51,7 +51,7 @@ static int secp256k1_eckey_pubkey_serialize(secp256k1_ge_t *elem, unsigned char
|
|||
return 1;
|
||||
}
|
||||
|
||||
static int secp256k1_eckey_privkey_parse(secp256k1_scalar_t *key, const unsigned char *privkey, size_t privkeylen) {
|
||||
static int secp256k1_eckey_privkey_parse(secp256k1_scalar *key, const unsigned char *privkey, size_t privkeylen) {
|
||||
unsigned char c[32] = {0};
|
||||
const unsigned char *end = privkey + privkeylen;
|
||||
int lenb = 0;
|
||||
|
@ -94,9 +94,9 @@ static int secp256k1_eckey_privkey_parse(secp256k1_scalar_t *key, const unsigned
|
|||
return !overflow;
|
||||
}
|
||||
|
||||
static int secp256k1_eckey_privkey_serialize(const secp256k1_ecmult_gen_context_t *ctx, unsigned char *privkey, size_t *privkeylen, const secp256k1_scalar_t *key, unsigned int flags) {
|
||||
secp256k1_gej_t rp;
|
||||
secp256k1_ge_t r;
|
||||
static int secp256k1_eckey_privkey_serialize(const secp256k1_ecmult_gen_context *ctx, unsigned char *privkey, size_t *privkeylen, const secp256k1_scalar *key, unsigned int flags) {
|
||||
secp256k1_gej rp;
|
||||
secp256k1_ge r;
|
||||
size_t pubkeylen = 0;
|
||||
secp256k1_ecmult_gen(ctx, &rp, key);
|
||||
secp256k1_ge_set_gej(&r, &rp);
|
||||
|
@ -154,7 +154,7 @@ static int secp256k1_eckey_privkey_serialize(const secp256k1_ecmult_gen_context_
|
|||
return 1;
|
||||
}
|
||||
|
||||
static int secp256k1_eckey_privkey_tweak_add(secp256k1_scalar_t *key, const secp256k1_scalar_t *tweak) {
|
||||
static int secp256k1_eckey_privkey_tweak_add(secp256k1_scalar *key, const secp256k1_scalar *tweak) {
|
||||
secp256k1_scalar_add(key, key, tweak);
|
||||
if (secp256k1_scalar_is_zero(key)) {
|
||||
return 0;
|
||||
|
@ -162,9 +162,9 @@ static int secp256k1_eckey_privkey_tweak_add(secp256k1_scalar_t *key, const secp
|
|||
return 1;
|
||||
}
|
||||
|
||||
static int secp256k1_eckey_pubkey_tweak_add(const secp256k1_ecmult_context_t *ctx, secp256k1_ge_t *key, const secp256k1_scalar_t *tweak) {
|
||||
secp256k1_gej_t pt;
|
||||
secp256k1_scalar_t one;
|
||||
static int secp256k1_eckey_pubkey_tweak_add(const secp256k1_ecmult_context *ctx, secp256k1_ge *key, const secp256k1_scalar *tweak) {
|
||||
secp256k1_gej pt;
|
||||
secp256k1_scalar one;
|
||||
secp256k1_gej_set_ge(&pt, key);
|
||||
secp256k1_scalar_set_int(&one, 1);
|
||||
secp256k1_ecmult(ctx, &pt, &pt, &one, tweak);
|
||||
|
@ -176,7 +176,7 @@ static int secp256k1_eckey_pubkey_tweak_add(const secp256k1_ecmult_context_t *ct
|
|||
return 1;
|
||||
}
|
||||
|
||||
static int secp256k1_eckey_privkey_tweak_mul(secp256k1_scalar_t *key, const secp256k1_scalar_t *tweak) {
|
||||
static int secp256k1_eckey_privkey_tweak_mul(secp256k1_scalar *key, const secp256k1_scalar *tweak) {
|
||||
if (secp256k1_scalar_is_zero(tweak)) {
|
||||
return 0;
|
||||
}
|
||||
|
@ -185,9 +185,9 @@ static int secp256k1_eckey_privkey_tweak_mul(secp256k1_scalar_t *key, const secp
|
|||
return 1;
|
||||
}
|
||||
|
||||
static int secp256k1_eckey_pubkey_tweak_mul(const secp256k1_ecmult_context_t *ctx, secp256k1_ge_t *key, const secp256k1_scalar_t *tweak) {
|
||||
secp256k1_scalar_t zero;
|
||||
secp256k1_gej_t pt;
|
||||
static int secp256k1_eckey_pubkey_tweak_mul(const secp256k1_ecmult_context *ctx, secp256k1_ge *key, const secp256k1_scalar *tweak) {
|
||||
secp256k1_scalar zero;
|
||||
secp256k1_gej pt;
|
||||
if (secp256k1_scalar_is_zero(tweak)) {
|
||||
return 0;
|
||||
}
|
||||
|
|
20
src/ecmult.h
20
src/ecmult.h
|
@ -12,20 +12,20 @@
|
|||
|
||||
typedef struct {
|
||||
/* For accelerating the computation of a*P + b*G: */
|
||||
secp256k1_ge_storage_t (*pre_g)[]; /* odd multiples of the generator */
|
||||
secp256k1_ge_storage (*pre_g)[]; /* odd multiples of the generator */
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
secp256k1_ge_storage_t (*pre_g_128)[]; /* odd multiples of 2^128*generator */
|
||||
secp256k1_ge_storage (*pre_g_128)[]; /* odd multiples of 2^128*generator */
|
||||
#endif
|
||||
} secp256k1_ecmult_context_t;
|
||||
} secp256k1_ecmult_context;
|
||||
|
||||
static void secp256k1_ecmult_context_init(secp256k1_ecmult_context_t *ctx);
|
||||
static void secp256k1_ecmult_context_build(secp256k1_ecmult_context_t *ctx, const callback_t *cb);
|
||||
static void secp256k1_ecmult_context_clone(secp256k1_ecmult_context_t *dst,
|
||||
const secp256k1_ecmult_context_t *src, const callback_t *cb);
|
||||
static void secp256k1_ecmult_context_clear(secp256k1_ecmult_context_t *ctx);
|
||||
static int secp256k1_ecmult_context_is_built(const secp256k1_ecmult_context_t *ctx);
|
||||
static void secp256k1_ecmult_context_init(secp256k1_ecmult_context *ctx);
|
||||
static void secp256k1_ecmult_context_build(secp256k1_ecmult_context *ctx, const secp256k1_callback *cb);
|
||||
static void secp256k1_ecmult_context_clone(secp256k1_ecmult_context *dst,
|
||||
const secp256k1_ecmult_context *src, const secp256k1_callback *cb);
|
||||
static void secp256k1_ecmult_context_clear(secp256k1_ecmult_context *ctx);
|
||||
static int secp256k1_ecmult_context_is_built(const secp256k1_ecmult_context *ctx);
|
||||
|
||||
/** Double multiply: R = na*A + ng*G */
|
||||
static void secp256k1_ecmult(const secp256k1_ecmult_context_t *ctx, secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_scalar_t *na, const secp256k1_scalar_t *ng);
|
||||
static void secp256k1_ecmult(const secp256k1_ecmult_context *ctx, secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng);
|
||||
|
||||
#endif
|
||||
|
|
|
@ -10,6 +10,6 @@
|
|||
#include "scalar.h"
|
||||
#include "group.h"
|
||||
|
||||
static void secp256k1_ecmult_const(secp256k1_gej_t *r, const secp256k1_ge_t *a, const secp256k1_scalar_t *q);
|
||||
static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *q);
|
||||
|
||||
#endif
|
||||
|
|
|
@ -24,7 +24,7 @@
|
|||
int m; \
|
||||
int abs_n = (n) * (((n) > 0) * 2 - 1); \
|
||||
int idx_n = abs_n / 2; \
|
||||
secp256k1_fe_t neg_y; \
|
||||
secp256k1_fe neg_y; \
|
||||
VERIFY_CHECK(((n) & 1) == 1); \
|
||||
VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \
|
||||
VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \
|
||||
|
@ -54,7 +54,7 @@
|
|||
*
|
||||
* Numbers reference steps of `Algorithm SPA-resistant Width-w NAF with Odd Scalar` on pp. 335
|
||||
*/
|
||||
static int secp256k1_wnaf_const(int *wnaf, secp256k1_scalar_t s, int w) {
|
||||
static int secp256k1_wnaf_const(int *wnaf, secp256k1_scalar s, int w) {
|
||||
int global_sign = 1;
|
||||
int skew = 0;
|
||||
int word = 0;
|
||||
|
@ -74,7 +74,7 @@ static int secp256k1_wnaf_const(int *wnaf, secp256k1_scalar_t s, int w) {
|
|||
/* We add 1 to even numbers, 2 to odd ones, noting that negation flips parity */
|
||||
int bit = flip ^ (s.d[0] & 1);
|
||||
/* We check for negative one, since adding 2 to it will cause an overflow */
|
||||
secp256k1_scalar_t neg_s;
|
||||
secp256k1_scalar neg_s;
|
||||
int not_neg_one;
|
||||
secp256k1_scalar_negate(&neg_s, &s);
|
||||
not_neg_one = !secp256k1_scalar_is_one(&neg_s);
|
||||
|
@ -120,24 +120,24 @@ static int secp256k1_wnaf_const(int *wnaf, secp256k1_scalar_t s, int w) {
|
|||
}
|
||||
|
||||
|
||||
static void secp256k1_ecmult_const(secp256k1_gej_t *r, const secp256k1_ge_t *a, const secp256k1_scalar_t *scalar) {
|
||||
secp256k1_ge_t pre_a[ECMULT_TABLE_SIZE(WINDOW_A)];
|
||||
secp256k1_ge_t tmpa;
|
||||
secp256k1_fe_t Z;
|
||||
static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *scalar) {
|
||||
secp256k1_ge pre_a[ECMULT_TABLE_SIZE(WINDOW_A)];
|
||||
secp256k1_ge tmpa;
|
||||
secp256k1_fe Z;
|
||||
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
secp256k1_ge_t pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)];
|
||||
secp256k1_ge pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)];
|
||||
int wnaf_1[1 + WNAF_SIZE(WINDOW_A - 1)];
|
||||
int wnaf_lam[1 + WNAF_SIZE(WINDOW_A - 1)];
|
||||
int skew_1;
|
||||
int skew_lam;
|
||||
secp256k1_scalar_t q_1, q_lam;
|
||||
secp256k1_scalar q_1, q_lam;
|
||||
#else
|
||||
int wnaf[1 + WNAF_SIZE(WINDOW_A - 1)];
|
||||
#endif
|
||||
|
||||
int i;
|
||||
secp256k1_scalar_t sc = *scalar;
|
||||
secp256k1_scalar sc = *scalar;
|
||||
|
||||
/* build wnaf representation for q. */
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
|
@ -223,11 +223,11 @@ static void secp256k1_ecmult_const(secp256k1_gej_t *r, const secp256k1_ge_t *a,
|
|||
#ifdef USE_ENDOMORPHISM
|
||||
{
|
||||
/* Correct for wNAF skew */
|
||||
secp256k1_ge_t correction = *a;
|
||||
secp256k1_ge_storage_t correction_1_stor;
|
||||
secp256k1_ge_storage_t correction_lam_stor;
|
||||
secp256k1_ge_storage_t a2_stor;
|
||||
secp256k1_gej_t tmpj;
|
||||
secp256k1_ge correction = *a;
|
||||
secp256k1_ge_storage correction_1_stor;
|
||||
secp256k1_ge_storage correction_lam_stor;
|
||||
secp256k1_ge_storage a2_stor;
|
||||
secp256k1_gej tmpj;
|
||||
secp256k1_gej_set_ge(&tmpj, &correction);
|
||||
secp256k1_gej_double_var(&tmpj, &tmpj, NULL);
|
||||
secp256k1_ge_set_gej(&correction, &tmpj);
|
||||
|
|
|
@ -23,21 +23,21 @@ typedef struct {
|
|||
* None of the resulting prec group elements have a known scalar, and neither do any of
|
||||
* the intermediate sums while computing a*G.
|
||||
*/
|
||||
secp256k1_ge_storage_t (*prec)[64][16]; /* prec[j][i] = 16^j * i * G + U_i */
|
||||
secp256k1_scalar_t blind;
|
||||
secp256k1_gej_t initial;
|
||||
} secp256k1_ecmult_gen_context_t;
|
||||
secp256k1_ge_storage (*prec)[64][16]; /* prec[j][i] = 16^j * i * G + U_i */
|
||||
secp256k1_scalar blind;
|
||||
secp256k1_gej initial;
|
||||
} secp256k1_ecmult_gen_context;
|
||||
|
||||
static void secp256k1_ecmult_gen_context_init(secp256k1_ecmult_gen_context_t* ctx);
|
||||
static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context_t* ctx, const callback_t* cb);
|
||||
static void secp256k1_ecmult_gen_context_clone(secp256k1_ecmult_gen_context_t *dst,
|
||||
const secp256k1_ecmult_gen_context_t* src, const callback_t* cb);
|
||||
static void secp256k1_ecmult_gen_context_clear(secp256k1_ecmult_gen_context_t* ctx);
|
||||
static int secp256k1_ecmult_gen_context_is_built(const secp256k1_ecmult_gen_context_t* ctx);
|
||||
static void secp256k1_ecmult_gen_context_init(secp256k1_ecmult_gen_context* ctx);
|
||||
static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context* ctx, const secp256k1_callback* cb);
|
||||
static void secp256k1_ecmult_gen_context_clone(secp256k1_ecmult_gen_context *dst,
|
||||
const secp256k1_ecmult_gen_context* src, const secp256k1_callback* cb);
|
||||
static void secp256k1_ecmult_gen_context_clear(secp256k1_ecmult_gen_context* ctx);
|
||||
static int secp256k1_ecmult_gen_context_is_built(const secp256k1_ecmult_gen_context* ctx);
|
||||
|
||||
/** Multiply with the generator: R = a*G */
|
||||
static void secp256k1_ecmult_gen(const secp256k1_ecmult_gen_context_t* ctx, secp256k1_gej_t *r, const secp256k1_scalar_t *a);
|
||||
static void secp256k1_ecmult_gen(const secp256k1_ecmult_gen_context* ctx, secp256k1_gej *r, const secp256k1_scalar *a);
|
||||
|
||||
static void secp256k1_ecmult_gen_blind(secp256k1_ecmult_gen_context_t *ctx, const unsigned char *seed32);
|
||||
static void secp256k1_ecmult_gen_blind(secp256k1_ecmult_gen_context *ctx, const unsigned char *seed32);
|
||||
|
||||
#endif
|
||||
|
|
|
@ -14,15 +14,15 @@
|
|||
#ifdef USE_ECMULT_STATIC_PRECOMPUTATION
|
||||
#include "ecmult_static_context.h"
|
||||
#endif
|
||||
static void secp256k1_ecmult_gen_context_init(secp256k1_ecmult_gen_context_t *ctx) {
|
||||
static void secp256k1_ecmult_gen_context_init(secp256k1_ecmult_gen_context *ctx) {
|
||||
ctx->prec = NULL;
|
||||
}
|
||||
|
||||
static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context_t *ctx, const callback_t* cb) {
|
||||
static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context *ctx, const secp256k1_callback* cb) {
|
||||
#ifndef USE_ECMULT_STATIC_PRECOMPUTATION
|
||||
secp256k1_ge_t prec[1024];
|
||||
secp256k1_gej_t gj;
|
||||
secp256k1_gej_t nums_gej;
|
||||
secp256k1_ge prec[1024];
|
||||
secp256k1_gej gj;
|
||||
secp256k1_gej nums_gej;
|
||||
int i, j;
|
||||
#endif
|
||||
|
||||
|
@ -30,7 +30,7 @@ static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context_t *c
|
|||
return;
|
||||
}
|
||||
#ifndef USE_ECMULT_STATIC_PRECOMPUTATION
|
||||
ctx->prec = (secp256k1_ge_storage_t (*)[64][16])checked_malloc(cb, sizeof(*ctx->prec));
|
||||
ctx->prec = (secp256k1_ge_storage (*)[64][16])checked_malloc(cb, sizeof(*ctx->prec));
|
||||
|
||||
/* get the generator */
|
||||
secp256k1_gej_set_ge(&gj, &secp256k1_ge_const_g);
|
||||
|
@ -38,8 +38,8 @@ static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context_t *c
|
|||
/* Construct a group element with no known corresponding scalar (nothing up my sleeve). */
|
||||
{
|
||||
static const unsigned char nums_b32[33] = "The scalar for this x is unknown";
|
||||
secp256k1_fe_t nums_x;
|
||||
secp256k1_ge_t nums_ge;
|
||||
secp256k1_fe nums_x;
|
||||
secp256k1_ge nums_ge;
|
||||
VERIFY_CHECK(secp256k1_fe_set_b32(&nums_x, nums_b32));
|
||||
VERIFY_CHECK(secp256k1_ge_set_xo_var(&nums_ge, &nums_x, 0));
|
||||
secp256k1_gej_set_ge(&nums_gej, &nums_ge);
|
||||
|
@ -49,9 +49,9 @@ static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context_t *c
|
|||
|
||||
/* compute prec. */
|
||||
{
|
||||
secp256k1_gej_t precj[1024]; /* Jacobian versions of prec. */
|
||||
secp256k1_gej_t gbase;
|
||||
secp256k1_gej_t numsbase;
|
||||
secp256k1_gej precj[1024]; /* Jacobian versions of prec. */
|
||||
secp256k1_gej gbase;
|
||||
secp256k1_gej numsbase;
|
||||
gbase = gj; /* 16^j * G */
|
||||
numsbase = nums_gej; /* 2^j * nums. */
|
||||
for (j = 0; j < 64; j++) {
|
||||
|
@ -81,22 +81,22 @@ static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context_t *c
|
|||
}
|
||||
#else
|
||||
(void)cb;
|
||||
ctx->prec = (secp256k1_ge_storage_t (*)[64][16])secp256k1_ecmult_static_context;
|
||||
ctx->prec = (secp256k1_ge_storage (*)[64][16])secp256k1_ecmult_static_context;
|
||||
#endif
|
||||
secp256k1_ecmult_gen_blind(ctx, NULL);
|
||||
}
|
||||
|
||||
static int secp256k1_ecmult_gen_context_is_built(const secp256k1_ecmult_gen_context_t* ctx) {
|
||||
static int secp256k1_ecmult_gen_context_is_built(const secp256k1_ecmult_gen_context* ctx) {
|
||||
return ctx->prec != NULL;
|
||||
}
|
||||
|
||||
static void secp256k1_ecmult_gen_context_clone(secp256k1_ecmult_gen_context_t *dst,
|
||||
const secp256k1_ecmult_gen_context_t *src, const callback_t* cb) {
|
||||
static void secp256k1_ecmult_gen_context_clone(secp256k1_ecmult_gen_context *dst,
|
||||
const secp256k1_ecmult_gen_context *src, const secp256k1_callback* cb) {
|
||||
if (src->prec == NULL) {
|
||||
dst->prec = NULL;
|
||||
} else {
|
||||
#ifndef USE_ECMULT_STATIC_PRECOMPUTATION
|
||||
dst->prec = (secp256k1_ge_storage_t (*)[64][16])checked_malloc(cb, sizeof(*dst->prec));
|
||||
dst->prec = (secp256k1_ge_storage (*)[64][16])checked_malloc(cb, sizeof(*dst->prec));
|
||||
memcpy(dst->prec, src->prec, sizeof(*dst->prec));
|
||||
#else
|
||||
(void)cb;
|
||||
|
@ -107,7 +107,7 @@ static void secp256k1_ecmult_gen_context_clone(secp256k1_ecmult_gen_context_t *d
|
|||
}
|
||||
}
|
||||
|
||||
static void secp256k1_ecmult_gen_context_clear(secp256k1_ecmult_gen_context_t *ctx) {
|
||||
static void secp256k1_ecmult_gen_context_clear(secp256k1_ecmult_gen_context *ctx) {
|
||||
#ifndef USE_ECMULT_STATIC_PRECOMPUTATION
|
||||
free(ctx->prec);
|
||||
#endif
|
||||
|
@ -116,10 +116,10 @@ static void secp256k1_ecmult_gen_context_clear(secp256k1_ecmult_gen_context_t *c
|
|||
ctx->prec = NULL;
|
||||
}
|
||||
|
||||
static void secp256k1_ecmult_gen(const secp256k1_ecmult_gen_context_t *ctx, secp256k1_gej_t *r, const secp256k1_scalar_t *gn) {
|
||||
secp256k1_ge_t add;
|
||||
secp256k1_ge_storage_t adds;
|
||||
secp256k1_scalar_t gnb;
|
||||
static void secp256k1_ecmult_gen(const secp256k1_ecmult_gen_context *ctx, secp256k1_gej *r, const secp256k1_scalar *gn) {
|
||||
secp256k1_ge add;
|
||||
secp256k1_ge_storage adds;
|
||||
secp256k1_scalar gnb;
|
||||
int bits;
|
||||
int i, j;
|
||||
memset(&adds, 0, sizeof(adds));
|
||||
|
@ -151,10 +151,10 @@ static void secp256k1_ecmult_gen(const secp256k1_ecmult_gen_context_t *ctx, secp
|
|||
}
|
||||
|
||||
/* Setup blinding values for secp256k1_ecmult_gen. */
|
||||
static void secp256k1_ecmult_gen_blind(secp256k1_ecmult_gen_context_t *ctx, const unsigned char *seed32) {
|
||||
secp256k1_scalar_t b;
|
||||
secp256k1_gej_t gb;
|
||||
secp256k1_fe_t s;
|
||||
static void secp256k1_ecmult_gen_blind(secp256k1_ecmult_gen_context *ctx, const unsigned char *seed32) {
|
||||
secp256k1_scalar b;
|
||||
secp256k1_gej gb;
|
||||
secp256k1_fe s;
|
||||
unsigned char nonce32[32];
|
||||
secp256k1_rfc6979_hmac_sha256_t rng;
|
||||
int retry;
|
||||
|
|
|
@ -32,9 +32,9 @@
|
|||
* contain prej[0].z / a.z. The other zr[i] values = prej[i].z / prej[i-1].z.
|
||||
* Prej's Z values are undefined, except for the last value.
|
||||
*/
|
||||
static void secp256k1_ecmult_odd_multiples_table(int n, secp256k1_gej_t *prej, secp256k1_fe_t *zr, const secp256k1_gej_t *a) {
|
||||
secp256k1_gej_t d;
|
||||
secp256k1_ge_t a_ge, d_ge;
|
||||
static void secp256k1_ecmult_odd_multiples_table(int n, secp256k1_gej *prej, secp256k1_fe *zr, const secp256k1_gej *a) {
|
||||
secp256k1_gej d;
|
||||
secp256k1_ge a_ge, d_ge;
|
||||
int i;
|
||||
|
||||
VERIFY_CHECK(!a->infinity);
|
||||
|
@ -82,9 +82,9 @@ static void secp256k1_ecmult_odd_multiples_table(int n, secp256k1_gej_t *prej, s
|
|||
* and for G using the second (which requires an inverse, but it only needs to
|
||||
* happen once).
|
||||
*/
|
||||
static void secp256k1_ecmult_odd_multiples_table_globalz_windowa(secp256k1_ge_t *pre, secp256k1_fe_t *globalz, const secp256k1_gej_t *a) {
|
||||
secp256k1_gej_t prej[ECMULT_TABLE_SIZE(WINDOW_A)];
|
||||
secp256k1_fe_t zr[ECMULT_TABLE_SIZE(WINDOW_A)];
|
||||
static void secp256k1_ecmult_odd_multiples_table_globalz_windowa(secp256k1_ge *pre, secp256k1_fe *globalz, const secp256k1_gej *a) {
|
||||
secp256k1_gej prej[ECMULT_TABLE_SIZE(WINDOW_A)];
|
||||
secp256k1_fe zr[ECMULT_TABLE_SIZE(WINDOW_A)];
|
||||
|
||||
/* Compute the odd multiples in Jacobian form. */
|
||||
secp256k1_ecmult_odd_multiples_table(ECMULT_TABLE_SIZE(WINDOW_A), prej, zr, a);
|
||||
|
@ -92,10 +92,10 @@ static void secp256k1_ecmult_odd_multiples_table_globalz_windowa(secp256k1_ge_t
|
|||
secp256k1_ge_globalz_set_table_gej(ECMULT_TABLE_SIZE(WINDOW_A), pre, globalz, prej, zr);
|
||||
}
|
||||
|
||||
static void secp256k1_ecmult_odd_multiples_table_storage_var(int n, secp256k1_ge_storage_t *pre, const secp256k1_gej_t *a, const callback_t *cb) {
|
||||
secp256k1_gej_t *prej = (secp256k1_gej_t*)checked_malloc(cb, sizeof(secp256k1_gej_t) * n);
|
||||
secp256k1_ge_t *prea = (secp256k1_ge_t*)checked_malloc(cb, sizeof(secp256k1_ge_t) * n);
|
||||
secp256k1_fe_t *zr = (secp256k1_fe_t*)checked_malloc(cb, sizeof(secp256k1_fe_t) * n);
|
||||
static void secp256k1_ecmult_odd_multiples_table_storage_var(int n, secp256k1_ge_storage *pre, const secp256k1_gej *a, const secp256k1_callback *cb) {
|
||||
secp256k1_gej *prej = (secp256k1_gej*)checked_malloc(cb, sizeof(secp256k1_gej) * n);
|
||||
secp256k1_ge *prea = (secp256k1_ge*)checked_malloc(cb, sizeof(secp256k1_ge) * n);
|
||||
secp256k1_fe *zr = (secp256k1_fe*)checked_malloc(cb, sizeof(secp256k1_fe) * n);
|
||||
int i;
|
||||
|
||||
/* Compute the odd multiples in Jacobian form. */
|
||||
|
@ -137,15 +137,15 @@ static void secp256k1_ecmult_odd_multiples_table_storage_var(int n, secp256k1_ge
|
|||
} \
|
||||
} while(0)
|
||||
|
||||
static void secp256k1_ecmult_context_init(secp256k1_ecmult_context_t *ctx) {
|
||||
static void secp256k1_ecmult_context_init(secp256k1_ecmult_context *ctx) {
|
||||
ctx->pre_g = NULL;
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
ctx->pre_g_128 = NULL;
|
||||
#endif
|
||||
}
|
||||
|
||||
static void secp256k1_ecmult_context_build(secp256k1_ecmult_context_t *ctx, const callback_t *cb) {
|
||||
secp256k1_gej_t gj;
|
||||
static void secp256k1_ecmult_context_build(secp256k1_ecmult_context *ctx, const secp256k1_callback *cb) {
|
||||
secp256k1_gej gj;
|
||||
|
||||
if (ctx->pre_g != NULL) {
|
||||
return;
|
||||
|
@ -154,17 +154,17 @@ static void secp256k1_ecmult_context_build(secp256k1_ecmult_context_t *ctx, cons
|
|||
/* get the generator */
|
||||
secp256k1_gej_set_ge(&gj, &secp256k1_ge_const_g);
|
||||
|
||||
ctx->pre_g = (secp256k1_ge_storage_t (*)[])checked_malloc(cb, sizeof((*ctx->pre_g)[0]) * ECMULT_TABLE_SIZE(WINDOW_G));
|
||||
ctx->pre_g = (secp256k1_ge_storage (*)[])checked_malloc(cb, sizeof((*ctx->pre_g)[0]) * ECMULT_TABLE_SIZE(WINDOW_G));
|
||||
|
||||
/* precompute the tables with odd multiples */
|
||||
secp256k1_ecmult_odd_multiples_table_storage_var(ECMULT_TABLE_SIZE(WINDOW_G), *ctx->pre_g, &gj, cb);
|
||||
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
{
|
||||
secp256k1_gej_t g_128j;
|
||||
secp256k1_gej g_128j;
|
||||
int i;
|
||||
|
||||
ctx->pre_g_128 = (secp256k1_ge_storage_t (*)[])checked_malloc(cb, sizeof((*ctx->pre_g_128)[0]) * ECMULT_TABLE_SIZE(WINDOW_G));
|
||||
ctx->pre_g_128 = (secp256k1_ge_storage (*)[])checked_malloc(cb, sizeof((*ctx->pre_g_128)[0]) * ECMULT_TABLE_SIZE(WINDOW_G));
|
||||
|
||||
/* calculate 2^128*generator */
|
||||
g_128j = gj;
|
||||
|
@ -176,13 +176,13 @@ static void secp256k1_ecmult_context_build(secp256k1_ecmult_context_t *ctx, cons
|
|||
#endif
|
||||
}
|
||||
|
||||
static void secp256k1_ecmult_context_clone(secp256k1_ecmult_context_t *dst,
|
||||
const secp256k1_ecmult_context_t *src, const callback_t *cb) {
|
||||
static void secp256k1_ecmult_context_clone(secp256k1_ecmult_context *dst,
|
||||
const secp256k1_ecmult_context *src, const secp256k1_callback *cb) {
|
||||
if (src->pre_g == NULL) {
|
||||
dst->pre_g = NULL;
|
||||
} else {
|
||||
size_t size = sizeof((*dst->pre_g)[0]) * ECMULT_TABLE_SIZE(WINDOW_G);
|
||||
dst->pre_g = (secp256k1_ge_storage_t (*)[])checked_malloc(cb, size);
|
||||
dst->pre_g = (secp256k1_ge_storage (*)[])checked_malloc(cb, size);
|
||||
memcpy(dst->pre_g, src->pre_g, size);
|
||||
}
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
|
@ -190,17 +190,17 @@ static void secp256k1_ecmult_context_clone(secp256k1_ecmult_context_t *dst,
|
|||
dst->pre_g_128 = NULL;
|
||||
} else {
|
||||
size_t size = sizeof((*dst->pre_g_128)[0]) * ECMULT_TABLE_SIZE(WINDOW_G);
|
||||
dst->pre_g_128 = (secp256k1_ge_storage_t (*)[])checked_malloc(cb, size);
|
||||
dst->pre_g_128 = (secp256k1_ge_storage (*)[])checked_malloc(cb, size);
|
||||
memcpy(dst->pre_g_128, src->pre_g_128, size);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
static int secp256k1_ecmult_context_is_built(const secp256k1_ecmult_context_t *ctx) {
|
||||
static int secp256k1_ecmult_context_is_built(const secp256k1_ecmult_context *ctx) {
|
||||
return ctx->pre_g != NULL;
|
||||
}
|
||||
|
||||
static void secp256k1_ecmult_context_clear(secp256k1_ecmult_context_t *ctx) {
|
||||
static void secp256k1_ecmult_context_clear(secp256k1_ecmult_context *ctx) {
|
||||
free(ctx->pre_g);
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
free(ctx->pre_g_128);
|
||||
|
@ -215,8 +215,8 @@ static void secp256k1_ecmult_context_clear(secp256k1_ecmult_context_t *ctx) {
|
|||
* - the number of set values in wnaf is returned. This number is at most 256, and at most one more
|
||||
* than the number of bits in the (absolute value) of the input.
|
||||
*/
|
||||
static int secp256k1_ecmult_wnaf(int *wnaf, int len, const secp256k1_scalar_t *a, int w) {
|
||||
secp256k1_scalar_t s = *a;
|
||||
static int secp256k1_ecmult_wnaf(int *wnaf, int len, const secp256k1_scalar *a, int w) {
|
||||
secp256k1_scalar s = *a;
|
||||
int last_set_bit = -1;
|
||||
int bit = 0;
|
||||
int sign = 1;
|
||||
|
@ -266,15 +266,15 @@ static int secp256k1_ecmult_wnaf(int *wnaf, int len, const secp256k1_scalar_t *a
|
|||
return last_set_bit + 1;
|
||||
}
|
||||
|
||||
static void secp256k1_ecmult(const secp256k1_ecmult_context_t *ctx, secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_scalar_t *na, const secp256k1_scalar_t *ng) {
|
||||
secp256k1_ge_t pre_a[ECMULT_TABLE_SIZE(WINDOW_A)];
|
||||
secp256k1_ge_t tmpa;
|
||||
secp256k1_fe_t Z;
|
||||
static void secp256k1_ecmult(const secp256k1_ecmult_context *ctx, secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng) {
|
||||
secp256k1_ge pre_a[ECMULT_TABLE_SIZE(WINDOW_A)];
|
||||
secp256k1_ge tmpa;
|
||||
secp256k1_fe Z;
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
secp256k1_ge_t pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)];
|
||||
secp256k1_scalar_t na_1, na_lam;
|
||||
secp256k1_ge pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)];
|
||||
secp256k1_scalar na_1, na_lam;
|
||||
/* Splitted G factors. */
|
||||
secp256k1_scalar_t ng_1, ng_128;
|
||||
secp256k1_scalar ng_1, ng_128;
|
||||
int wnaf_na_1[130];
|
||||
int wnaf_na_lam[130];
|
||||
int bits_na_1;
|
||||
|
|
50
src/field.h
50
src/field.h
|
@ -31,89 +31,89 @@
|
|||
#endif
|
||||
|
||||
/** Normalize a field element. */
|
||||
static void secp256k1_fe_normalize(secp256k1_fe_t *r);
|
||||
static void secp256k1_fe_normalize(secp256k1_fe *r);
|
||||
|
||||
/** Weakly normalize a field element: reduce it magnitude to 1, but don't fully normalize. */
|
||||
static void secp256k1_fe_normalize_weak(secp256k1_fe_t *r);
|
||||
static void secp256k1_fe_normalize_weak(secp256k1_fe *r);
|
||||
|
||||
/** Normalize a field element, without constant-time guarantee. */
|
||||
static void secp256k1_fe_normalize_var(secp256k1_fe_t *r);
|
||||
static void secp256k1_fe_normalize_var(secp256k1_fe *r);
|
||||
|
||||
/** Verify whether a field element represents zero i.e. would normalize to a zero value. The field
|
||||
* implementation may optionally normalize the input, but this should not be relied upon. */
|
||||
static int secp256k1_fe_normalizes_to_zero(secp256k1_fe_t *r);
|
||||
static int secp256k1_fe_normalizes_to_zero(secp256k1_fe *r);
|
||||
|
||||
/** Verify whether a field element represents zero i.e. would normalize to a zero value. The field
|
||||
* implementation may optionally normalize the input, but this should not be relied upon. */
|
||||
static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe_t *r);
|
||||
static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe *r);
|
||||
|
||||
/** Set a field element equal to a small integer. Resulting field element is normalized. */
|
||||
static void secp256k1_fe_set_int(secp256k1_fe_t *r, int a);
|
||||
static void secp256k1_fe_set_int(secp256k1_fe *r, int a);
|
||||
|
||||
/** Verify whether a field element is zero. Requires the input to be normalized. */
|
||||
static int secp256k1_fe_is_zero(const secp256k1_fe_t *a);
|
||||
static int secp256k1_fe_is_zero(const secp256k1_fe *a);
|
||||
|
||||
/** Check the "oddness" of a field element. Requires the input to be normalized. */
|
||||
static int secp256k1_fe_is_odd(const secp256k1_fe_t *a);
|
||||
static int secp256k1_fe_is_odd(const secp256k1_fe *a);
|
||||
|
||||
/** Compare two field elements. Requires magnitude-1 inputs. */
|
||||
static int secp256k1_fe_equal_var(const secp256k1_fe_t *a, const secp256k1_fe_t *b);
|
||||
static int secp256k1_fe_equal_var(const secp256k1_fe *a, const secp256k1_fe *b);
|
||||
|
||||
/** Compare two field elements. Requires both inputs to be normalized */
|
||||
static int secp256k1_fe_cmp_var(const secp256k1_fe_t *a, const secp256k1_fe_t *b);
|
||||
static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b);
|
||||
|
||||
/** Set a field element equal to 32-byte big endian value. If successful, the resulting field element is normalized. */
|
||||
static int secp256k1_fe_set_b32(secp256k1_fe_t *r, const unsigned char *a);
|
||||
static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a);
|
||||
|
||||
/** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */
|
||||
static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe_t *a);
|
||||
static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a);
|
||||
|
||||
/** Set a field element equal to the additive inverse of another. Takes a maximum magnitude of the input
|
||||
* as an argument. The magnitude of the output is one higher. */
|
||||
static void secp256k1_fe_negate(secp256k1_fe_t *r, const secp256k1_fe_t *a, int m);
|
||||
static void secp256k1_fe_negate(secp256k1_fe *r, const secp256k1_fe *a, int m);
|
||||
|
||||
/** Multiplies the passed field element with a small integer constant. Multiplies the magnitude by that
|
||||
* small integer. */
|
||||
static void secp256k1_fe_mul_int(secp256k1_fe_t *r, int a);
|
||||
static void secp256k1_fe_mul_int(secp256k1_fe *r, int a);
|
||||
|
||||
/** Adds a field element to another. The result has the sum of the inputs' magnitudes as magnitude. */
|
||||
static void secp256k1_fe_add(secp256k1_fe_t *r, const secp256k1_fe_t *a);
|
||||
static void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_fe *a);
|
||||
|
||||
/** Sets a field element to be the product of two others. Requires the inputs' magnitudes to be at most 8.
|
||||
* The output magnitude is 1 (but not guaranteed to be normalized). */
|
||||
static void secp256k1_fe_mul(secp256k1_fe_t *r, const secp256k1_fe_t *a, const secp256k1_fe_t * SECP256K1_RESTRICT b);
|
||||
static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b);
|
||||
|
||||
/** Sets a field element to be the square of another. Requires the input's magnitude to be at most 8.
|
||||
* The output magnitude is 1 (but not guaranteed to be normalized). */
|
||||
static void secp256k1_fe_sqr(secp256k1_fe_t *r, const secp256k1_fe_t *a);
|
||||
static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a);
|
||||
|
||||
/** Sets a field element to be the (modular) square root (if any exist) of another. Requires the
|
||||
* input's magnitude to be at most 8. The output magnitude is 1 (but not guaranteed to be
|
||||
* normalized). Return value indicates whether a square root was found. */
|
||||
static int secp256k1_fe_sqrt_var(secp256k1_fe_t *r, const secp256k1_fe_t *a);
|
||||
static int secp256k1_fe_sqrt_var(secp256k1_fe *r, const secp256k1_fe *a);
|
||||
|
||||
/** Sets a field element to be the (modular) inverse of another. Requires the input's magnitude to be
|
||||
* at most 8. The output magnitude is 1 (but not guaranteed to be normalized). */
|
||||
static void secp256k1_fe_inv(secp256k1_fe_t *r, const secp256k1_fe_t *a);
|
||||
static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *a);
|
||||
|
||||
/** Potentially faster version of secp256k1_fe_inv, without constant-time guarantee. */
|
||||
static void secp256k1_fe_inv_var(secp256k1_fe_t *r, const secp256k1_fe_t *a);
|
||||
static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *a);
|
||||
|
||||
/** Calculate the (modular) inverses of a batch of field elements. Requires the inputs' magnitudes to be
|
||||
* at most 8. The output magnitudes are 1 (but not guaranteed to be normalized). The inputs and
|
||||
* outputs must not overlap in memory. */
|
||||
static void secp256k1_fe_inv_all_var(size_t len, secp256k1_fe_t *r, const secp256k1_fe_t *a);
|
||||
static void secp256k1_fe_inv_all_var(size_t len, secp256k1_fe *r, const secp256k1_fe *a);
|
||||
|
||||
/** Convert a field element to the storage type. */
|
||||
static void secp256k1_fe_to_storage(secp256k1_fe_storage_t *r, const secp256k1_fe_t*);
|
||||
static void secp256k1_fe_to_storage(secp256k1_fe_storage *r, const secp256k1_fe*);
|
||||
|
||||
/** Convert a field element back from the storage type. */
|
||||
static void secp256k1_fe_from_storage(secp256k1_fe_t *r, const secp256k1_fe_storage_t*);
|
||||
static void secp256k1_fe_from_storage(secp256k1_fe *r, const secp256k1_fe_storage*);
|
||||
|
||||
/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. */
|
||||
static void secp256k1_fe_storage_cmov(secp256k1_fe_storage_t *r, const secp256k1_fe_storage_t *a, int flag);
|
||||
static void secp256k1_fe_storage_cmov(secp256k1_fe_storage *r, const secp256k1_fe_storage *a, int flag);
|
||||
|
||||
/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. */
|
||||
static void secp256k1_fe_cmov(secp256k1_fe_t *r, const secp256k1_fe_t *a, int flag);
|
||||
static void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag);
|
||||
|
||||
#endif
|
||||
|
|
|
@ -16,7 +16,7 @@ typedef struct {
|
|||
int magnitude;
|
||||
int normalized;
|
||||
#endif
|
||||
} secp256k1_fe_t;
|
||||
} secp256k1_fe;
|
||||
|
||||
/* Unpacks a constant into a overlapping multi-limbed FE element. */
|
||||
#define SECP256K1_FE_CONST_INNER(d7, d6, d5, d4, d3, d2, d1, d0) { \
|
||||
|
@ -40,7 +40,7 @@ typedef struct {
|
|||
|
||||
typedef struct {
|
||||
uint32_t n[8];
|
||||
} secp256k1_fe_storage_t;
|
||||
} secp256k1_fe_storage;
|
||||
|
||||
#define SECP256K1_FE_STORAGE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {{ (d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7) }}
|
||||
#define SECP256K1_FE_STORAGE_CONST_GET(d) d.n[7], d.n[6], d.n[5], d.n[4],d.n[3], d.n[2], d.n[1], d.n[0]
|
||||
|
|
|
@ -14,7 +14,7 @@
|
|||
#include "field.h"
|
||||
|
||||
#ifdef VERIFY
|
||||
static void secp256k1_fe_verify(const secp256k1_fe_t *a) {
|
||||
static void secp256k1_fe_verify(const secp256k1_fe *a) {
|
||||
const uint32_t *d = a->n;
|
||||
int m = a->normalized ? 1 : 2 * a->magnitude, r = 1;
|
||||
r &= (d[0] <= 0x3FFFFFFUL * m);
|
||||
|
@ -41,12 +41,12 @@ static void secp256k1_fe_verify(const secp256k1_fe_t *a) {
|
|||
VERIFY_CHECK(r == 1);
|
||||
}
|
||||
#else
|
||||
static void secp256k1_fe_verify(const secp256k1_fe_t *a) {
|
||||
static void secp256k1_fe_verify(const secp256k1_fe *a) {
|
||||
(void)a;
|
||||
}
|
||||
#endif
|
||||
|
||||
static void secp256k1_fe_normalize(secp256k1_fe_t *r) {
|
||||
static void secp256k1_fe_normalize(secp256k1_fe *r) {
|
||||
uint32_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4],
|
||||
t5 = r->n[5], t6 = r->n[6], t7 = r->n[7], t8 = r->n[8], t9 = r->n[9];
|
||||
|
||||
|
@ -101,7 +101,7 @@ static void secp256k1_fe_normalize(secp256k1_fe_t *r) {
|
|||
#endif
|
||||
}
|
||||
|
||||
static void secp256k1_fe_normalize_weak(secp256k1_fe_t *r) {
|
||||
static void secp256k1_fe_normalize_weak(secp256k1_fe *r) {
|
||||
uint32_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4],
|
||||
t5 = r->n[5], t6 = r->n[6], t7 = r->n[7], t8 = r->n[8], t9 = r->n[9];
|
||||
|
||||
|
@ -132,7 +132,7 @@ static void secp256k1_fe_normalize_weak(secp256k1_fe_t *r) {
|
|||
#endif
|
||||
}
|
||||
|
||||
static void secp256k1_fe_normalize_var(secp256k1_fe_t *r) {
|
||||
static void secp256k1_fe_normalize_var(secp256k1_fe *r) {
|
||||
uint32_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4],
|
||||
t5 = r->n[5], t6 = r->n[6], t7 = r->n[7], t8 = r->n[8], t9 = r->n[9];
|
||||
|
||||
|
@ -188,7 +188,7 @@ static void secp256k1_fe_normalize_var(secp256k1_fe_t *r) {
|
|||
#endif
|
||||
}
|
||||
|
||||
static int secp256k1_fe_normalizes_to_zero(secp256k1_fe_t *r) {
|
||||
static int secp256k1_fe_normalizes_to_zero(secp256k1_fe *r) {
|
||||
uint32_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4],
|
||||
t5 = r->n[5], t6 = r->n[6], t7 = r->n[7], t8 = r->n[8], t9 = r->n[9];
|
||||
|
||||
|
@ -217,7 +217,7 @@ static int secp256k1_fe_normalizes_to_zero(secp256k1_fe_t *r) {
|
|||
return (z0 == 0) | (z1 == 0x3FFFFFFUL);
|
||||
}
|
||||
|
||||
static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe_t *r) {
|
||||
static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe *r) {
|
||||
uint32_t t0, t1, t2, t3, t4, t5, t6, t7, t8, t9;
|
||||
uint32_t z0, z1;
|
||||
uint32_t x;
|
||||
|
@ -269,7 +269,7 @@ static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe_t *r) {
|
|||
return (z0 == 0) | (z1 == 0x3FFFFFFUL);
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static void secp256k1_fe_set_int(secp256k1_fe_t *r, int a) {
|
||||
SECP256K1_INLINE static void secp256k1_fe_set_int(secp256k1_fe *r, int a) {
|
||||
r->n[0] = a;
|
||||
r->n[1] = r->n[2] = r->n[3] = r->n[4] = r->n[5] = r->n[6] = r->n[7] = r->n[8] = r->n[9] = 0;
|
||||
#ifdef VERIFY
|
||||
|
@ -279,7 +279,7 @@ SECP256K1_INLINE static void secp256k1_fe_set_int(secp256k1_fe_t *r, int a) {
|
|||
#endif
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static int secp256k1_fe_is_zero(const secp256k1_fe_t *a) {
|
||||
SECP256K1_INLINE static int secp256k1_fe_is_zero(const secp256k1_fe *a) {
|
||||
const uint32_t *t = a->n;
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(a->normalized);
|
||||
|
@ -288,7 +288,7 @@ SECP256K1_INLINE static int secp256k1_fe_is_zero(const secp256k1_fe_t *a) {
|
|||
return (t[0] | t[1] | t[2] | t[3] | t[4] | t[5] | t[6] | t[7] | t[8] | t[9]) == 0;
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static int secp256k1_fe_is_odd(const secp256k1_fe_t *a) {
|
||||
SECP256K1_INLINE static int secp256k1_fe_is_odd(const secp256k1_fe *a) {
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(a->normalized);
|
||||
secp256k1_fe_verify(a);
|
||||
|
@ -296,7 +296,7 @@ SECP256K1_INLINE static int secp256k1_fe_is_odd(const secp256k1_fe_t *a) {
|
|||
return a->n[0] & 1;
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static void secp256k1_fe_clear(secp256k1_fe_t *a) {
|
||||
SECP256K1_INLINE static void secp256k1_fe_clear(secp256k1_fe *a) {
|
||||
int i;
|
||||
#ifdef VERIFY
|
||||
a->magnitude = 0;
|
||||
|
@ -307,7 +307,7 @@ SECP256K1_INLINE static void secp256k1_fe_clear(secp256k1_fe_t *a) {
|
|||
}
|
||||
}
|
||||
|
||||
static int secp256k1_fe_cmp_var(const secp256k1_fe_t *a, const secp256k1_fe_t *b) {
|
||||
static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b) {
|
||||
int i;
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(a->normalized);
|
||||
|
@ -326,7 +326,7 @@ static int secp256k1_fe_cmp_var(const secp256k1_fe_t *a, const secp256k1_fe_t *b
|
|||
return 0;
|
||||
}
|
||||
|
||||
static int secp256k1_fe_set_b32(secp256k1_fe_t *r, const unsigned char *a) {
|
||||
static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a) {
|
||||
int i;
|
||||
r->n[0] = r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0;
|
||||
r->n[5] = r->n[6] = r->n[7] = r->n[8] = r->n[9] = 0;
|
||||
|
@ -350,7 +350,7 @@ static int secp256k1_fe_set_b32(secp256k1_fe_t *r, const unsigned char *a) {
|
|||
}
|
||||
|
||||
/** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */
|
||||
static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe_t *a) {
|
||||
static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a) {
|
||||
int i;
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(a->normalized);
|
||||
|
@ -368,7 +368,7 @@ static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe_t *a) {
|
|||
}
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static void secp256k1_fe_negate(secp256k1_fe_t *r, const secp256k1_fe_t *a, int m) {
|
||||
SECP256K1_INLINE static void secp256k1_fe_negate(secp256k1_fe *r, const secp256k1_fe *a, int m) {
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(a->magnitude <= m);
|
||||
secp256k1_fe_verify(a);
|
||||
|
@ -390,7 +390,7 @@ SECP256K1_INLINE static void secp256k1_fe_negate(secp256k1_fe_t *r, const secp25
|
|||
#endif
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static void secp256k1_fe_mul_int(secp256k1_fe_t *r, int a) {
|
||||
SECP256K1_INLINE static void secp256k1_fe_mul_int(secp256k1_fe *r, int a) {
|
||||
r->n[0] *= a;
|
||||
r->n[1] *= a;
|
||||
r->n[2] *= a;
|
||||
|
@ -408,7 +408,7 @@ SECP256K1_INLINE static void secp256k1_fe_mul_int(secp256k1_fe_t *r, int a) {
|
|||
#endif
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static void secp256k1_fe_add(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
|
||||
SECP256K1_INLINE static void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_fe *a) {
|
||||
#ifdef VERIFY
|
||||
secp256k1_fe_verify(a);
|
||||
#endif
|
||||
|
@ -1039,7 +1039,7 @@ SECP256K1_INLINE static void secp256k1_fe_sqr_inner(uint32_t *r, const uint32_t
|
|||
}
|
||||
|
||||
|
||||
static void secp256k1_fe_mul(secp256k1_fe_t *r, const secp256k1_fe_t *a, const secp256k1_fe_t * SECP256K1_RESTRICT b) {
|
||||
static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b) {
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(a->magnitude <= 8);
|
||||
VERIFY_CHECK(b->magnitude <= 8);
|
||||
|
@ -1055,7 +1055,7 @@ static void secp256k1_fe_mul(secp256k1_fe_t *r, const secp256k1_fe_t *a, const s
|
|||
#endif
|
||||
}
|
||||
|
||||
static void secp256k1_fe_sqr(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
|
||||
static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a) {
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(a->magnitude <= 8);
|
||||
secp256k1_fe_verify(a);
|
||||
|
@ -1068,7 +1068,7 @@ static void secp256k1_fe_sqr(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
|
|||
#endif
|
||||
}
|
||||
|
||||
static SECP256K1_INLINE void secp256k1_fe_cmov(secp256k1_fe_t *r, const secp256k1_fe_t *a, int flag) {
|
||||
static SECP256K1_INLINE void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag) {
|
||||
uint32_t mask0, mask1;
|
||||
mask0 = flag + ~((uint32_t)0);
|
||||
mask1 = ~mask0;
|
||||
|
@ -1090,7 +1090,7 @@ static SECP256K1_INLINE void secp256k1_fe_cmov(secp256k1_fe_t *r, const secp256k
|
|||
#endif
|
||||
}
|
||||
|
||||
static SECP256K1_INLINE void secp256k1_fe_storage_cmov(secp256k1_fe_storage_t *r, const secp256k1_fe_storage_t *a, int flag) {
|
||||
static SECP256K1_INLINE void secp256k1_fe_storage_cmov(secp256k1_fe_storage *r, const secp256k1_fe_storage *a, int flag) {
|
||||
uint32_t mask0, mask1;
|
||||
mask0 = flag + ~((uint32_t)0);
|
||||
mask1 = ~mask0;
|
||||
|
@ -1104,7 +1104,7 @@ static SECP256K1_INLINE void secp256k1_fe_storage_cmov(secp256k1_fe_storage_t *r
|
|||
r->n[7] = (r->n[7] & mask0) | (a->n[7] & mask1);
|
||||
}
|
||||
|
||||
static void secp256k1_fe_to_storage(secp256k1_fe_storage_t *r, const secp256k1_fe_t *a) {
|
||||
static void secp256k1_fe_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a) {
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(a->normalized);
|
||||
#endif
|
||||
|
@ -1118,7 +1118,7 @@ static void secp256k1_fe_to_storage(secp256k1_fe_storage_t *r, const secp256k1_f
|
|||
r->n[7] = a->n[8] >> 16 | a->n[9] << 10;
|
||||
}
|
||||
|
||||
static SECP256K1_INLINE void secp256k1_fe_from_storage(secp256k1_fe_t *r, const secp256k1_fe_storage_t *a) {
|
||||
static SECP256K1_INLINE void secp256k1_fe_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a) {
|
||||
r->n[0] = a->n[0] & 0x3FFFFFFUL;
|
||||
r->n[1] = a->n[0] >> 26 | ((a->n[1] << 6) & 0x3FFFFFFUL);
|
||||
r->n[2] = a->n[1] >> 20 | ((a->n[2] << 12) & 0x3FFFFFFUL);
|
||||
|
|
|
@ -16,7 +16,7 @@ typedef struct {
|
|||
int magnitude;
|
||||
int normalized;
|
||||
#endif
|
||||
} secp256k1_fe_t;
|
||||
} secp256k1_fe;
|
||||
|
||||
/* Unpacks a constant into a overlapping multi-limbed FE element. */
|
||||
#define SECP256K1_FE_CONST_INNER(d7, d6, d5, d4, d3, d2, d1, d0) { \
|
||||
|
@ -35,7 +35,7 @@ typedef struct {
|
|||
|
||||
typedef struct {
|
||||
uint64_t n[4];
|
||||
} secp256k1_fe_storage_t;
|
||||
} secp256k1_fe_storage;
|
||||
|
||||
#define SECP256K1_FE_STORAGE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {{ \
|
||||
(d0) | ((uint64_t)(d1)) << 32, \
|
||||
|
|
|
@ -31,7 +31,7 @@
|
|||
*/
|
||||
|
||||
#ifdef VERIFY
|
||||
static void secp256k1_fe_verify(const secp256k1_fe_t *a) {
|
||||
static void secp256k1_fe_verify(const secp256k1_fe *a) {
|
||||
const uint64_t *d = a->n;
|
||||
int m = a->normalized ? 1 : 2 * a->magnitude, r = 1;
|
||||
/* secp256k1 'p' value defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */
|
||||
|
@ -51,12 +51,12 @@ static void secp256k1_fe_verify(const secp256k1_fe_t *a) {
|
|||
VERIFY_CHECK(r == 1);
|
||||
}
|
||||
#else
|
||||
static void secp256k1_fe_verify(const secp256k1_fe_t *a) {
|
||||
static void secp256k1_fe_verify(const secp256k1_fe *a) {
|
||||
(void)a;
|
||||
}
|
||||
#endif
|
||||
|
||||
static void secp256k1_fe_normalize(secp256k1_fe_t *r) {
|
||||
static void secp256k1_fe_normalize(secp256k1_fe *r) {
|
||||
uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
|
||||
|
||||
/* Reduce t4 at the start so there will be at most a single carry from the first pass */
|
||||
|
@ -99,7 +99,7 @@ static void secp256k1_fe_normalize(secp256k1_fe_t *r) {
|
|||
#endif
|
||||
}
|
||||
|
||||
static void secp256k1_fe_normalize_weak(secp256k1_fe_t *r) {
|
||||
static void secp256k1_fe_normalize_weak(secp256k1_fe *r) {
|
||||
uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
|
||||
|
||||
/* Reduce t4 at the start so there will be at most a single carry from the first pass */
|
||||
|
@ -123,7 +123,7 @@ static void secp256k1_fe_normalize_weak(secp256k1_fe_t *r) {
|
|||
#endif
|
||||
}
|
||||
|
||||
static void secp256k1_fe_normalize_var(secp256k1_fe_t *r) {
|
||||
static void secp256k1_fe_normalize_var(secp256k1_fe *r) {
|
||||
uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
|
||||
|
||||
/* Reduce t4 at the start so there will be at most a single carry from the first pass */
|
||||
|
@ -167,7 +167,7 @@ static void secp256k1_fe_normalize_var(secp256k1_fe_t *r) {
|
|||
#endif
|
||||
}
|
||||
|
||||
static int secp256k1_fe_normalizes_to_zero(secp256k1_fe_t *r) {
|
||||
static int secp256k1_fe_normalizes_to_zero(secp256k1_fe *r) {
|
||||
uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
|
||||
|
||||
/* z0 tracks a possible raw value of 0, z1 tracks a possible raw value of P */
|
||||
|
@ -190,7 +190,7 @@ static int secp256k1_fe_normalizes_to_zero(secp256k1_fe_t *r) {
|
|||
return (z0 == 0) | (z1 == 0xFFFFFFFFFFFFFULL);
|
||||
}
|
||||
|
||||
static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe_t *r) {
|
||||
static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe *r) {
|
||||
uint64_t t0, t1, t2, t3, t4;
|
||||
uint64_t z0, z1;
|
||||
uint64_t x;
|
||||
|
@ -231,7 +231,7 @@ static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe_t *r) {
|
|||
return (z0 == 0) | (z1 == 0xFFFFFFFFFFFFFULL);
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static void secp256k1_fe_set_int(secp256k1_fe_t *r, int a) {
|
||||
SECP256K1_INLINE static void secp256k1_fe_set_int(secp256k1_fe *r, int a) {
|
||||
r->n[0] = a;
|
||||
r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0;
|
||||
#ifdef VERIFY
|
||||
|
@ -241,7 +241,7 @@ SECP256K1_INLINE static void secp256k1_fe_set_int(secp256k1_fe_t *r, int a) {
|
|||
#endif
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static int secp256k1_fe_is_zero(const secp256k1_fe_t *a) {
|
||||
SECP256K1_INLINE static int secp256k1_fe_is_zero(const secp256k1_fe *a) {
|
||||
const uint64_t *t = a->n;
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(a->normalized);
|
||||
|
@ -250,7 +250,7 @@ SECP256K1_INLINE static int secp256k1_fe_is_zero(const secp256k1_fe_t *a) {
|
|||
return (t[0] | t[1] | t[2] | t[3] | t[4]) == 0;
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static int secp256k1_fe_is_odd(const secp256k1_fe_t *a) {
|
||||
SECP256K1_INLINE static int secp256k1_fe_is_odd(const secp256k1_fe *a) {
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(a->normalized);
|
||||
secp256k1_fe_verify(a);
|
||||
|
@ -258,7 +258,7 @@ SECP256K1_INLINE static int secp256k1_fe_is_odd(const secp256k1_fe_t *a) {
|
|||
return a->n[0] & 1;
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static void secp256k1_fe_clear(secp256k1_fe_t *a) {
|
||||
SECP256K1_INLINE static void secp256k1_fe_clear(secp256k1_fe *a) {
|
||||
int i;
|
||||
#ifdef VERIFY
|
||||
a->magnitude = 0;
|
||||
|
@ -269,7 +269,7 @@ SECP256K1_INLINE static void secp256k1_fe_clear(secp256k1_fe_t *a) {
|
|||
}
|
||||
}
|
||||
|
||||
static int secp256k1_fe_cmp_var(const secp256k1_fe_t *a, const secp256k1_fe_t *b) {
|
||||
static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b) {
|
||||
int i;
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(a->normalized);
|
||||
|
@ -288,7 +288,7 @@ static int secp256k1_fe_cmp_var(const secp256k1_fe_t *a, const secp256k1_fe_t *b
|
|||
return 0;
|
||||
}
|
||||
|
||||
static int secp256k1_fe_set_b32(secp256k1_fe_t *r, const unsigned char *a) {
|
||||
static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a) {
|
||||
int i;
|
||||
r->n[0] = r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0;
|
||||
for (i=0; i<32; i++) {
|
||||
|
@ -311,7 +311,7 @@ static int secp256k1_fe_set_b32(secp256k1_fe_t *r, const unsigned char *a) {
|
|||
}
|
||||
|
||||
/** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */
|
||||
static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe_t *a) {
|
||||
static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a) {
|
||||
int i;
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(a->normalized);
|
||||
|
@ -329,7 +329,7 @@ static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe_t *a) {
|
|||
}
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static void secp256k1_fe_negate(secp256k1_fe_t *r, const secp256k1_fe_t *a, int m) {
|
||||
SECP256K1_INLINE static void secp256k1_fe_negate(secp256k1_fe *r, const secp256k1_fe *a, int m) {
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(a->magnitude <= m);
|
||||
secp256k1_fe_verify(a);
|
||||
|
@ -346,7 +346,7 @@ SECP256K1_INLINE static void secp256k1_fe_negate(secp256k1_fe_t *r, const secp25
|
|||
#endif
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static void secp256k1_fe_mul_int(secp256k1_fe_t *r, int a) {
|
||||
SECP256K1_INLINE static void secp256k1_fe_mul_int(secp256k1_fe *r, int a) {
|
||||
r->n[0] *= a;
|
||||
r->n[1] *= a;
|
||||
r->n[2] *= a;
|
||||
|
@ -359,7 +359,7 @@ SECP256K1_INLINE static void secp256k1_fe_mul_int(secp256k1_fe_t *r, int a) {
|
|||
#endif
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static void secp256k1_fe_add(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
|
||||
SECP256K1_INLINE static void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_fe *a) {
|
||||
#ifdef VERIFY
|
||||
secp256k1_fe_verify(a);
|
||||
#endif
|
||||
|
@ -375,7 +375,7 @@ SECP256K1_INLINE static void secp256k1_fe_add(secp256k1_fe_t *r, const secp256k1
|
|||
#endif
|
||||
}
|
||||
|
||||
static void secp256k1_fe_mul(secp256k1_fe_t *r, const secp256k1_fe_t *a, const secp256k1_fe_t * SECP256K1_RESTRICT b) {
|
||||
static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b) {
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(a->magnitude <= 8);
|
||||
VERIFY_CHECK(b->magnitude <= 8);
|
||||
|
@ -391,7 +391,7 @@ static void secp256k1_fe_mul(secp256k1_fe_t *r, const secp256k1_fe_t *a, const s
|
|||
#endif
|
||||
}
|
||||
|
||||
static void secp256k1_fe_sqr(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
|
||||
static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a) {
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(a->magnitude <= 8);
|
||||
secp256k1_fe_verify(a);
|
||||
|
@ -404,7 +404,7 @@ static void secp256k1_fe_sqr(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
|
|||
#endif
|
||||
}
|
||||
|
||||
static SECP256K1_INLINE void secp256k1_fe_cmov(secp256k1_fe_t *r, const secp256k1_fe_t *a, int flag) {
|
||||
static SECP256K1_INLINE void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag) {
|
||||
uint64_t mask0, mask1;
|
||||
mask0 = flag + ~((uint64_t)0);
|
||||
mask1 = ~mask0;
|
||||
|
@ -421,7 +421,7 @@ static SECP256K1_INLINE void secp256k1_fe_cmov(secp256k1_fe_t *r, const secp256k
|
|||
#endif
|
||||
}
|
||||
|
||||
static SECP256K1_INLINE void secp256k1_fe_storage_cmov(secp256k1_fe_storage_t *r, const secp256k1_fe_storage_t *a, int flag) {
|
||||
static SECP256K1_INLINE void secp256k1_fe_storage_cmov(secp256k1_fe_storage *r, const secp256k1_fe_storage *a, int flag) {
|
||||
uint64_t mask0, mask1;
|
||||
mask0 = flag + ~((uint64_t)0);
|
||||
mask1 = ~mask0;
|
||||
|
@ -431,7 +431,7 @@ static SECP256K1_INLINE void secp256k1_fe_storage_cmov(secp256k1_fe_storage_t *r
|
|||
r->n[3] = (r->n[3] & mask0) | (a->n[3] & mask1);
|
||||
}
|
||||
|
||||
static void secp256k1_fe_to_storage(secp256k1_fe_storage_t *r, const secp256k1_fe_t *a) {
|
||||
static void secp256k1_fe_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a) {
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(a->normalized);
|
||||
#endif
|
||||
|
@ -441,7 +441,7 @@ static void secp256k1_fe_to_storage(secp256k1_fe_storage_t *r, const secp256k1_f
|
|||
r->n[3] = a->n[3] >> 36 | a->n[4] << 16;
|
||||
}
|
||||
|
||||
static SECP256K1_INLINE void secp256k1_fe_from_storage(secp256k1_fe_t *r, const secp256k1_fe_storage_t *a) {
|
||||
static SECP256K1_INLINE void secp256k1_fe_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a) {
|
||||
r->n[0] = a->n[0] & 0xFFFFFFFFFFFFFULL;
|
||||
r->n[1] = a->n[0] >> 52 | ((a->n[1] << 12) & 0xFFFFFFFFFFFFFULL);
|
||||
r->n[2] = a->n[1] >> 40 | ((a->n[2] << 24) & 0xFFFFFFFFFFFFFULL);
|
||||
|
|
|
@ -21,15 +21,15 @@
|
|||
#error "Please select field implementation"
|
||||
#endif
|
||||
|
||||
SECP256K1_INLINE static int secp256k1_fe_equal_var(const secp256k1_fe_t *a, const secp256k1_fe_t *b) {
|
||||
secp256k1_fe_t na;
|
||||
SECP256K1_INLINE static int secp256k1_fe_equal_var(const secp256k1_fe *a, const secp256k1_fe *b) {
|
||||
secp256k1_fe na;
|
||||
secp256k1_fe_negate(&na, a, 1);
|
||||
secp256k1_fe_add(&na, b);
|
||||
return secp256k1_fe_normalizes_to_zero_var(&na);
|
||||
}
|
||||
|
||||
static int secp256k1_fe_sqrt_var(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
|
||||
secp256k1_fe_t x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1;
|
||||
static int secp256k1_fe_sqrt_var(secp256k1_fe *r, const secp256k1_fe *a) {
|
||||
secp256k1_fe x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1;
|
||||
int j;
|
||||
|
||||
/** The binary representation of (p + 1)/4 has 3 blocks of 1s, with lengths in
|
||||
|
@ -117,8 +117,8 @@ static int secp256k1_fe_sqrt_var(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
|
|||
return secp256k1_fe_equal_var(&t1, a);
|
||||
}
|
||||
|
||||
static void secp256k1_fe_inv(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
|
||||
secp256k1_fe_t x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1;
|
||||
static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *a) {
|
||||
secp256k1_fe x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1;
|
||||
int j;
|
||||
|
||||
/** The binary representation of (p - 2) has 5 blocks of 1s, with lengths in
|
||||
|
@ -207,12 +207,12 @@ static void secp256k1_fe_inv(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
|
|||
secp256k1_fe_mul(r, a, &t1);
|
||||
}
|
||||
|
||||
static void secp256k1_fe_inv_var(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
|
||||
static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *a) {
|
||||
#if defined(USE_FIELD_INV_BUILTIN)
|
||||
secp256k1_fe_inv(r, a);
|
||||
#elif defined(USE_FIELD_INV_NUM)
|
||||
secp256k1_num_t n, m;
|
||||
static const secp256k1_fe_t negone = SECP256K1_FE_CONST(
|
||||
secp256k1_num n, m;
|
||||
static const secp256k1_fe negone = SECP256K1_FE_CONST(
|
||||
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
||||
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFE, 0xFFFFFC2E
|
||||
);
|
||||
|
@ -224,7 +224,7 @@ static void secp256k1_fe_inv_var(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
|
|||
0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F
|
||||
};
|
||||
unsigned char b[32];
|
||||
secp256k1_fe_t c = *a;
|
||||
secp256k1_fe c = *a;
|
||||
secp256k1_fe_normalize_var(&c);
|
||||
secp256k1_fe_get_b32(b, &c);
|
||||
secp256k1_num_set_bin(&n, b, 32);
|
||||
|
@ -241,8 +241,8 @@ static void secp256k1_fe_inv_var(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
|
|||
#endif
|
||||
}
|
||||
|
||||
static void secp256k1_fe_inv_all_var(size_t len, secp256k1_fe_t *r, const secp256k1_fe_t *a) {
|
||||
secp256k1_fe_t u;
|
||||
static void secp256k1_fe_inv_all_var(size_t len, secp256k1_fe *r, const secp256k1_fe *a) {
|
||||
secp256k1_fe u;
|
||||
size_t i;
|
||||
if (len < 1) {
|
||||
return;
|
||||
|
|
|
@ -19,13 +19,13 @@ static void default_error_callback_fn(const char* str, void* data) {
|
|||
abort();
|
||||
}
|
||||
|
||||
static const callback_t default_error_callback = {
|
||||
static const secp256k1_callback default_error_callback = {
|
||||
default_error_callback_fn,
|
||||
NULL
|
||||
};
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
secp256k1_ecmult_gen_context_t ctx;
|
||||
secp256k1_ecmult_gen_context ctx;
|
||||
int inner;
|
||||
int outer;
|
||||
FILE* fp;
|
||||
|
@ -43,7 +43,7 @@ int main(int argc, char **argv) {
|
|||
fprintf(fp, "#define _SECP256K1_ECMULT_STATIC_CONTEXT_\n");
|
||||
fprintf(fp, "#include \"group.h\"\n");
|
||||
fprintf(fp, "#define SC SECP256K1_GE_STORAGE_CONST\n");
|
||||
fprintf(fp, "static const secp256k1_ge_storage_t secp256k1_ecmult_static_context[64][16] = {\n");
|
||||
fprintf(fp, "static const secp256k1_ge_storage secp256k1_ecmult_static_context[64][16] = {\n");
|
||||
|
||||
secp256k1_ecmult_gen_context_init(&ctx);
|
||||
secp256k1_ecmult_gen_context_build(&ctx, &default_error_callback);
|
||||
|
|
82
src/group.h
82
src/group.h
|
@ -12,130 +12,130 @@
|
|||
|
||||
/** A group element of the secp256k1 curve, in affine coordinates. */
|
||||
typedef struct {
|
||||
secp256k1_fe_t x;
|
||||
secp256k1_fe_t y;
|
||||
secp256k1_fe x;
|
||||
secp256k1_fe y;
|
||||
int infinity; /* whether this represents the point at infinity */
|
||||
} secp256k1_ge_t;
|
||||
} secp256k1_ge;
|
||||
|
||||
#define SECP256K1_GE_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_CONST((i),(j),(k),(l),(m),(n),(o),(p)), 0}
|
||||
#define SECP256K1_GE_CONST_INFINITY {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), 1}
|
||||
|
||||
/** A group element of the secp256k1 curve, in jacobian coordinates. */
|
||||
typedef struct {
|
||||
secp256k1_fe_t x; /* actual X: x/z^2 */
|
||||
secp256k1_fe_t y; /* actual Y: y/z^3 */
|
||||
secp256k1_fe_t z;
|
||||
secp256k1_fe x; /* actual X: x/z^2 */
|
||||
secp256k1_fe y; /* actual Y: y/z^3 */
|
||||
secp256k1_fe z;
|
||||
int infinity; /* whether this represents the point at infinity */
|
||||
} secp256k1_gej_t;
|
||||
} secp256k1_gej;
|
||||
|
||||
#define SECP256K1_GEJ_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_CONST((i),(j),(k),(l),(m),(n),(o),(p)), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1), 0}
|
||||
#define SECP256K1_GEJ_CONST_INFINITY {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), 1}
|
||||
|
||||
typedef struct {
|
||||
secp256k1_fe_storage_t x;
|
||||
secp256k1_fe_storage_t y;
|
||||
} secp256k1_ge_storage_t;
|
||||
secp256k1_fe_storage x;
|
||||
secp256k1_fe_storage y;
|
||||
} secp256k1_ge_storage;
|
||||
|
||||
#define SECP256K1_GE_STORAGE_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_STORAGE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_STORAGE_CONST((i),(j),(k),(l),(m),(n),(o),(p))}
|
||||
|
||||
#define SECP256K1_GE_STORAGE_CONST_GET(t) SECP256K1_FE_STORAGE_CONST_GET(t.x), SECP256K1_FE_STORAGE_CONST_GET(t.y)
|
||||
|
||||
/** Set a group element equal to the point at infinity */
|
||||
static void secp256k1_ge_set_infinity(secp256k1_ge_t *r);
|
||||
static void secp256k1_ge_set_infinity(secp256k1_ge *r);
|
||||
|
||||
/** Set a group element equal to the point with given X and Y coordinates */
|
||||
static void secp256k1_ge_set_xy(secp256k1_ge_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y);
|
||||
static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y);
|
||||
|
||||
/** Set a group element (affine) equal to the point with the given X coordinate, and given oddness
|
||||
* for Y. Return value indicates whether the result is valid. */
|
||||
static int secp256k1_ge_set_xo_var(secp256k1_ge_t *r, const secp256k1_fe_t *x, int odd);
|
||||
static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd);
|
||||
|
||||
/** Check whether a group element is the point at infinity. */
|
||||
static int secp256k1_ge_is_infinity(const secp256k1_ge_t *a);
|
||||
static int secp256k1_ge_is_infinity(const secp256k1_ge *a);
|
||||
|
||||
/** Check whether a group element is valid (i.e., on the curve). */
|
||||
static int secp256k1_ge_is_valid_var(const secp256k1_ge_t *a);
|
||||
static int secp256k1_ge_is_valid_var(const secp256k1_ge *a);
|
||||
|
||||
static void secp256k1_ge_neg(secp256k1_ge_t *r, const secp256k1_ge_t *a);
|
||||
static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a);
|
||||
|
||||
/** Set a group element equal to another which is given in jacobian coordinates */
|
||||
static void secp256k1_ge_set_gej(secp256k1_ge_t *r, secp256k1_gej_t *a);
|
||||
static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a);
|
||||
|
||||
/** Set a batch of group elements equal to the inputs given in jacobian coordinates */
|
||||
static void secp256k1_ge_set_all_gej_var(size_t len, secp256k1_ge_t *r, const secp256k1_gej_t *a, const callback_t *cb);
|
||||
static void secp256k1_ge_set_all_gej_var(size_t len, secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_callback *cb);
|
||||
|
||||
/** Set a batch of group elements equal to the inputs given in jacobian
|
||||
* coordinates (with known z-ratios). zr must contain the known z-ratios such
|
||||
* that mul(a[i].z, zr[i+1]) == a[i+1].z. zr[0] is ignored. */
|
||||
static void secp256k1_ge_set_table_gej_var(size_t len, secp256k1_ge_t *r, const secp256k1_gej_t *a, const secp256k1_fe_t *zr);
|
||||
static void secp256k1_ge_set_table_gej_var(size_t len, secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zr);
|
||||
|
||||
/** Bring a batch inputs given in jacobian coordinates (with known z-ratios) to
|
||||
* the same global z "denominator". zr must contain the known z-ratios such
|
||||
* that mul(a[i].z, zr[i+1]) == a[i+1].z. zr[0] is ignored. The x and y
|
||||
* coordinates of the result are stored in r, the common z coordinate is
|
||||
* stored in globalz. */
|
||||
static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge_t *r, secp256k1_fe_t *globalz, const secp256k1_gej_t *a, const secp256k1_fe_t *zr);
|
||||
static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge *r, secp256k1_fe *globalz, const secp256k1_gej *a, const secp256k1_fe *zr);
|
||||
|
||||
/** Set a group element (jacobian) equal to the point at infinity. */
|
||||
static void secp256k1_gej_set_infinity(secp256k1_gej_t *r);
|
||||
static void secp256k1_gej_set_infinity(secp256k1_gej *r);
|
||||
|
||||
/** Set a group element (jacobian) equal to the point with given X and Y coordinates. */
|
||||
static void secp256k1_gej_set_xy(secp256k1_gej_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y);
|
||||
static void secp256k1_gej_set_xy(secp256k1_gej *r, const secp256k1_fe *x, const secp256k1_fe *y);
|
||||
|
||||
/** Set a group element (jacobian) equal to another which is given in affine coordinates. */
|
||||
static void secp256k1_gej_set_ge(secp256k1_gej_t *r, const secp256k1_ge_t *a);
|
||||
static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a);
|
||||
|
||||
/** Compare the X coordinate of a group element (jacobian). */
|
||||
static int secp256k1_gej_eq_x_var(const secp256k1_fe_t *x, const secp256k1_gej_t *a);
|
||||
static int secp256k1_gej_eq_x_var(const secp256k1_fe *x, const secp256k1_gej *a);
|
||||
|
||||
/** Set r equal to the inverse of a (i.e., mirrored around the X axis) */
|
||||
static void secp256k1_gej_neg(secp256k1_gej_t *r, const secp256k1_gej_t *a);
|
||||
static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a);
|
||||
|
||||
/** Check whether a group element is the point at infinity. */
|
||||
static int secp256k1_gej_is_infinity(const secp256k1_gej_t *a);
|
||||
static int secp256k1_gej_is_infinity(const secp256k1_gej *a);
|
||||
|
||||
/** Set r equal to the double of a. If rzr is not-NULL, r->z = a->z * *rzr (where infinity means an implicit z = 0).
|
||||
* a may not be zero. Constant time. */
|
||||
static void secp256k1_gej_double_nonzero(secp256k1_gej_t *r, const secp256k1_gej_t *a, secp256k1_fe_t *rzr);
|
||||
static void secp256k1_gej_double_nonzero(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr);
|
||||
|
||||
/** Set r equal to the double of a. If rzr is not-NULL, r->z = a->z * *rzr (where infinity means an implicit z = 0). */
|
||||
static void secp256k1_gej_double_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, secp256k1_fe_t *rzr);
|
||||
static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr);
|
||||
|
||||
/** Set r equal to the sum of a and b. If rzr is non-NULL, r->z = a->z * *rzr (a cannot be infinity in that case). */
|
||||
static void secp256k1_gej_add_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_gej_t *b, secp256k1_fe_t *rzr);
|
||||
static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr);
|
||||
|
||||
/** Set r equal to the sum of a and b (with b given in affine coordinates, and not infinity). */
|
||||
static void secp256k1_gej_add_ge(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b);
|
||||
static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b);
|
||||
|
||||
/** Set r equal to the sum of a and b (with b given in affine coordinates). This is more efficient
|
||||
than secp256k1_gej_add_var. It is identical to secp256k1_gej_add_ge but without constant-time
|
||||
guarantee, and b is allowed to be infinity. If rzr is non-NULL, r->z = a->z * *rzr (a cannot be infinity in that case). */
|
||||
static void secp256k1_gej_add_ge_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b, secp256k1_fe_t *rzr);
|
||||
static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr);
|
||||
|
||||
/** Set r equal to the sum of a and b (with the inverse of b's Z coordinate passed as bzinv). */
|
||||
static void secp256k1_gej_add_zinv_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b, const secp256k1_fe_t *bzinv);
|
||||
static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv);
|
||||
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
/** Set r to be equal to lambda times a, where lambda is chosen in a way such that this is very fast. */
|
||||
static void secp256k1_ge_mul_lambda(secp256k1_ge_t *r, const secp256k1_ge_t *a);
|
||||
static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a);
|
||||
#endif
|
||||
|
||||
/** Clear a secp256k1_gej_t to prevent leaking sensitive information. */
|
||||
static void secp256k1_gej_clear(secp256k1_gej_t *r);
|
||||
/** Clear a secp256k1_gej to prevent leaking sensitive information. */
|
||||
static void secp256k1_gej_clear(secp256k1_gej *r);
|
||||
|
||||
/** Clear a secp256k1_ge_t to prevent leaking sensitive information. */
|
||||
static void secp256k1_ge_clear(secp256k1_ge_t *r);
|
||||
/** Clear a secp256k1_ge to prevent leaking sensitive information. */
|
||||
static void secp256k1_ge_clear(secp256k1_ge *r);
|
||||
|
||||
/** Convert a group element to the storage type. */
|
||||
static void secp256k1_ge_to_storage(secp256k1_ge_storage_t *r, const secp256k1_ge_t*);
|
||||
static void secp256k1_ge_to_storage(secp256k1_ge_storage *r, const secp256k1_ge*);
|
||||
|
||||
/** Convert a group element back from the storage type. */
|
||||
static void secp256k1_ge_from_storage(secp256k1_ge_t *r, const secp256k1_ge_storage_t*);
|
||||
static void secp256k1_ge_from_storage(secp256k1_ge *r, const secp256k1_ge_storage*);
|
||||
|
||||
/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. */
|
||||
static void secp256k1_ge_storage_cmov(secp256k1_ge_storage_t *r, const secp256k1_ge_storage_t *a, int flag);
|
||||
static void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r, const secp256k1_ge_storage *a, int flag);
|
||||
|
||||
/** Rescale a jacobian point by b which must be non-zero. Constant-time. */
|
||||
static void secp256k1_gej_rescale(secp256k1_gej_t *r, const secp256k1_fe_t *b);
|
||||
static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *b);
|
||||
|
||||
#endif
|
||||
|
|
116
src/group_impl.h
116
src/group_impl.h
|
@ -16,16 +16,16 @@
|
|||
/** Generator for secp256k1, value 'g' defined in
|
||||
* "Standards for Efficient Cryptography" (SEC2) 2.7.1.
|
||||
*/
|
||||
static const secp256k1_ge_t secp256k1_ge_const_g = SECP256K1_GE_CONST(
|
||||
static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST(
|
||||
0x79BE667EUL, 0xF9DCBBACUL, 0x55A06295UL, 0xCE870B07UL,
|
||||
0x029BFCDBUL, 0x2DCE28D9UL, 0x59F2815BUL, 0x16F81798UL,
|
||||
0x483ADA77UL, 0x26A3C465UL, 0x5DA4FBFCUL, 0x0E1108A8UL,
|
||||
0xFD17B448UL, 0xA6855419UL, 0x9C47D08FUL, 0xFB10D4B8UL
|
||||
);
|
||||
|
||||
static void secp256k1_ge_set_gej_zinv(secp256k1_ge_t *r, const secp256k1_gej_t *a, const secp256k1_fe_t *zi) {
|
||||
secp256k1_fe_t zi2;
|
||||
secp256k1_fe_t zi3;
|
||||
static void secp256k1_ge_set_gej_zinv(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zi) {
|
||||
secp256k1_fe zi2;
|
||||
secp256k1_fe zi3;
|
||||
secp256k1_fe_sqr(&zi2, zi);
|
||||
secp256k1_fe_mul(&zi3, &zi2, zi);
|
||||
secp256k1_fe_mul(&r->x, &a->x, &zi2);
|
||||
|
@ -33,28 +33,28 @@ static void secp256k1_ge_set_gej_zinv(secp256k1_ge_t *r, const secp256k1_gej_t *
|
|||
r->infinity = a->infinity;
|
||||
}
|
||||
|
||||
static void secp256k1_ge_set_infinity(secp256k1_ge_t *r) {
|
||||
static void secp256k1_ge_set_infinity(secp256k1_ge *r) {
|
||||
r->infinity = 1;
|
||||
}
|
||||
|
||||
static void secp256k1_ge_set_xy(secp256k1_ge_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y) {
|
||||
static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y) {
|
||||
r->infinity = 0;
|
||||
r->x = *x;
|
||||
r->y = *y;
|
||||
}
|
||||
|
||||
static int secp256k1_ge_is_infinity(const secp256k1_ge_t *a) {
|
||||
static int secp256k1_ge_is_infinity(const secp256k1_ge *a) {
|
||||
return a->infinity;
|
||||
}
|
||||
|
||||
static void secp256k1_ge_neg(secp256k1_ge_t *r, const secp256k1_ge_t *a) {
|
||||
static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a) {
|
||||
*r = *a;
|
||||
secp256k1_fe_normalize_weak(&r->y);
|
||||
secp256k1_fe_negate(&r->y, &r->y, 1);
|
||||
}
|
||||
|
||||
static void secp256k1_ge_set_gej(secp256k1_ge_t *r, secp256k1_gej_t *a) {
|
||||
secp256k1_fe_t z2, z3;
|
||||
static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a) {
|
||||
secp256k1_fe z2, z3;
|
||||
r->infinity = a->infinity;
|
||||
secp256k1_fe_inv(&a->z, &a->z);
|
||||
secp256k1_fe_sqr(&z2, &a->z);
|
||||
|
@ -66,8 +66,8 @@ static void secp256k1_ge_set_gej(secp256k1_ge_t *r, secp256k1_gej_t *a) {
|
|||
r->y = a->y;
|
||||
}
|
||||
|
||||
static void secp256k1_ge_set_gej_var(secp256k1_ge_t *r, secp256k1_gej_t *a) {
|
||||
secp256k1_fe_t z2, z3;
|
||||
static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a) {
|
||||
secp256k1_fe z2, z3;
|
||||
r->infinity = a->infinity;
|
||||
if (a->infinity) {
|
||||
return;
|
||||
|
@ -82,19 +82,19 @@ static void secp256k1_ge_set_gej_var(secp256k1_ge_t *r, secp256k1_gej_t *a) {
|
|||
r->y = a->y;
|
||||
}
|
||||
|
||||
static void secp256k1_ge_set_all_gej_var(size_t len, secp256k1_ge_t *r, const secp256k1_gej_t *a, const callback_t *cb) {
|
||||
secp256k1_fe_t *az;
|
||||
secp256k1_fe_t *azi;
|
||||
static void secp256k1_ge_set_all_gej_var(size_t len, secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_callback *cb) {
|
||||
secp256k1_fe *az;
|
||||
secp256k1_fe *azi;
|
||||
size_t i;
|
||||
size_t count = 0;
|
||||
az = (secp256k1_fe_t *)checked_malloc(cb, sizeof(secp256k1_fe_t) * len);
|
||||
az = (secp256k1_fe *)checked_malloc(cb, sizeof(secp256k1_fe) * len);
|
||||
for (i = 0; i < len; i++) {
|
||||
if (!a[i].infinity) {
|
||||
az[count++] = a[i].z;
|
||||
}
|
||||
}
|
||||
|
||||
azi = (secp256k1_fe_t *)checked_malloc(cb, sizeof(secp256k1_fe_t) * count);
|
||||
azi = (secp256k1_fe *)checked_malloc(cb, sizeof(secp256k1_fe) * count);
|
||||
secp256k1_fe_inv_all_var(count, azi, az);
|
||||
free(az);
|
||||
|
||||
|
@ -108,9 +108,9 @@ static void secp256k1_ge_set_all_gej_var(size_t len, secp256k1_ge_t *r, const se
|
|||
free(azi);
|
||||
}
|
||||
|
||||
static void secp256k1_ge_set_table_gej_var(size_t len, secp256k1_ge_t *r, const secp256k1_gej_t *a, const secp256k1_fe_t *zr) {
|
||||
static void secp256k1_ge_set_table_gej_var(size_t len, secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zr) {
|
||||
size_t i = len - 1;
|
||||
secp256k1_fe_t zi;
|
||||
secp256k1_fe zi;
|
||||
|
||||
if (len > 0) {
|
||||
/* Compute the inverse of the last z coordinate, and use it to compute the last affine output. */
|
||||
|
@ -126,9 +126,9 @@ static void secp256k1_ge_set_table_gej_var(size_t len, secp256k1_ge_t *r, const
|
|||
}
|
||||
}
|
||||
|
||||
static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge_t *r, secp256k1_fe_t *globalz, const secp256k1_gej_t *a, const secp256k1_fe_t *zr) {
|
||||
static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge *r, secp256k1_fe *globalz, const secp256k1_gej *a, const secp256k1_fe *zr) {
|
||||
size_t i = len - 1;
|
||||
secp256k1_fe_t zs;
|
||||
secp256k1_fe zs;
|
||||
|
||||
if (len > 0) {
|
||||
/* The z of the final point gives us the "global Z" for the table. */
|
||||
|
@ -149,35 +149,35 @@ static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge_t *r, se
|
|||
}
|
||||
}
|
||||
|
||||
static void secp256k1_gej_set_infinity(secp256k1_gej_t *r) {
|
||||
static void secp256k1_gej_set_infinity(secp256k1_gej *r) {
|
||||
r->infinity = 1;
|
||||
secp256k1_fe_set_int(&r->x, 0);
|
||||
secp256k1_fe_set_int(&r->y, 0);
|
||||
secp256k1_fe_set_int(&r->z, 0);
|
||||
}
|
||||
|
||||
static void secp256k1_gej_set_xy(secp256k1_gej_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y) {
|
||||
static void secp256k1_gej_set_xy(secp256k1_gej *r, const secp256k1_fe *x, const secp256k1_fe *y) {
|
||||
r->infinity = 0;
|
||||
r->x = *x;
|
||||
r->y = *y;
|
||||
secp256k1_fe_set_int(&r->z, 1);
|
||||
}
|
||||
|
||||
static void secp256k1_gej_clear(secp256k1_gej_t *r) {
|
||||
static void secp256k1_gej_clear(secp256k1_gej *r) {
|
||||
r->infinity = 0;
|
||||
secp256k1_fe_clear(&r->x);
|
||||
secp256k1_fe_clear(&r->y);
|
||||
secp256k1_fe_clear(&r->z);
|
||||
}
|
||||
|
||||
static void secp256k1_ge_clear(secp256k1_ge_t *r) {
|
||||
static void secp256k1_ge_clear(secp256k1_ge *r) {
|
||||
r->infinity = 0;
|
||||
secp256k1_fe_clear(&r->x);
|
||||
secp256k1_fe_clear(&r->y);
|
||||
}
|
||||
|
||||
static int secp256k1_ge_set_xo_var(secp256k1_ge_t *r, const secp256k1_fe_t *x, int odd) {
|
||||
secp256k1_fe_t x2, x3, c;
|
||||
static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd) {
|
||||
secp256k1_fe x2, x3, c;
|
||||
r->x = *x;
|
||||
secp256k1_fe_sqr(&x2, x);
|
||||
secp256k1_fe_mul(&x3, x, &x2);
|
||||
|
@ -194,22 +194,22 @@ static int secp256k1_ge_set_xo_var(secp256k1_ge_t *r, const secp256k1_fe_t *x, i
|
|||
return 1;
|
||||
}
|
||||
|
||||
static void secp256k1_gej_set_ge(secp256k1_gej_t *r, const secp256k1_ge_t *a) {
|
||||
static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a) {
|
||||
r->infinity = a->infinity;
|
||||
r->x = a->x;
|
||||
r->y = a->y;
|
||||
secp256k1_fe_set_int(&r->z, 1);
|
||||
}
|
||||
|
||||
static int secp256k1_gej_eq_x_var(const secp256k1_fe_t *x, const secp256k1_gej_t *a) {
|
||||
secp256k1_fe_t r, r2;
|
||||
static int secp256k1_gej_eq_x_var(const secp256k1_fe *x, const secp256k1_gej *a) {
|
||||
secp256k1_fe r, r2;
|
||||
VERIFY_CHECK(!a->infinity);
|
||||
secp256k1_fe_sqr(&r, &a->z); secp256k1_fe_mul(&r, &r, x);
|
||||
r2 = a->x; secp256k1_fe_normalize_weak(&r2);
|
||||
return secp256k1_fe_equal_var(&r, &r2);
|
||||
}
|
||||
|
||||
static void secp256k1_gej_neg(secp256k1_gej_t *r, const secp256k1_gej_t *a) {
|
||||
static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a) {
|
||||
r->infinity = a->infinity;
|
||||
r->x = a->x;
|
||||
r->y = a->y;
|
||||
|
@ -218,12 +218,12 @@ static void secp256k1_gej_neg(secp256k1_gej_t *r, const secp256k1_gej_t *a) {
|
|||
secp256k1_fe_negate(&r->y, &r->y, 1);
|
||||
}
|
||||
|
||||
static int secp256k1_gej_is_infinity(const secp256k1_gej_t *a) {
|
||||
static int secp256k1_gej_is_infinity(const secp256k1_gej *a) {
|
||||
return a->infinity;
|
||||
}
|
||||
|
||||
static int secp256k1_gej_is_valid_var(const secp256k1_gej_t *a) {
|
||||
secp256k1_fe_t y2, x3, z2, z6;
|
||||
static int secp256k1_gej_is_valid_var(const secp256k1_gej *a) {
|
||||
secp256k1_fe y2, x3, z2, z6;
|
||||
if (a->infinity) {
|
||||
return 0;
|
||||
}
|
||||
|
@ -242,8 +242,8 @@ static int secp256k1_gej_is_valid_var(const secp256k1_gej_t *a) {
|
|||
return secp256k1_fe_equal_var(&y2, &x3);
|
||||
}
|
||||
|
||||
static int secp256k1_ge_is_valid_var(const secp256k1_ge_t *a) {
|
||||
secp256k1_fe_t y2, x3, c;
|
||||
static int secp256k1_ge_is_valid_var(const secp256k1_ge *a) {
|
||||
secp256k1_fe y2, x3, c;
|
||||
if (a->infinity) {
|
||||
return 0;
|
||||
}
|
||||
|
@ -256,9 +256,9 @@ static int secp256k1_ge_is_valid_var(const secp256k1_ge_t *a) {
|
|||
return secp256k1_fe_equal_var(&y2, &x3);
|
||||
}
|
||||
|
||||
static void secp256k1_gej_double_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, secp256k1_fe_t *rzr) {
|
||||
static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr) {
|
||||
/* Operations: 3 mul, 4 sqr, 0 normalize, 12 mul_int/add/negate */
|
||||
secp256k1_fe_t t1,t2,t3,t4;
|
||||
secp256k1_fe t1,t2,t3,t4;
|
||||
/** For secp256k1, 2Q is infinity if and only if Q is infinity. This is because if 2Q = infinity,
|
||||
* Q must equal -Q, or that Q.y == -(Q.y), or Q.y is 0. For a point on y^2 = x^3 + 7 to have
|
||||
* y=0, x^3 must be -7 mod p. However, -7 has no cube root mod p.
|
||||
|
@ -299,14 +299,14 @@ static void secp256k1_gej_double_var(secp256k1_gej_t *r, const secp256k1_gej_t *
|
|||
secp256k1_fe_add(&r->y, &t2); /* Y' = 36*X^3*Y^2 - 27*X^6 - 8*Y^4 (4) */
|
||||
}
|
||||
|
||||
static SECP256K1_INLINE void secp256k1_gej_double_nonzero(secp256k1_gej_t *r, const secp256k1_gej_t *a, secp256k1_fe_t *rzr) {
|
||||
static SECP256K1_INLINE void secp256k1_gej_double_nonzero(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr) {
|
||||
VERIFY_CHECK(!secp256k1_gej_is_infinity(a));
|
||||
secp256k1_gej_double_var(r, a, rzr);
|
||||
}
|
||||
|
||||
static void secp256k1_gej_add_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_gej_t *b, secp256k1_fe_t *rzr) {
|
||||
static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr) {
|
||||
/* Operations: 12 mul, 4 sqr, 2 normalize, 12 mul_int/add/negate */
|
||||
secp256k1_fe_t z22, z12, u1, u2, s1, s2, h, i, i2, h2, h3, t;
|
||||
secp256k1_fe z22, z12, u1, u2, s1, s2, h, i, i2, h2, h3, t;
|
||||
|
||||
if (a->infinity) {
|
||||
VERIFY_CHECK(rzr == NULL);
|
||||
|
@ -357,9 +357,9 @@ static void secp256k1_gej_add_var(secp256k1_gej_t *r, const secp256k1_gej_t *a,
|
|||
secp256k1_fe_add(&r->y, &h3);
|
||||
}
|
||||
|
||||
static void secp256k1_gej_add_ge_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b, secp256k1_fe_t *rzr) {
|
||||
static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr) {
|
||||
/* 8 mul, 3 sqr, 4 normalize, 12 mul_int/add/negate */
|
||||
secp256k1_fe_t z12, u1, u2, s1, s2, h, i, i2, h2, h3, t;
|
||||
secp256k1_fe z12, u1, u2, s1, s2, h, i, i2, h2, h3, t;
|
||||
if (a->infinity) {
|
||||
VERIFY_CHECK(rzr == NULL);
|
||||
secp256k1_gej_set_ge(r, b);
|
||||
|
@ -406,16 +406,16 @@ static void secp256k1_gej_add_ge_var(secp256k1_gej_t *r, const secp256k1_gej_t *
|
|||
secp256k1_fe_add(&r->y, &h3);
|
||||
}
|
||||
|
||||
static void secp256k1_gej_add_zinv_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b, const secp256k1_fe_t *bzinv) {
|
||||
static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv) {
|
||||
/* 9 mul, 3 sqr, 4 normalize, 12 mul_int/add/negate */
|
||||
secp256k1_fe_t az, z12, u1, u2, s1, s2, h, i, i2, h2, h3, t;
|
||||
secp256k1_fe az, z12, u1, u2, s1, s2, h, i, i2, h2, h3, t;
|
||||
|
||||
if (b->infinity) {
|
||||
*r = *a;
|
||||
return;
|
||||
}
|
||||
if (a->infinity) {
|
||||
secp256k1_fe_t bzinv2, bzinv3;
|
||||
secp256k1_fe bzinv2, bzinv3;
|
||||
r->infinity = b->infinity;
|
||||
secp256k1_fe_sqr(&bzinv2, bzinv);
|
||||
secp256k1_fe_mul(&bzinv3, &bzinv2, bzinv);
|
||||
|
@ -463,11 +463,11 @@ static void secp256k1_gej_add_zinv_var(secp256k1_gej_t *r, const secp256k1_gej_t
|
|||
}
|
||||
|
||||
|
||||
static void secp256k1_gej_add_ge(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b) {
|
||||
static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b) {
|
||||
/* Operations: 7 mul, 5 sqr, 4 normalize, 21 mul_int/add/negate/cmov */
|
||||
static const secp256k1_fe_t fe_1 = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1);
|
||||
secp256k1_fe_t zz, u1, u2, s1, s2, t, tt, m, n, q, rr;
|
||||
secp256k1_fe_t m_alt, rr_alt;
|
||||
static const secp256k1_fe fe_1 = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1);
|
||||
secp256k1_fe zz, u1, u2, s1, s2, t, tt, m, n, q, rr;
|
||||
secp256k1_fe m_alt, rr_alt;
|
||||
int infinity, degenerate;
|
||||
VERIFY_CHECK(!b->infinity);
|
||||
VERIFY_CHECK(a->infinity == 0 || a->infinity == 1);
|
||||
|
@ -585,9 +585,9 @@ static void secp256k1_gej_add_ge(secp256k1_gej_t *r, const secp256k1_gej_t *a, c
|
|||
r->infinity = infinity;
|
||||
}
|
||||
|
||||
static void secp256k1_gej_rescale(secp256k1_gej_t *r, const secp256k1_fe_t *s) {
|
||||
static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *s) {
|
||||
/* Operations: 4 mul, 1 sqr */
|
||||
secp256k1_fe_t zz;
|
||||
secp256k1_fe zz;
|
||||
VERIFY_CHECK(!secp256k1_fe_is_zero(s));
|
||||
secp256k1_fe_sqr(&zz, s);
|
||||
secp256k1_fe_mul(&r->x, &r->x, &zz); /* r->x *= s^2 */
|
||||
|
@ -596,8 +596,8 @@ static void secp256k1_gej_rescale(secp256k1_gej_t *r, const secp256k1_fe_t *s) {
|
|||
secp256k1_fe_mul(&r->z, &r->z, s); /* r->z *= s */
|
||||
}
|
||||
|
||||
static void secp256k1_ge_to_storage(secp256k1_ge_storage_t *r, const secp256k1_ge_t *a) {
|
||||
secp256k1_fe_t x, y;
|
||||
static void secp256k1_ge_to_storage(secp256k1_ge_storage *r, const secp256k1_ge *a) {
|
||||
secp256k1_fe x, y;
|
||||
VERIFY_CHECK(!a->infinity);
|
||||
x = a->x;
|
||||
secp256k1_fe_normalize(&x);
|
||||
|
@ -607,20 +607,20 @@ static void secp256k1_ge_to_storage(secp256k1_ge_storage_t *r, const secp256k1_g
|
|||
secp256k1_fe_to_storage(&r->y, &y);
|
||||
}
|
||||
|
||||
static void secp256k1_ge_from_storage(secp256k1_ge_t *r, const secp256k1_ge_storage_t *a) {
|
||||
static void secp256k1_ge_from_storage(secp256k1_ge *r, const secp256k1_ge_storage *a) {
|
||||
secp256k1_fe_from_storage(&r->x, &a->x);
|
||||
secp256k1_fe_from_storage(&r->y, &a->y);
|
||||
r->infinity = 0;
|
||||
}
|
||||
|
||||
static SECP256K1_INLINE void secp256k1_ge_storage_cmov(secp256k1_ge_storage_t *r, const secp256k1_ge_storage_t *a, int flag) {
|
||||
static SECP256K1_INLINE void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r, const secp256k1_ge_storage *a, int flag) {
|
||||
secp256k1_fe_storage_cmov(&r->x, &a->x, flag);
|
||||
secp256k1_fe_storage_cmov(&r->y, &a->y, flag);
|
||||
}
|
||||
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
static void secp256k1_ge_mul_lambda(secp256k1_ge_t *r, const secp256k1_ge_t *a) {
|
||||
static const secp256k1_fe_t beta = SECP256K1_FE_CONST(
|
||||
static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a) {
|
||||
static const secp256k1_fe beta = SECP256K1_FE_CONST(
|
||||
0x7ae96a2bul, 0x657c0710ul, 0x6e64479eul, 0xac3434e9ul,
|
||||
0x9cf04975ul, 0x12f58995ul, 0xc1396c28ul, 0x719501eeul
|
||||
);
|
||||
|
|
|
@ -9,12 +9,12 @@
|
|||
|
||||
#include "ecmult_const_impl.h"
|
||||
|
||||
int secp256k1_ecdh(const secp256k1_context_t* ctx, unsigned char *result, const secp256k1_pubkey_t *point, const unsigned char *scalar) {
|
||||
int secp256k1_ecdh(const secp256k1_context* ctx, unsigned char *result, const secp256k1_pubkey *point, const unsigned char *scalar) {
|
||||
int ret = 0;
|
||||
int overflow = 0;
|
||||
secp256k1_gej_t res;
|
||||
secp256k1_ge_t pt;
|
||||
secp256k1_scalar_t s;
|
||||
secp256k1_gej res;
|
||||
secp256k1_ge pt;
|
||||
secp256k1_scalar s;
|
||||
ARG_CHECK(result != NULL);
|
||||
ARG_CHECK(point != NULL);
|
||||
ARG_CHECK(scalar != NULL);
|
||||
|
|
|
@ -9,7 +9,7 @@
|
|||
|
||||
void test_ecdh_generator_basepoint(void) {
|
||||
unsigned char s_one[32] = { 0 };
|
||||
secp256k1_pubkey_t point[2];
|
||||
secp256k1_pubkey point[2];
|
||||
int i;
|
||||
|
||||
s_one[31] = 1;
|
||||
|
@ -21,7 +21,7 @@ void test_ecdh_generator_basepoint(void) {
|
|||
unsigned char output_ser[32];
|
||||
unsigned char point_ser[33];
|
||||
size_t point_ser_len = sizeof(point_ser);
|
||||
secp256k1_scalar_t s;
|
||||
secp256k1_scalar s;
|
||||
|
||||
random_scalar_order(&s);
|
||||
secp256k1_scalar_get_b32(s_b32, &s);
|
||||
|
@ -51,8 +51,8 @@ void test_bad_scalar(void) {
|
|||
};
|
||||
unsigned char s_rand[32] = { 0 };
|
||||
unsigned char output[32];
|
||||
secp256k1_scalar_t rand;
|
||||
secp256k1_pubkey_t point;
|
||||
secp256k1_scalar rand;
|
||||
secp256k1_pubkey point;
|
||||
|
||||
/* Create random point */
|
||||
random_scalar_order(&rand);
|
||||
|
|
|
@ -9,11 +9,11 @@
|
|||
|
||||
#include "include/secp256k1_recovery.h"
|
||||
|
||||
static void secp256k1_ecdsa_recoverable_signature_load(const secp256k1_context_t* ctx, secp256k1_scalar_t* r, secp256k1_scalar_t* s, int* recid, const secp256k1_ecdsa_recoverable_signature_t* sig) {
|
||||
static void secp256k1_ecdsa_recoverable_signature_load(const secp256k1_context* ctx, secp256k1_scalar* r, secp256k1_scalar* s, int* recid, const secp256k1_ecdsa_recoverable_signature* sig) {
|
||||
(void)ctx;
|
||||
if (sizeof(secp256k1_scalar_t) == 32) {
|
||||
/* When the secp256k1_scalar_t type is exactly 32 byte, use its
|
||||
* representation inside secp256k1_ecdsa_signature_t, as conversion is very fast.
|
||||
if (sizeof(secp256k1_scalar) == 32) {
|
||||
/* When the secp256k1_scalar type is exactly 32 byte, use its
|
||||
* representation inside secp256k1_ecdsa_signature, as conversion is very fast.
|
||||
* Note that secp256k1_ecdsa_signature_save must use the same representation. */
|
||||
memcpy(r, &sig->data[0], 32);
|
||||
memcpy(s, &sig->data[32], 32);
|
||||
|
@ -24,8 +24,8 @@ static void secp256k1_ecdsa_recoverable_signature_load(const secp256k1_context_t
|
|||
*recid = sig->data[64];
|
||||
}
|
||||
|
||||
static void secp256k1_ecdsa_recoverable_signature_save(secp256k1_ecdsa_recoverable_signature_t* sig, const secp256k1_scalar_t* r, const secp256k1_scalar_t* s, int recid) {
|
||||
if (sizeof(secp256k1_scalar_t) == 32) {
|
||||
static void secp256k1_ecdsa_recoverable_signature_save(secp256k1_ecdsa_recoverable_signature* sig, const secp256k1_scalar* r, const secp256k1_scalar* s, int recid) {
|
||||
if (sizeof(secp256k1_scalar) == 32) {
|
||||
memcpy(&sig->data[0], r, 32);
|
||||
memcpy(&sig->data[32], s, 32);
|
||||
} else {
|
||||
|
@ -35,8 +35,8 @@ static void secp256k1_ecdsa_recoverable_signature_save(secp256k1_ecdsa_recoverab
|
|||
sig->data[64] = recid;
|
||||
}
|
||||
|
||||
int secp256k1_ecdsa_recoverable_signature_parse_compact(const secp256k1_context_t* ctx, secp256k1_ecdsa_recoverable_signature_t* sig, const unsigned char *input64, int recid) {
|
||||
secp256k1_scalar_t r, s;
|
||||
int secp256k1_ecdsa_recoverable_signature_parse_compact(const secp256k1_context* ctx, secp256k1_ecdsa_recoverable_signature* sig, const unsigned char *input64, int recid) {
|
||||
secp256k1_scalar r, s;
|
||||
int ret = 1;
|
||||
int overflow = 0;
|
||||
|
||||
|
@ -57,8 +57,8 @@ int secp256k1_ecdsa_recoverable_signature_parse_compact(const secp256k1_context_
|
|||
return ret;
|
||||
}
|
||||
|
||||
int secp256k1_ecdsa_recoverable_signature_serialize_compact(const secp256k1_context_t* ctx, unsigned char *output64, int *recid, const secp256k1_ecdsa_recoverable_signature_t* sig) {
|
||||
secp256k1_scalar_t r, s;
|
||||
int secp256k1_ecdsa_recoverable_signature_serialize_compact(const secp256k1_context* ctx, unsigned char *output64, int *recid, const secp256k1_ecdsa_recoverable_signature* sig) {
|
||||
secp256k1_scalar r, s;
|
||||
|
||||
(void)ctx;
|
||||
ARG_CHECK(output64 != NULL);
|
||||
|
@ -70,8 +70,8 @@ int secp256k1_ecdsa_recoverable_signature_serialize_compact(const secp256k1_cont
|
|||
return 1;
|
||||
}
|
||||
|
||||
int secp256k1_ecdsa_recoverable_signature_convert(const secp256k1_context_t* ctx, secp256k1_ecdsa_signature_t* sig, const secp256k1_ecdsa_recoverable_signature_t* sigin) {
|
||||
secp256k1_scalar_t r, s;
|
||||
int secp256k1_ecdsa_recoverable_signature_convert(const secp256k1_context* ctx, secp256k1_ecdsa_signature* sig, const secp256k1_ecdsa_recoverable_signature* sigin) {
|
||||
secp256k1_scalar r, s;
|
||||
int recid;
|
||||
|
||||
(void)ctx;
|
||||
|
@ -83,9 +83,9 @@ int secp256k1_ecdsa_recoverable_signature_convert(const secp256k1_context_t* ctx
|
|||
return 1;
|
||||
}
|
||||
|
||||
int secp256k1_ecdsa_sign_recoverable(const secp256k1_context_t* ctx, secp256k1_ecdsa_recoverable_signature_t *signature, const unsigned char *msg32, const unsigned char *seckey, secp256k1_nonce_function_t noncefp, const void* noncedata) {
|
||||
secp256k1_scalar_t r, s;
|
||||
secp256k1_scalar_t sec, non, msg;
|
||||
int secp256k1_ecdsa_sign_recoverable(const secp256k1_context* ctx, secp256k1_ecdsa_recoverable_signature *signature, const unsigned char *msg32, const unsigned char *seckey, secp256k1_nonce_function noncefp, const void* noncedata) {
|
||||
secp256k1_scalar r, s;
|
||||
secp256k1_scalar sec, non, msg;
|
||||
int recid;
|
||||
int ret = 0;
|
||||
int overflow = 0;
|
||||
|
@ -130,10 +130,10 @@ int secp256k1_ecdsa_sign_recoverable(const secp256k1_context_t* ctx, secp256k1_e
|
|||
return ret;
|
||||
}
|
||||
|
||||
int secp256k1_ecdsa_recover(const secp256k1_context_t* ctx, secp256k1_pubkey_t *pubkey, const secp256k1_ecdsa_recoverable_signature_t *signature, const unsigned char *msg32) {
|
||||
secp256k1_ge_t q;
|
||||
secp256k1_scalar_t r, s;
|
||||
secp256k1_scalar_t m;
|
||||
int secp256k1_ecdsa_recover(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const secp256k1_ecdsa_recoverable_signature *signature, const unsigned char *msg32) {
|
||||
secp256k1_ge q;
|
||||
secp256k1_scalar r, s;
|
||||
secp256k1_scalar m;
|
||||
int recid;
|
||||
VERIFY_CHECK(ctx != NULL);
|
||||
ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
|
||||
|
|
|
@ -11,16 +11,16 @@ void test_ecdsa_recovery_end_to_end(void) {
|
|||
unsigned char extra[32] = {0x00};
|
||||
unsigned char privkey[32];
|
||||
unsigned char message[32];
|
||||
secp256k1_ecdsa_signature_t signature[5];
|
||||
secp256k1_ecdsa_recoverable_signature_t rsignature[5];
|
||||
secp256k1_ecdsa_signature signature[5];
|
||||
secp256k1_ecdsa_recoverable_signature rsignature[5];
|
||||
unsigned char sig[74];
|
||||
secp256k1_pubkey_t pubkey;
|
||||
secp256k1_pubkey_t recpubkey;
|
||||
secp256k1_pubkey pubkey;
|
||||
secp256k1_pubkey recpubkey;
|
||||
int recid = 0;
|
||||
|
||||
/* Generate a random key and message. */
|
||||
{
|
||||
secp256k1_scalar_t msg, key;
|
||||
secp256k1_scalar msg, key;
|
||||
random_scalar_order_test(&msg);
|
||||
random_scalar_order_test(&key);
|
||||
secp256k1_scalar_get_b32(privkey, &key);
|
||||
|
@ -83,7 +83,7 @@ void test_ecdsa_recovery_edge_cases(void) {
|
|||
0x7D, 0xD7, 0x3E, 0x38, 0x7E, 0xE4, 0xFC, 0x86,
|
||||
0x6E, 0x1B, 0xE8, 0xEC, 0xC7, 0xDD, 0x95, 0x57
|
||||
};
|
||||
secp256k1_pubkey_t pubkey;
|
||||
secp256k1_pubkey pubkey;
|
||||
/* signature (r,s) = (4,4), which can be recovered with all 4 recids. */
|
||||
const unsigned char sigb64[64] = {
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
|
@ -95,9 +95,9 @@ void test_ecdsa_recovery_edge_cases(void) {
|
|||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04,
|
||||
};
|
||||
secp256k1_pubkey_t pubkeyb;
|
||||
secp256k1_ecdsa_recoverable_signature_t rsig;
|
||||
secp256k1_ecdsa_signature_t sig;
|
||||
secp256k1_pubkey pubkeyb;
|
||||
secp256k1_ecdsa_recoverable_signature rsig;
|
||||
secp256k1_ecdsa_signature sig;
|
||||
int recid;
|
||||
|
||||
CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsig, sig64, 0));
|
||||
|
@ -157,7 +157,7 @@ void test_ecdsa_recovery_edge_cases(void) {
|
|||
CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbder, sizeof(sigbder)) == 1);
|
||||
CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg32, &pubkeyb) == 1);
|
||||
for (recid2 = 0; recid2 < 4; recid2++) {
|
||||
secp256k1_pubkey_t pubkey2b;
|
||||
secp256k1_pubkey pubkey2b;
|
||||
CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsig, sigb64, recid2) == 1);
|
||||
CHECK(secp256k1_ecdsa_recover(ctx, &pubkey2b, &rsig, msg32) == 1);
|
||||
/* Verifying with (order + r,4) should always fail. */
|
||||
|
@ -216,7 +216,7 @@ void test_ecdsa_recovery_edge_cases(void) {
|
|||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
|
||||
};
|
||||
secp256k1_pubkey_t pubkeyc;
|
||||
secp256k1_pubkey pubkeyc;
|
||||
CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsig, sigc64, 0) == 1);
|
||||
CHECK(secp256k1_ecdsa_recover(ctx, &pubkeyc, &rsig, msg32) == 1);
|
||||
CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigcder, sizeof(sigcder)) == 1);
|
||||
|
|
|
@ -19,8 +19,8 @@ static void secp256k1_schnorr_msghash_sha256(unsigned char *h32, const unsigned
|
|||
|
||||
static const unsigned char secp256k1_schnorr_algo16[16] = "Schnorr+SHA256 ";
|
||||
|
||||
int secp256k1_schnorr_sign(const secp256k1_context_t* ctx, unsigned char *sig64, const unsigned char *msg32, const unsigned char *seckey, secp256k1_nonce_function_t noncefp, const void* noncedata) {
|
||||
secp256k1_scalar_t sec, non;
|
||||
int secp256k1_schnorr_sign(const secp256k1_context* ctx, unsigned char *sig64, const unsigned char *msg32, const unsigned char *seckey, secp256k1_nonce_function noncefp, const void* noncedata) {
|
||||
secp256k1_scalar sec, non;
|
||||
int ret = 0;
|
||||
int overflow = 0;
|
||||
unsigned int count = 0;
|
||||
|
@ -57,8 +57,8 @@ int secp256k1_schnorr_sign(const secp256k1_context_t* ctx, unsigned char *sig64,
|
|||
return ret;
|
||||
}
|
||||
|
||||
int secp256k1_schnorr_verify(const secp256k1_context_t* ctx, const unsigned char *sig64, const unsigned char *msg32, const secp256k1_pubkey_t *pubkey) {
|
||||
secp256k1_ge_t q;
|
||||
int secp256k1_schnorr_verify(const secp256k1_context* ctx, const unsigned char *sig64, const unsigned char *msg32, const secp256k1_pubkey *pubkey) {
|
||||
secp256k1_ge q;
|
||||
VERIFY_CHECK(ctx != NULL);
|
||||
ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
|
||||
ARG_CHECK(msg32 != NULL);
|
||||
|
@ -69,8 +69,8 @@ int secp256k1_schnorr_verify(const secp256k1_context_t* ctx, const unsigned char
|
|||
return secp256k1_schnorr_sig_verify(&ctx->ecmult_ctx, sig64, &q, secp256k1_schnorr_msghash_sha256, msg32);
|
||||
}
|
||||
|
||||
int secp256k1_schnorr_recover(const secp256k1_context_t* ctx, secp256k1_pubkey_t *pubkey, const unsigned char *sig64, const unsigned char *msg32) {
|
||||
secp256k1_ge_t q;
|
||||
int secp256k1_schnorr_recover(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *sig64, const unsigned char *msg32) {
|
||||
secp256k1_ge q;
|
||||
|
||||
VERIFY_CHECK(ctx != NULL);
|
||||
ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
|
||||
|
@ -87,12 +87,12 @@ int secp256k1_schnorr_recover(const secp256k1_context_t* ctx, secp256k1_pubkey_t
|
|||
}
|
||||
}
|
||||
|
||||
int secp256k1_schnorr_generate_nonce_pair(const secp256k1_context_t* ctx, secp256k1_pubkey_t *pubnonce, unsigned char *privnonce32, const unsigned char *sec32, const unsigned char *msg32, secp256k1_nonce_function_t noncefp, const void* noncedata) {
|
||||
int secp256k1_schnorr_generate_nonce_pair(const secp256k1_context* ctx, secp256k1_pubkey *pubnonce, unsigned char *privnonce32, const unsigned char *sec32, const unsigned char *msg32, secp256k1_nonce_function noncefp, const void* noncedata) {
|
||||
int count = 0;
|
||||
int ret = 1;
|
||||
secp256k1_gej_t Qj;
|
||||
secp256k1_ge_t Q;
|
||||
secp256k1_scalar_t sec;
|
||||
secp256k1_gej Qj;
|
||||
secp256k1_ge Q;
|
||||
secp256k1_scalar sec;
|
||||
|
||||
VERIFY_CHECK(ctx != NULL);
|
||||
ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
|
||||
|
@ -129,10 +129,10 @@ int secp256k1_schnorr_generate_nonce_pair(const secp256k1_context_t* ctx, secp25
|
|||
return ret;
|
||||
}
|
||||
|
||||
int secp256k1_schnorr_partial_sign(const secp256k1_context_t* ctx, unsigned char *sig64, const unsigned char *msg32, const unsigned char *sec32, const secp256k1_pubkey_t *pubnonce_others, const unsigned char *secnonce32) {
|
||||
int secp256k1_schnorr_partial_sign(const secp256k1_context* ctx, unsigned char *sig64, const unsigned char *msg32, const unsigned char *sec32, const secp256k1_pubkey *pubnonce_others, const unsigned char *secnonce32) {
|
||||
int overflow = 0;
|
||||
secp256k1_scalar_t sec, non;
|
||||
secp256k1_ge_t pubnon;
|
||||
secp256k1_scalar sec, non;
|
||||
secp256k1_ge pubnon;
|
||||
VERIFY_CHECK(ctx != NULL);
|
||||
ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
|
||||
ARG_CHECK(msg32 != NULL);
|
||||
|
@ -153,7 +153,7 @@ int secp256k1_schnorr_partial_sign(const secp256k1_context_t* ctx, unsigned char
|
|||
return secp256k1_schnorr_sig_sign(&ctx->ecmult_gen_ctx, sig64, &sec, &non, &pubnon, secp256k1_schnorr_msghash_sha256, msg32);
|
||||
}
|
||||
|
||||
int secp256k1_schnorr_partial_combine(const secp256k1_context_t* ctx, unsigned char *sig64, const unsigned char * const *sig64sin, int n) {
|
||||
int secp256k1_schnorr_partial_combine(const secp256k1_context* ctx, unsigned char *sig64, const unsigned char * const *sig64sin, int n) {
|
||||
ARG_CHECK(sig64 != NULL);
|
||||
ARG_CHECK(n >= 1);
|
||||
ARG_CHECK(sig64sin != NULL);
|
||||
|
|
|
@ -10,11 +10,11 @@
|
|||
#include "scalar.h"
|
||||
#include "group.h"
|
||||
|
||||
typedef void (*secp256k1_schnorr_msghash_t)(unsigned char *h32, const unsigned char *r32, const unsigned char *msg32);
|
||||
typedef void (*secp256k1_schnorr_msghash)(unsigned char *h32, const unsigned char *r32, const unsigned char *msg32);
|
||||
|
||||
static int secp256k1_schnorr_sig_sign(const secp256k1_ecmult_gen_context_t* ctx, unsigned char *sig64, const secp256k1_scalar_t *key, const secp256k1_scalar_t *nonce, const secp256k1_ge_t *pubnonce, secp256k1_schnorr_msghash_t hash, const unsigned char *msg32);
|
||||
static int secp256k1_schnorr_sig_verify(const secp256k1_ecmult_context_t* ctx, const unsigned char *sig64, const secp256k1_ge_t *pubkey, secp256k1_schnorr_msghash_t hash, const unsigned char *msg32);
|
||||
static int secp256k1_schnorr_sig_recover(const secp256k1_ecmult_context_t* ctx, const unsigned char *sig64, secp256k1_ge_t *pubkey, secp256k1_schnorr_msghash_t hash, const unsigned char *msg32);
|
||||
static int secp256k1_schnorr_sig_sign(const secp256k1_ecmult_gen_context* ctx, unsigned char *sig64, const secp256k1_scalar *key, const secp256k1_scalar *nonce, const secp256k1_ge *pubnonce, secp256k1_schnorr_msghash hash, const unsigned char *msg32);
|
||||
static int secp256k1_schnorr_sig_verify(const secp256k1_ecmult_context* ctx, const unsigned char *sig64, const secp256k1_ge *pubkey, secp256k1_schnorr_msghash hash, const unsigned char *msg32);
|
||||
static int secp256k1_schnorr_sig_recover(const secp256k1_ecmult_context* ctx, const unsigned char *sig64, secp256k1_ge *pubkey, secp256k1_schnorr_msghash hash, const unsigned char *msg32);
|
||||
static int secp256k1_schnorr_sig_combine(unsigned char *sig64, int n, const unsigned char * const *sig64ins);
|
||||
|
||||
#endif
|
||||
|
|
|
@ -59,13 +59,13 @@
|
|||
* Signature is valid if R + h * Q + s * G == 0.
|
||||
*/
|
||||
|
||||
static int secp256k1_schnorr_sig_sign(const secp256k1_ecmult_gen_context_t* ctx, unsigned char *sig64, const secp256k1_scalar_t *key, const secp256k1_scalar_t *nonce, const secp256k1_ge_t *pubnonce, secp256k1_schnorr_msghash_t hash, const unsigned char *msg32) {
|
||||
secp256k1_gej_t Rj;
|
||||
secp256k1_ge_t Ra;
|
||||
static int secp256k1_schnorr_sig_sign(const secp256k1_ecmult_gen_context* ctx, unsigned char *sig64, const secp256k1_scalar *key, const secp256k1_scalar *nonce, const secp256k1_ge *pubnonce, secp256k1_schnorr_msghash hash, const unsigned char *msg32) {
|
||||
secp256k1_gej Rj;
|
||||
secp256k1_ge Ra;
|
||||
unsigned char h32[32];
|
||||
secp256k1_scalar_t h, s;
|
||||
secp256k1_scalar h, s;
|
||||
int overflow;
|
||||
secp256k1_scalar_t n;
|
||||
secp256k1_scalar n;
|
||||
|
||||
if (secp256k1_scalar_is_zero(key) || secp256k1_scalar_is_zero(nonce)) {
|
||||
return 0;
|
||||
|
@ -103,11 +103,11 @@ static int secp256k1_schnorr_sig_sign(const secp256k1_ecmult_gen_context_t* ctx,
|
|||
return 1;
|
||||
}
|
||||
|
||||
static int secp256k1_schnorr_sig_verify(const secp256k1_ecmult_context_t* ctx, const unsigned char *sig64, const secp256k1_ge_t *pubkey, secp256k1_schnorr_msghash_t hash, const unsigned char *msg32) {
|
||||
secp256k1_gej_t Qj, Rj;
|
||||
secp256k1_ge_t Ra;
|
||||
secp256k1_fe_t Rx;
|
||||
secp256k1_scalar_t h, s;
|
||||
static int secp256k1_schnorr_sig_verify(const secp256k1_ecmult_context* ctx, const unsigned char *sig64, const secp256k1_ge *pubkey, secp256k1_schnorr_msghash hash, const unsigned char *msg32) {
|
||||
secp256k1_gej Qj, Rj;
|
||||
secp256k1_ge Ra;
|
||||
secp256k1_fe Rx;
|
||||
secp256k1_scalar h, s;
|
||||
unsigned char hh[32];
|
||||
int overflow;
|
||||
|
||||
|
@ -141,11 +141,11 @@ static int secp256k1_schnorr_sig_verify(const secp256k1_ecmult_context_t* ctx, c
|
|||
return secp256k1_fe_equal_var(&Rx, &Ra.x);
|
||||
}
|
||||
|
||||
static int secp256k1_schnorr_sig_recover(const secp256k1_ecmult_context_t* ctx, const unsigned char *sig64, secp256k1_ge_t *pubkey, secp256k1_schnorr_msghash_t hash, const unsigned char *msg32) {
|
||||
secp256k1_gej_t Qj, Rj;
|
||||
secp256k1_ge_t Ra;
|
||||
secp256k1_fe_t Rx;
|
||||
secp256k1_scalar_t h, s;
|
||||
static int secp256k1_schnorr_sig_recover(const secp256k1_ecmult_context* ctx, const unsigned char *sig64, secp256k1_ge *pubkey, secp256k1_schnorr_msghash hash, const unsigned char *msg32) {
|
||||
secp256k1_gej Qj, Rj;
|
||||
secp256k1_ge Ra;
|
||||
secp256k1_fe Rx;
|
||||
secp256k1_scalar h, s;
|
||||
unsigned char hh[32];
|
||||
int overflow;
|
||||
|
||||
|
@ -179,10 +179,10 @@ static int secp256k1_schnorr_sig_recover(const secp256k1_ecmult_context_t* ctx,
|
|||
}
|
||||
|
||||
static int secp256k1_schnorr_sig_combine(unsigned char *sig64, int n, const unsigned char * const *sig64ins) {
|
||||
secp256k1_scalar_t s = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0);
|
||||
secp256k1_scalar s = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0);
|
||||
int i;
|
||||
for (i = 0; i < n; i++) {
|
||||
secp256k1_scalar_t si;
|
||||
secp256k1_scalar si;
|
||||
int overflow;
|
||||
secp256k1_scalar_set_b32(&si, sig64ins[i] + 32, &overflow);
|
||||
if (overflow) {
|
||||
|
|
|
@ -11,11 +11,11 @@ void test_schnorr_end_to_end(void) {
|
|||
unsigned char privkey[32];
|
||||
unsigned char message[32];
|
||||
unsigned char schnorr_signature[64];
|
||||
secp256k1_pubkey_t pubkey, recpubkey;
|
||||
secp256k1_pubkey pubkey, recpubkey;
|
||||
|
||||
/* Generate a random key and message. */
|
||||
{
|
||||
secp256k1_scalar_t key;
|
||||
secp256k1_scalar key;
|
||||
random_scalar_order_test(&key);
|
||||
secp256k1_scalar_get_b32(privkey, &key);
|
||||
secp256k1_rand256_test(message);
|
||||
|
@ -48,9 +48,9 @@ void test_schnorr_hash(unsigned char *h32, const unsigned char *r32, const unsig
|
|||
void test_schnorr_sign_verify(void) {
|
||||
unsigned char msg32[32];
|
||||
unsigned char sig64[3][64];
|
||||
secp256k1_gej_t pubkeyj[3];
|
||||
secp256k1_ge_t pubkey[3];
|
||||
secp256k1_scalar_t nonce[3], key[3];
|
||||
secp256k1_gej pubkeyj[3];
|
||||
secp256k1_ge pubkey[3];
|
||||
secp256k1_scalar nonce[3], key[3];
|
||||
int i = 0;
|
||||
int k;
|
||||
|
||||
|
@ -83,14 +83,14 @@ void test_schnorr_sign_verify(void) {
|
|||
void test_schnorr_threshold(void) {
|
||||
unsigned char msg[32];
|
||||
unsigned char sec[5][32];
|
||||
secp256k1_pubkey_t pub[5];
|
||||
secp256k1_pubkey pub[5];
|
||||
unsigned char nonce[5][32];
|
||||
secp256k1_pubkey_t pubnonce[5];
|
||||
secp256k1_pubkey pubnonce[5];
|
||||
unsigned char sig[5][64];
|
||||
const unsigned char* sigs[5];
|
||||
unsigned char allsig[64];
|
||||
const secp256k1_pubkey_t* pubs[5];
|
||||
secp256k1_pubkey_t allpub;
|
||||
const secp256k1_pubkey* pubs[5];
|
||||
secp256k1_pubkey allpub;
|
||||
int n, i;
|
||||
int damage;
|
||||
int ret = 0;
|
||||
|
@ -112,8 +112,8 @@ void test_schnorr_threshold(void) {
|
|||
sec[secp256k1_rand32() % n][secp256k1_rand32() % 32] ^= 1 + (secp256k1_rand32() % 255);
|
||||
}
|
||||
for (i = 0; i < n; i++) {
|
||||
secp256k1_pubkey_t allpubnonce;
|
||||
const secp256k1_pubkey_t *pubnonces[4];
|
||||
secp256k1_pubkey allpubnonce;
|
||||
const secp256k1_pubkey *pubnonces[4];
|
||||
int j;
|
||||
for (j = 0; j < i; j++) {
|
||||
pubnonces[j] = &pubnonce[j];
|
||||
|
@ -144,7 +144,7 @@ void test_schnorr_threshold(void) {
|
|||
void test_schnorr_recovery(void) {
|
||||
unsigned char msg32[32];
|
||||
unsigned char sig64[64];
|
||||
secp256k1_ge_t Q;
|
||||
secp256k1_ge Q;
|
||||
|
||||
secp256k1_rand256_test(msg32);
|
||||
secp256k1_rand256_test(sig64);
|
||||
|
|
28
src/num.h
28
src/num.h
|
@ -20,48 +20,48 @@
|
|||
#endif
|
||||
|
||||
/** Copy a number. */
|
||||
static void secp256k1_num_copy(secp256k1_num_t *r, const secp256k1_num_t *a);
|
||||
static void secp256k1_num_copy(secp256k1_num *r, const secp256k1_num *a);
|
||||
|
||||
/** Convert a number's absolute value to a binary big-endian string.
|
||||
* There must be enough place. */
|
||||
static void secp256k1_num_get_bin(unsigned char *r, unsigned int rlen, const secp256k1_num_t *a);
|
||||
static void secp256k1_num_get_bin(unsigned char *r, unsigned int rlen, const secp256k1_num *a);
|
||||
|
||||
/** Set a number to the value of a binary big-endian string. */
|
||||
static void secp256k1_num_set_bin(secp256k1_num_t *r, const unsigned char *a, unsigned int alen);
|
||||
static void secp256k1_num_set_bin(secp256k1_num *r, const unsigned char *a, unsigned int alen);
|
||||
|
||||
/** Compute a modular inverse. The input must be less than the modulus. */
|
||||
static void secp256k1_num_mod_inverse(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *m);
|
||||
static void secp256k1_num_mod_inverse(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *m);
|
||||
|
||||
/** Compare the absolute value of two numbers. */
|
||||
static int secp256k1_num_cmp(const secp256k1_num_t *a, const secp256k1_num_t *b);
|
||||
static int secp256k1_num_cmp(const secp256k1_num *a, const secp256k1_num *b);
|
||||
|
||||
/** Test whether two number are equal (including sign). */
|
||||
static int secp256k1_num_eq(const secp256k1_num_t *a, const secp256k1_num_t *b);
|
||||
static int secp256k1_num_eq(const secp256k1_num *a, const secp256k1_num *b);
|
||||
|
||||
/** Add two (signed) numbers. */
|
||||
static void secp256k1_num_add(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b);
|
||||
static void secp256k1_num_add(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b);
|
||||
|
||||
/** Subtract two (signed) numbers. */
|
||||
static void secp256k1_num_sub(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b);
|
||||
static void secp256k1_num_sub(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b);
|
||||
|
||||
/** Multiply two (signed) numbers. */
|
||||
static void secp256k1_num_mul(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b);
|
||||
static void secp256k1_num_mul(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b);
|
||||
|
||||
/** Replace a number by its remainder modulo m. M's sign is ignored. The result is a number between 0 and m-1,
|
||||
even if r was negative. */
|
||||
static void secp256k1_num_mod(secp256k1_num_t *r, const secp256k1_num_t *m);
|
||||
static void secp256k1_num_mod(secp256k1_num *r, const secp256k1_num *m);
|
||||
|
||||
/** Right-shift the passed number by bits bits. */
|
||||
static void secp256k1_num_shift(secp256k1_num_t *r, int bits);
|
||||
static void secp256k1_num_shift(secp256k1_num *r, int bits);
|
||||
|
||||
/** Check whether a number is zero. */
|
||||
static int secp256k1_num_is_zero(const secp256k1_num_t *a);
|
||||
static int secp256k1_num_is_zero(const secp256k1_num *a);
|
||||
|
||||
/** Check whether a number is strictly negative. */
|
||||
static int secp256k1_num_is_neg(const secp256k1_num_t *a);
|
||||
static int secp256k1_num_is_neg(const secp256k1_num *a);
|
||||
|
||||
/** Change a number's sign. */
|
||||
static void secp256k1_num_negate(secp256k1_num_t *r);
|
||||
static void secp256k1_num_negate(secp256k1_num *r);
|
||||
|
||||
#endif
|
||||
|
||||
|
|
|
@ -15,6 +15,6 @@ typedef struct {
|
|||
mp_limb_t data[2*NUM_LIMBS];
|
||||
int neg;
|
||||
int limbs;
|
||||
} secp256k1_num_t;
|
||||
} secp256k1_num;
|
||||
|
||||
#endif
|
||||
|
|
|
@ -15,18 +15,18 @@
|
|||
#include "num.h"
|
||||
|
||||
#ifdef VERIFY
|
||||
static void secp256k1_num_sanity(const secp256k1_num_t *a) {
|
||||
static void secp256k1_num_sanity(const secp256k1_num *a) {
|
||||
VERIFY_CHECK(a->limbs == 1 || (a->limbs > 1 && a->data[a->limbs-1] != 0));
|
||||
}
|
||||
#else
|
||||
#define secp256k1_num_sanity(a) do { } while(0)
|
||||
#endif
|
||||
|
||||
static void secp256k1_num_copy(secp256k1_num_t *r, const secp256k1_num_t *a) {
|
||||
static void secp256k1_num_copy(secp256k1_num *r, const secp256k1_num *a) {
|
||||
*r = *a;
|
||||
}
|
||||
|
||||
static void secp256k1_num_get_bin(unsigned char *r, unsigned int rlen, const secp256k1_num_t *a) {
|
||||
static void secp256k1_num_get_bin(unsigned char *r, unsigned int rlen, const secp256k1_num *a) {
|
||||
unsigned char tmp[65];
|
||||
int len = 0;
|
||||
int shift = 0;
|
||||
|
@ -42,7 +42,7 @@ static void secp256k1_num_get_bin(unsigned char *r, unsigned int rlen, const sec
|
|||
memset(tmp, 0, sizeof(tmp));
|
||||
}
|
||||
|
||||
static void secp256k1_num_set_bin(secp256k1_num_t *r, const unsigned char *a, unsigned int alen) {
|
||||
static void secp256k1_num_set_bin(secp256k1_num *r, const unsigned char *a, unsigned int alen) {
|
||||
int len;
|
||||
VERIFY_CHECK(alen > 0);
|
||||
VERIFY_CHECK(alen <= 64);
|
||||
|
@ -59,7 +59,7 @@ static void secp256k1_num_set_bin(secp256k1_num_t *r, const unsigned char *a, un
|
|||
}
|
||||
}
|
||||
|
||||
static void secp256k1_num_add_abs(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b) {
|
||||
static void secp256k1_num_add_abs(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b) {
|
||||
mp_limb_t c = mpn_add(r->data, a->data, a->limbs, b->data, b->limbs);
|
||||
r->limbs = a->limbs;
|
||||
if (c != 0) {
|
||||
|
@ -68,7 +68,7 @@ static void secp256k1_num_add_abs(secp256k1_num_t *r, const secp256k1_num_t *a,
|
|||
}
|
||||
}
|
||||
|
||||
static void secp256k1_num_sub_abs(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b) {
|
||||
static void secp256k1_num_sub_abs(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b) {
|
||||
mp_limb_t c = mpn_sub(r->data, a->data, a->limbs, b->data, b->limbs);
|
||||
VERIFY_CHECK(c == 0);
|
||||
r->limbs = a->limbs;
|
||||
|
@ -77,7 +77,7 @@ static void secp256k1_num_sub_abs(secp256k1_num_t *r, const secp256k1_num_t *a,
|
|||
}
|
||||
}
|
||||
|
||||
static void secp256k1_num_mod(secp256k1_num_t *r, const secp256k1_num_t *m) {
|
||||
static void secp256k1_num_mod(secp256k1_num *r, const secp256k1_num *m) {
|
||||
secp256k1_num_sanity(r);
|
||||
secp256k1_num_sanity(m);
|
||||
|
||||
|
@ -97,7 +97,7 @@ static void secp256k1_num_mod(secp256k1_num_t *r, const secp256k1_num_t *m) {
|
|||
}
|
||||
}
|
||||
|
||||
static void secp256k1_num_mod_inverse(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *m) {
|
||||
static void secp256k1_num_mod_inverse(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *m) {
|
||||
int i;
|
||||
mp_limb_t g[NUM_LIMBS+1];
|
||||
mp_limb_t u[NUM_LIMBS+1];
|
||||
|
@ -142,15 +142,15 @@ static void secp256k1_num_mod_inverse(secp256k1_num_t *r, const secp256k1_num_t
|
|||
memset(v, 0, sizeof(v));
|
||||
}
|
||||
|
||||
static int secp256k1_num_is_zero(const secp256k1_num_t *a) {
|
||||
static int secp256k1_num_is_zero(const secp256k1_num *a) {
|
||||
return (a->limbs == 1 && a->data[0] == 0);
|
||||
}
|
||||
|
||||
static int secp256k1_num_is_neg(const secp256k1_num_t *a) {
|
||||
static int secp256k1_num_is_neg(const secp256k1_num *a) {
|
||||
return (a->limbs > 1 || a->data[0] != 0) && a->neg;
|
||||
}
|
||||
|
||||
static int secp256k1_num_cmp(const secp256k1_num_t *a, const secp256k1_num_t *b) {
|
||||
static int secp256k1_num_cmp(const secp256k1_num *a, const secp256k1_num *b) {
|
||||
if (a->limbs > b->limbs) {
|
||||
return 1;
|
||||
}
|
||||
|
@ -160,7 +160,7 @@ static int secp256k1_num_cmp(const secp256k1_num_t *a, const secp256k1_num_t *b)
|
|||
return mpn_cmp(a->data, b->data, a->limbs);
|
||||
}
|
||||
|
||||
static int secp256k1_num_eq(const secp256k1_num_t *a, const secp256k1_num_t *b) {
|
||||
static int secp256k1_num_eq(const secp256k1_num *a, const secp256k1_num *b) {
|
||||
if (a->limbs > b->limbs) {
|
||||
return 0;
|
||||
}
|
||||
|
@ -173,7 +173,7 @@ static int secp256k1_num_eq(const secp256k1_num_t *a, const secp256k1_num_t *b)
|
|||
return mpn_cmp(a->data, b->data, a->limbs) == 0;
|
||||
}
|
||||
|
||||
static void secp256k1_num_subadd(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b, int bneg) {
|
||||
static void secp256k1_num_subadd(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b, int bneg) {
|
||||
if (!(b->neg ^ bneg ^ a->neg)) { /* a and b have the same sign */
|
||||
r->neg = a->neg;
|
||||
if (a->limbs >= b->limbs) {
|
||||
|
@ -192,19 +192,19 @@ static void secp256k1_num_subadd(secp256k1_num_t *r, const secp256k1_num_t *a, c
|
|||
}
|
||||
}
|
||||
|
||||
static void secp256k1_num_add(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b) {
|
||||
static void secp256k1_num_add(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b) {
|
||||
secp256k1_num_sanity(a);
|
||||
secp256k1_num_sanity(b);
|
||||
secp256k1_num_subadd(r, a, b, 0);
|
||||
}
|
||||
|
||||
static void secp256k1_num_sub(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b) {
|
||||
static void secp256k1_num_sub(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b) {
|
||||
secp256k1_num_sanity(a);
|
||||
secp256k1_num_sanity(b);
|
||||
secp256k1_num_subadd(r, a, b, 1);
|
||||
}
|
||||
|
||||
static void secp256k1_num_mul(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b) {
|
||||
static void secp256k1_num_mul(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b) {
|
||||
mp_limb_t tmp[2*NUM_LIMBS+1];
|
||||
secp256k1_num_sanity(a);
|
||||
secp256k1_num_sanity(b);
|
||||
|
@ -231,7 +231,7 @@ static void secp256k1_num_mul(secp256k1_num_t *r, const secp256k1_num_t *a, cons
|
|||
memset(tmp, 0, sizeof(tmp));
|
||||
}
|
||||
|
||||
static void secp256k1_num_shift(secp256k1_num_t *r, int bits) {
|
||||
static void secp256k1_num_shift(secp256k1_num *r, int bits) {
|
||||
int i;
|
||||
if (bits % GMP_NUMB_BITS) {
|
||||
/* Shift within limbs. */
|
||||
|
@ -253,7 +253,7 @@ static void secp256k1_num_shift(secp256k1_num_t *r, int bits) {
|
|||
}
|
||||
}
|
||||
|
||||
static void secp256k1_num_negate(secp256k1_num_t *r) {
|
||||
static void secp256k1_num_negate(secp256k1_num *r) {
|
||||
r->neg ^= 1;
|
||||
}
|
||||
|
||||
|
|
50
src/scalar.h
50
src/scalar.h
|
@ -22,83 +22,83 @@
|
|||
#endif
|
||||
|
||||
/** Clear a scalar to prevent the leak of sensitive data. */
|
||||
static void secp256k1_scalar_clear(secp256k1_scalar_t *r);
|
||||
static void secp256k1_scalar_clear(secp256k1_scalar *r);
|
||||
|
||||
/** Access bits from a scalar. All requested bits must belong to the same 32-bit limb. */
|
||||
static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar_t *a, unsigned int offset, unsigned int count);
|
||||
static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar *a, unsigned int offset, unsigned int count);
|
||||
|
||||
/** Access bits from a scalar. Not constant time. */
|
||||
static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar_t *a, unsigned int offset, unsigned int count);
|
||||
static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count);
|
||||
|
||||
/** Set a scalar from a big endian byte array. */
|
||||
static void secp256k1_scalar_set_b32(secp256k1_scalar_t *r, const unsigned char *bin, int *overflow);
|
||||
static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *bin, int *overflow);
|
||||
|
||||
/** Set a scalar to an unsigned integer. */
|
||||
static void secp256k1_scalar_set_int(secp256k1_scalar_t *r, unsigned int v);
|
||||
static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v);
|
||||
|
||||
/** Convert a scalar to a byte array. */
|
||||
static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar_t* a);
|
||||
static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a);
|
||||
|
||||
/** Add two scalars together (modulo the group order). Returns whether it overflowed. */
|
||||
static int secp256k1_scalar_add(secp256k1_scalar_t *r, const secp256k1_scalar_t *a, const secp256k1_scalar_t *b);
|
||||
static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b);
|
||||
|
||||
/** Conditionally add a power of two to a scalar. The result is not allowed to overflow. */
|
||||
static void secp256k1_scalar_cadd_bit(secp256k1_scalar_t *r, unsigned int bit, int flag);
|
||||
static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag);
|
||||
|
||||
/** Multiply two scalars (modulo the group order). */
|
||||
static void secp256k1_scalar_mul(secp256k1_scalar_t *r, const secp256k1_scalar_t *a, const secp256k1_scalar_t *b);
|
||||
static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b);
|
||||
|
||||
/** Shift a scalar right by some amount strictly between 0 and 16, returning
|
||||
* the low bits that were shifted off */
|
||||
static int secp256k1_scalar_shr_int(secp256k1_scalar_t *r, int n);
|
||||
static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n);
|
||||
|
||||
/** Compute the square of a scalar (modulo the group order). */
|
||||
static void secp256k1_scalar_sqr(secp256k1_scalar_t *r, const secp256k1_scalar_t *a);
|
||||
static void secp256k1_scalar_sqr(secp256k1_scalar *r, const secp256k1_scalar *a);
|
||||
|
||||
/** Compute the inverse of a scalar (modulo the group order). */
|
||||
static void secp256k1_scalar_inverse(secp256k1_scalar_t *r, const secp256k1_scalar_t *a);
|
||||
static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *a);
|
||||
|
||||
/** Compute the inverse of a scalar (modulo the group order), without constant-time guarantee. */
|
||||
static void secp256k1_scalar_inverse_var(secp256k1_scalar_t *r, const secp256k1_scalar_t *a);
|
||||
static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *a);
|
||||
|
||||
/** Compute the complement of a scalar (modulo the group order). */
|
||||
static void secp256k1_scalar_negate(secp256k1_scalar_t *r, const secp256k1_scalar_t *a);
|
||||
static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a);
|
||||
|
||||
/** Check whether a scalar equals zero. */
|
||||
static int secp256k1_scalar_is_zero(const secp256k1_scalar_t *a);
|
||||
static int secp256k1_scalar_is_zero(const secp256k1_scalar *a);
|
||||
|
||||
/** Check whether a scalar equals one. */
|
||||
static int secp256k1_scalar_is_one(const secp256k1_scalar_t *a);
|
||||
static int secp256k1_scalar_is_one(const secp256k1_scalar *a);
|
||||
|
||||
/** Check whether a scalar, considered as an nonnegative integer, is even. */
|
||||
static int secp256k1_scalar_is_even(const secp256k1_scalar_t *a);
|
||||
static int secp256k1_scalar_is_even(const secp256k1_scalar *a);
|
||||
|
||||
/** Check whether a scalar is higher than the group order divided by 2. */
|
||||
static int secp256k1_scalar_is_high(const secp256k1_scalar_t *a);
|
||||
static int secp256k1_scalar_is_high(const secp256k1_scalar *a);
|
||||
|
||||
/** Conditionally negate a number, in constant time.
|
||||
* Returns -1 if the number was negated, 1 otherwise */
|
||||
static int secp256k1_scalar_cond_negate(secp256k1_scalar_t *a, int flag);
|
||||
static int secp256k1_scalar_cond_negate(secp256k1_scalar *a, int flag);
|
||||
|
||||
#ifndef USE_NUM_NONE
|
||||
/** Convert a scalar to a number. */
|
||||
static void secp256k1_scalar_get_num(secp256k1_num_t *r, const secp256k1_scalar_t *a);
|
||||
static void secp256k1_scalar_get_num(secp256k1_num *r, const secp256k1_scalar *a);
|
||||
|
||||
/** Get the order of the group as a number. */
|
||||
static void secp256k1_scalar_order_get_num(secp256k1_num_t *r);
|
||||
static void secp256k1_scalar_order_get_num(secp256k1_num *r);
|
||||
#endif
|
||||
|
||||
/** Compare two scalars. */
|
||||
static int secp256k1_scalar_eq(const secp256k1_scalar_t *a, const secp256k1_scalar_t *b);
|
||||
static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b);
|
||||
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
/** Find r1 and r2 such that r1+r2*2^128 = a. */
|
||||
static void secp256k1_scalar_split_128(secp256k1_scalar_t *r1, secp256k1_scalar_t *r2, const secp256k1_scalar_t *a);
|
||||
static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a);
|
||||
/** Find r1 and r2 such that r1+r2*lambda = a, and r1 and r2 are maximum 128 bits long (see secp256k1_gej_mul_lambda). */
|
||||
static void secp256k1_scalar_split_lambda(secp256k1_scalar_t *r1, secp256k1_scalar_t *r2, const secp256k1_scalar_t *a);
|
||||
static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a);
|
||||
#endif
|
||||
|
||||
/** Multiply a and b (without taking the modulus!), divide by 2**shift, and round to the nearest integer. Shift must be at least 256. */
|
||||
static void secp256k1_scalar_mul_shift_var(secp256k1_scalar_t *r, const secp256k1_scalar_t *a, const secp256k1_scalar_t *b, unsigned int shift);
|
||||
static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b, unsigned int shift);
|
||||
|
||||
#endif
|
||||
|
|
|
@ -12,7 +12,7 @@
|
|||
/** A scalar modulo the group order of the secp256k1 curve. */
|
||||
typedef struct {
|
||||
uint64_t d[4];
|
||||
} secp256k1_scalar_t;
|
||||
} secp256k1_scalar;
|
||||
|
||||
#define SECP256K1_SCALAR_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {{((uint64_t)(d1)) << 32 | (d0), ((uint64_t)(d3)) << 32 | (d2), ((uint64_t)(d5)) << 32 | (d4), ((uint64_t)(d7)) << 32 | (d6)}}
|
||||
|
||||
|
|
|
@ -24,26 +24,26 @@
|
|||
#define SECP256K1_N_H_2 ((uint64_t)0xFFFFFFFFFFFFFFFFULL)
|
||||
#define SECP256K1_N_H_3 ((uint64_t)0x7FFFFFFFFFFFFFFFULL)
|
||||
|
||||
SECP256K1_INLINE static void secp256k1_scalar_clear(secp256k1_scalar_t *r) {
|
||||
SECP256K1_INLINE static void secp256k1_scalar_clear(secp256k1_scalar *r) {
|
||||
r->d[0] = 0;
|
||||
r->d[1] = 0;
|
||||
r->d[2] = 0;
|
||||
r->d[3] = 0;
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static void secp256k1_scalar_set_int(secp256k1_scalar_t *r, unsigned int v) {
|
||||
SECP256K1_INLINE static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v) {
|
||||
r->d[0] = v;
|
||||
r->d[1] = 0;
|
||||
r->d[2] = 0;
|
||||
r->d[3] = 0;
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar_t *a, unsigned int offset, unsigned int count) {
|
||||
SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
|
||||
VERIFY_CHECK((offset + count - 1) >> 6 == offset >> 6);
|
||||
return (a->d[offset >> 6] >> (offset & 0x3F)) & ((((uint64_t)1) << count) - 1);
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar_t *a, unsigned int offset, unsigned int count) {
|
||||
SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
|
||||
VERIFY_CHECK(count < 32);
|
||||
VERIFY_CHECK(offset + count <= 256);
|
||||
if ((offset + count - 1) >> 6 == offset >> 6) {
|
||||
|
@ -54,7 +54,7 @@ SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits_var(const secp256
|
|||
}
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static int secp256k1_scalar_check_overflow(const secp256k1_scalar_t *a) {
|
||||
SECP256K1_INLINE static int secp256k1_scalar_check_overflow(const secp256k1_scalar *a) {
|
||||
int yes = 0;
|
||||
int no = 0;
|
||||
no |= (a->d[3] < SECP256K1_N_3); /* No need for a > check. */
|
||||
|
@ -66,7 +66,7 @@ SECP256K1_INLINE static int secp256k1_scalar_check_overflow(const secp256k1_scal
|
|||
return yes;
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static int secp256k1_scalar_reduce(secp256k1_scalar_t *r, unsigned int overflow) {
|
||||
SECP256K1_INLINE static int secp256k1_scalar_reduce(secp256k1_scalar *r, unsigned int overflow) {
|
||||
uint128_t t;
|
||||
VERIFY_CHECK(overflow <= 1);
|
||||
t = (uint128_t)r->d[0] + overflow * SECP256K1_N_C_0;
|
||||
|
@ -80,7 +80,7 @@ SECP256K1_INLINE static int secp256k1_scalar_reduce(secp256k1_scalar_t *r, unsig
|
|||
return overflow;
|
||||
}
|
||||
|
||||
static int secp256k1_scalar_add(secp256k1_scalar_t *r, const secp256k1_scalar_t *a, const secp256k1_scalar_t *b) {
|
||||
static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) {
|
||||
int overflow;
|
||||
uint128_t t = (uint128_t)a->d[0] + b->d[0];
|
||||
r->d[0] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
|
||||
|
@ -96,7 +96,7 @@ static int secp256k1_scalar_add(secp256k1_scalar_t *r, const secp256k1_scalar_t
|
|||
return overflow;
|
||||
}
|
||||
|
||||
static void secp256k1_scalar_cadd_bit(secp256k1_scalar_t *r, unsigned int bit, int flag) {
|
||||
static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag) {
|
||||
uint128_t t;
|
||||
VERIFY_CHECK(bit < 256);
|
||||
bit += ((uint32_t) flag - 1) & 0x100; /* forcing (bit >> 6) > 3 makes this a noop */
|
||||
|
@ -114,7 +114,7 @@ static void secp256k1_scalar_cadd_bit(secp256k1_scalar_t *r, unsigned int bit, i
|
|||
#endif
|
||||
}
|
||||
|
||||
static void secp256k1_scalar_set_b32(secp256k1_scalar_t *r, const unsigned char *b32, int *overflow) {
|
||||
static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *b32, int *overflow) {
|
||||
int over;
|
||||
r->d[0] = (uint64_t)b32[31] | (uint64_t)b32[30] << 8 | (uint64_t)b32[29] << 16 | (uint64_t)b32[28] << 24 | (uint64_t)b32[27] << 32 | (uint64_t)b32[26] << 40 | (uint64_t)b32[25] << 48 | (uint64_t)b32[24] << 56;
|
||||
r->d[1] = (uint64_t)b32[23] | (uint64_t)b32[22] << 8 | (uint64_t)b32[21] << 16 | (uint64_t)b32[20] << 24 | (uint64_t)b32[19] << 32 | (uint64_t)b32[18] << 40 | (uint64_t)b32[17] << 48 | (uint64_t)b32[16] << 56;
|
||||
|
@ -126,18 +126,18 @@ static void secp256k1_scalar_set_b32(secp256k1_scalar_t *r, const unsigned char
|
|||
}
|
||||
}
|
||||
|
||||
static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar_t* a) {
|
||||
static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a) {
|
||||
bin[0] = a->d[3] >> 56; bin[1] = a->d[3] >> 48; bin[2] = a->d[3] >> 40; bin[3] = a->d[3] >> 32; bin[4] = a->d[3] >> 24; bin[5] = a->d[3] >> 16; bin[6] = a->d[3] >> 8; bin[7] = a->d[3];
|
||||
bin[8] = a->d[2] >> 56; bin[9] = a->d[2] >> 48; bin[10] = a->d[2] >> 40; bin[11] = a->d[2] >> 32; bin[12] = a->d[2] >> 24; bin[13] = a->d[2] >> 16; bin[14] = a->d[2] >> 8; bin[15] = a->d[2];
|
||||
bin[16] = a->d[1] >> 56; bin[17] = a->d[1] >> 48; bin[18] = a->d[1] >> 40; bin[19] = a->d[1] >> 32; bin[20] = a->d[1] >> 24; bin[21] = a->d[1] >> 16; bin[22] = a->d[1] >> 8; bin[23] = a->d[1];
|
||||
bin[24] = a->d[0] >> 56; bin[25] = a->d[0] >> 48; bin[26] = a->d[0] >> 40; bin[27] = a->d[0] >> 32; bin[28] = a->d[0] >> 24; bin[29] = a->d[0] >> 16; bin[30] = a->d[0] >> 8; bin[31] = a->d[0];
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static int secp256k1_scalar_is_zero(const secp256k1_scalar_t *a) {
|
||||
SECP256K1_INLINE static int secp256k1_scalar_is_zero(const secp256k1_scalar *a) {
|
||||
return (a->d[0] | a->d[1] | a->d[2] | a->d[3]) == 0;
|
||||
}
|
||||
|
||||
static void secp256k1_scalar_negate(secp256k1_scalar_t *r, const secp256k1_scalar_t *a) {
|
||||
static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a) {
|
||||
uint64_t nonzero = 0xFFFFFFFFFFFFFFFFULL * (secp256k1_scalar_is_zero(a) == 0);
|
||||
uint128_t t = (uint128_t)(~a->d[0]) + SECP256K1_N_0 + 1;
|
||||
r->d[0] = t & nonzero; t >>= 64;
|
||||
|
@ -149,11 +149,11 @@ static void secp256k1_scalar_negate(secp256k1_scalar_t *r, const secp256k1_scala
|
|||
r->d[3] = t & nonzero;
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static int secp256k1_scalar_is_one(const secp256k1_scalar_t *a) {
|
||||
SECP256K1_INLINE static int secp256k1_scalar_is_one(const secp256k1_scalar *a) {
|
||||
return ((a->d[0] ^ 1) | a->d[1] | a->d[2] | a->d[3]) == 0;
|
||||
}
|
||||
|
||||
static int secp256k1_scalar_is_high(const secp256k1_scalar_t *a) {
|
||||
static int secp256k1_scalar_is_high(const secp256k1_scalar *a) {
|
||||
int yes = 0;
|
||||
int no = 0;
|
||||
no |= (a->d[3] < SECP256K1_N_H_3);
|
||||
|
@ -165,7 +165,7 @@ static int secp256k1_scalar_is_high(const secp256k1_scalar_t *a) {
|
|||
return yes;
|
||||
}
|
||||
|
||||
static int secp256k1_scalar_cond_negate(secp256k1_scalar_t *r, int flag) {
|
||||
static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) {
|
||||
/* If we are flag = 0, mask = 00...00 and this is a no-op;
|
||||
* if we are flag = 1, mask = 11...11 and this is identical to secp256k1_scalar_negate */
|
||||
uint64_t mask = !flag - 1;
|
||||
|
@ -267,7 +267,7 @@ static int secp256k1_scalar_cond_negate(secp256k1_scalar_t *r, int flag) {
|
|||
VERIFY_CHECK(c2 == 0); \
|
||||
}
|
||||
|
||||
static void secp256k1_scalar_reduce_512(secp256k1_scalar_t *r, const uint64_t *l) {
|
||||
static void secp256k1_scalar_reduce_512(secp256k1_scalar *r, const uint64_t *l) {
|
||||
#ifdef USE_ASM_X86_64
|
||||
/* Reduce 512 bits into 385. */
|
||||
uint64_t m0, m1, m2, m3, m4, m5, m6;
|
||||
|
@ -576,7 +576,7 @@ static void secp256k1_scalar_reduce_512(secp256k1_scalar_t *r, const uint64_t *l
|
|||
secp256k1_scalar_reduce(r, c + secp256k1_scalar_check_overflow(r));
|
||||
}
|
||||
|
||||
static void secp256k1_scalar_mul_512(uint64_t l[8], const secp256k1_scalar_t *a, const secp256k1_scalar_t *b) {
|
||||
static void secp256k1_scalar_mul_512(uint64_t l[8], const secp256k1_scalar *a, const secp256k1_scalar *b) {
|
||||
#ifdef USE_ASM_X86_64
|
||||
const uint64_t *pb = b->d;
|
||||
__asm__ __volatile__(
|
||||
|
@ -743,7 +743,7 @@ static void secp256k1_scalar_mul_512(uint64_t l[8], const secp256k1_scalar_t *a,
|
|||
#endif
|
||||
}
|
||||
|
||||
static void secp256k1_scalar_sqr_512(uint64_t l[8], const secp256k1_scalar_t *a) {
|
||||
static void secp256k1_scalar_sqr_512(uint64_t l[8], const secp256k1_scalar *a) {
|
||||
#ifdef USE_ASM_X86_64
|
||||
__asm__ __volatile__(
|
||||
/* Preload */
|
||||
|
@ -888,13 +888,13 @@ static void secp256k1_scalar_sqr_512(uint64_t l[8], const secp256k1_scalar_t *a)
|
|||
#undef extract
|
||||
#undef extract_fast
|
||||
|
||||
static void secp256k1_scalar_mul(secp256k1_scalar_t *r, const secp256k1_scalar_t *a, const secp256k1_scalar_t *b) {
|
||||
static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) {
|
||||
uint64_t l[8];
|
||||
secp256k1_scalar_mul_512(l, a, b);
|
||||
secp256k1_scalar_reduce_512(r, l);
|
||||
}
|
||||
|
||||
static int secp256k1_scalar_shr_int(secp256k1_scalar_t *r, int n) {
|
||||
static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n) {
|
||||
int ret;
|
||||
VERIFY_CHECK(n > 0);
|
||||
VERIFY_CHECK(n < 16);
|
||||
|
@ -906,13 +906,13 @@ static int secp256k1_scalar_shr_int(secp256k1_scalar_t *r, int n) {
|
|||
return ret;
|
||||
}
|
||||
|
||||
static void secp256k1_scalar_sqr(secp256k1_scalar_t *r, const secp256k1_scalar_t *a) {
|
||||
static void secp256k1_scalar_sqr(secp256k1_scalar *r, const secp256k1_scalar *a) {
|
||||
uint64_t l[8];
|
||||
secp256k1_scalar_sqr_512(l, a);
|
||||
secp256k1_scalar_reduce_512(r, l);
|
||||
}
|
||||
|
||||
static void secp256k1_scalar_split_128(secp256k1_scalar_t *r1, secp256k1_scalar_t *r2, const secp256k1_scalar_t *a) {
|
||||
static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) {
|
||||
r1->d[0] = a->d[0];
|
||||
r1->d[1] = a->d[1];
|
||||
r1->d[2] = 0;
|
||||
|
@ -923,11 +923,11 @@ static void secp256k1_scalar_split_128(secp256k1_scalar_t *r1, secp256k1_scalar_
|
|||
r2->d[3] = 0;
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static int secp256k1_scalar_eq(const secp256k1_scalar_t *a, const secp256k1_scalar_t *b) {
|
||||
SECP256K1_INLINE static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b) {
|
||||
return ((a->d[0] ^ b->d[0]) | (a->d[1] ^ b->d[1]) | (a->d[2] ^ b->d[2]) | (a->d[3] ^ b->d[3])) == 0;
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static void secp256k1_scalar_mul_shift_var(secp256k1_scalar_t *r, const secp256k1_scalar_t *a, const secp256k1_scalar_t *b, unsigned int shift) {
|
||||
SECP256K1_INLINE static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b, unsigned int shift) {
|
||||
uint64_t l[8];
|
||||
unsigned int shiftlimbs;
|
||||
unsigned int shiftlow;
|
||||
|
|
|
@ -12,7 +12,7 @@
|
|||
/** A scalar modulo the group order of the secp256k1 curve. */
|
||||
typedef struct {
|
||||
uint32_t d[8];
|
||||
} secp256k1_scalar_t;
|
||||
} secp256k1_scalar;
|
||||
|
||||
#define SECP256K1_SCALAR_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {{(d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7)}}
|
||||
|
||||
|
|
|
@ -34,7 +34,7 @@
|
|||
#define SECP256K1_N_H_6 ((uint32_t)0xFFFFFFFFUL)
|
||||
#define SECP256K1_N_H_7 ((uint32_t)0x7FFFFFFFUL)
|
||||
|
||||
SECP256K1_INLINE static void secp256k1_scalar_clear(secp256k1_scalar_t *r) {
|
||||
SECP256K1_INLINE static void secp256k1_scalar_clear(secp256k1_scalar *r) {
|
||||
r->d[0] = 0;
|
||||
r->d[1] = 0;
|
||||
r->d[2] = 0;
|
||||
|
@ -45,7 +45,7 @@ SECP256K1_INLINE static void secp256k1_scalar_clear(secp256k1_scalar_t *r) {
|
|||
r->d[7] = 0;
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static void secp256k1_scalar_set_int(secp256k1_scalar_t *r, unsigned int v) {
|
||||
SECP256K1_INLINE static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v) {
|
||||
r->d[0] = v;
|
||||
r->d[1] = 0;
|
||||
r->d[2] = 0;
|
||||
|
@ -56,12 +56,12 @@ SECP256K1_INLINE static void secp256k1_scalar_set_int(secp256k1_scalar_t *r, uns
|
|||
r->d[7] = 0;
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar_t *a, unsigned int offset, unsigned int count) {
|
||||
SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
|
||||
VERIFY_CHECK((offset + count - 1) >> 5 == offset >> 5);
|
||||
return (a->d[offset >> 5] >> (offset & 0x1F)) & ((1 << count) - 1);
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar_t *a, unsigned int offset, unsigned int count) {
|
||||
SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
|
||||
VERIFY_CHECK(count < 32);
|
||||
VERIFY_CHECK(offset + count <= 256);
|
||||
if ((offset + count - 1) >> 5 == offset >> 5) {
|
||||
|
@ -72,7 +72,7 @@ SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits_var(const secp256
|
|||
}
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static int secp256k1_scalar_check_overflow(const secp256k1_scalar_t *a) {
|
||||
SECP256K1_INLINE static int secp256k1_scalar_check_overflow(const secp256k1_scalar *a) {
|
||||
int yes = 0;
|
||||
int no = 0;
|
||||
no |= (a->d[7] < SECP256K1_N_7); /* No need for a > check. */
|
||||
|
@ -90,7 +90,7 @@ SECP256K1_INLINE static int secp256k1_scalar_check_overflow(const secp256k1_scal
|
|||
return yes;
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static int secp256k1_scalar_reduce(secp256k1_scalar_t *r, uint32_t overflow) {
|
||||
SECP256K1_INLINE static int secp256k1_scalar_reduce(secp256k1_scalar *r, uint32_t overflow) {
|
||||
uint64_t t;
|
||||
VERIFY_CHECK(overflow <= 1);
|
||||
t = (uint64_t)r->d[0] + overflow * SECP256K1_N_C_0;
|
||||
|
@ -112,7 +112,7 @@ SECP256K1_INLINE static int secp256k1_scalar_reduce(secp256k1_scalar_t *r, uint3
|
|||
return overflow;
|
||||
}
|
||||
|
||||
static int secp256k1_scalar_add(secp256k1_scalar_t *r, const secp256k1_scalar_t *a, const secp256k1_scalar_t *b) {
|
||||
static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) {
|
||||
int overflow;
|
||||
uint64_t t = (uint64_t)a->d[0] + b->d[0];
|
||||
r->d[0] = t & 0xFFFFFFFFULL; t >>= 32;
|
||||
|
@ -136,7 +136,7 @@ static int secp256k1_scalar_add(secp256k1_scalar_t *r, const secp256k1_scalar_t
|
|||
return overflow;
|
||||
}
|
||||
|
||||
static void secp256k1_scalar_cadd_bit(secp256k1_scalar_t *r, unsigned int bit, int flag) {
|
||||
static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag) {
|
||||
uint64_t t;
|
||||
VERIFY_CHECK(bit < 256);
|
||||
bit += ((uint32_t) flag - 1) & 0x100; /* forcing (bit >> 5) > 7 makes this a noop */
|
||||
|
@ -162,7 +162,7 @@ static void secp256k1_scalar_cadd_bit(secp256k1_scalar_t *r, unsigned int bit, i
|
|||
#endif
|
||||
}
|
||||
|
||||
static void secp256k1_scalar_set_b32(secp256k1_scalar_t *r, const unsigned char *b32, int *overflow) {
|
||||
static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *b32, int *overflow) {
|
||||
int over;
|
||||
r->d[0] = (uint32_t)b32[31] | (uint32_t)b32[30] << 8 | (uint32_t)b32[29] << 16 | (uint32_t)b32[28] << 24;
|
||||
r->d[1] = (uint32_t)b32[27] | (uint32_t)b32[26] << 8 | (uint32_t)b32[25] << 16 | (uint32_t)b32[24] << 24;
|
||||
|
@ -178,7 +178,7 @@ static void secp256k1_scalar_set_b32(secp256k1_scalar_t *r, const unsigned char
|
|||
}
|
||||
}
|
||||
|
||||
static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar_t* a) {
|
||||
static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a) {
|
||||
bin[0] = a->d[7] >> 24; bin[1] = a->d[7] >> 16; bin[2] = a->d[7] >> 8; bin[3] = a->d[7];
|
||||
bin[4] = a->d[6] >> 24; bin[5] = a->d[6] >> 16; bin[6] = a->d[6] >> 8; bin[7] = a->d[6];
|
||||
bin[8] = a->d[5] >> 24; bin[9] = a->d[5] >> 16; bin[10] = a->d[5] >> 8; bin[11] = a->d[5];
|
||||
|
@ -189,11 +189,11 @@ static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar_
|
|||
bin[28] = a->d[0] >> 24; bin[29] = a->d[0] >> 16; bin[30] = a->d[0] >> 8; bin[31] = a->d[0];
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static int secp256k1_scalar_is_zero(const secp256k1_scalar_t *a) {
|
||||
SECP256K1_INLINE static int secp256k1_scalar_is_zero(const secp256k1_scalar *a) {
|
||||
return (a->d[0] | a->d[1] | a->d[2] | a->d[3] | a->d[4] | a->d[5] | a->d[6] | a->d[7]) == 0;
|
||||
}
|
||||
|
||||
static void secp256k1_scalar_negate(secp256k1_scalar_t *r, const secp256k1_scalar_t *a) {
|
||||
static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a) {
|
||||
uint32_t nonzero = 0xFFFFFFFFUL * (secp256k1_scalar_is_zero(a) == 0);
|
||||
uint64_t t = (uint64_t)(~a->d[0]) + SECP256K1_N_0 + 1;
|
||||
r->d[0] = t & nonzero; t >>= 32;
|
||||
|
@ -213,11 +213,11 @@ static void secp256k1_scalar_negate(secp256k1_scalar_t *r, const secp256k1_scala
|
|||
r->d[7] = t & nonzero;
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static int secp256k1_scalar_is_one(const secp256k1_scalar_t *a) {
|
||||
SECP256K1_INLINE static int secp256k1_scalar_is_one(const secp256k1_scalar *a) {
|
||||
return ((a->d[0] ^ 1) | a->d[1] | a->d[2] | a->d[3] | a->d[4] | a->d[5] | a->d[6] | a->d[7]) == 0;
|
||||
}
|
||||
|
||||
static int secp256k1_scalar_is_high(const secp256k1_scalar_t *a) {
|
||||
static int secp256k1_scalar_is_high(const secp256k1_scalar *a) {
|
||||
int yes = 0;
|
||||
int no = 0;
|
||||
no |= (a->d[7] < SECP256K1_N_H_7);
|
||||
|
@ -235,7 +235,7 @@ static int secp256k1_scalar_is_high(const secp256k1_scalar_t *a) {
|
|||
return yes;
|
||||
}
|
||||
|
||||
static int secp256k1_scalar_cond_negate(secp256k1_scalar_t *r, int flag) {
|
||||
static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) {
|
||||
/* If we are flag = 0, mask = 00...00 and this is a no-op;
|
||||
* if we are flag = 1, mask = 11...11 and this is identical to secp256k1_scalar_negate */
|
||||
uint32_t mask = !flag - 1;
|
||||
|
@ -346,7 +346,7 @@ static int secp256k1_scalar_cond_negate(secp256k1_scalar_t *r, int flag) {
|
|||
VERIFY_CHECK(c2 == 0); \
|
||||
}
|
||||
|
||||
static void secp256k1_scalar_reduce_512(secp256k1_scalar_t *r, const uint32_t *l) {
|
||||
static void secp256k1_scalar_reduce_512(secp256k1_scalar *r, const uint32_t *l) {
|
||||
uint64_t c;
|
||||
uint32_t n0 = l[8], n1 = l[9], n2 = l[10], n3 = l[11], n4 = l[12], n5 = l[13], n6 = l[14], n7 = l[15];
|
||||
uint32_t m0, m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11, m12;
|
||||
|
@ -488,7 +488,7 @@ static void secp256k1_scalar_reduce_512(secp256k1_scalar_t *r, const uint32_t *l
|
|||
secp256k1_scalar_reduce(r, c + secp256k1_scalar_check_overflow(r));
|
||||
}
|
||||
|
||||
static void secp256k1_scalar_mul_512(uint32_t *l, const secp256k1_scalar_t *a, const secp256k1_scalar_t *b) {
|
||||
static void secp256k1_scalar_mul_512(uint32_t *l, const secp256k1_scalar *a, const secp256k1_scalar *b) {
|
||||
/* 96 bit accumulator. */
|
||||
uint32_t c0 = 0, c1 = 0, c2 = 0;
|
||||
|
||||
|
@ -576,7 +576,7 @@ static void secp256k1_scalar_mul_512(uint32_t *l, const secp256k1_scalar_t *a, c
|
|||
l[15] = c0;
|
||||
}
|
||||
|
||||
static void secp256k1_scalar_sqr_512(uint32_t *l, const secp256k1_scalar_t *a) {
|
||||
static void secp256k1_scalar_sqr_512(uint32_t *l, const secp256k1_scalar *a) {
|
||||
/* 96 bit accumulator. */
|
||||
uint32_t c0 = 0, c1 = 0, c2 = 0;
|
||||
|
||||
|
@ -644,13 +644,13 @@ static void secp256k1_scalar_sqr_512(uint32_t *l, const secp256k1_scalar_t *a) {
|
|||
#undef extract
|
||||
#undef extract_fast
|
||||
|
||||
static void secp256k1_scalar_mul(secp256k1_scalar_t *r, const secp256k1_scalar_t *a, const secp256k1_scalar_t *b) {
|
||||
static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) {
|
||||
uint32_t l[16];
|
||||
secp256k1_scalar_mul_512(l, a, b);
|
||||
secp256k1_scalar_reduce_512(r, l);
|
||||
}
|
||||
|
||||
static int secp256k1_scalar_shr_int(secp256k1_scalar_t *r, int n) {
|
||||
static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n) {
|
||||
int ret;
|
||||
VERIFY_CHECK(n > 0);
|
||||
VERIFY_CHECK(n < 16);
|
||||
|
@ -666,14 +666,14 @@ static int secp256k1_scalar_shr_int(secp256k1_scalar_t *r, int n) {
|
|||
return ret;
|
||||
}
|
||||
|
||||
static void secp256k1_scalar_sqr(secp256k1_scalar_t *r, const secp256k1_scalar_t *a) {
|
||||
static void secp256k1_scalar_sqr(secp256k1_scalar *r, const secp256k1_scalar *a) {
|
||||
uint32_t l[16];
|
||||
secp256k1_scalar_sqr_512(l, a);
|
||||
secp256k1_scalar_reduce_512(r, l);
|
||||
}
|
||||
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
static void secp256k1_scalar_split_128(secp256k1_scalar_t *r1, secp256k1_scalar_t *r2, const secp256k1_scalar_t *a) {
|
||||
static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) {
|
||||
r1->d[0] = a->d[0];
|
||||
r1->d[1] = a->d[1];
|
||||
r1->d[2] = a->d[2];
|
||||
|
@ -693,11 +693,11 @@ static void secp256k1_scalar_split_128(secp256k1_scalar_t *r1, secp256k1_scalar_
|
|||
}
|
||||
#endif
|
||||
|
||||
SECP256K1_INLINE static int secp256k1_scalar_eq(const secp256k1_scalar_t *a, const secp256k1_scalar_t *b) {
|
||||
SECP256K1_INLINE static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b) {
|
||||
return ((a->d[0] ^ b->d[0]) | (a->d[1] ^ b->d[1]) | (a->d[2] ^ b->d[2]) | (a->d[3] ^ b->d[3]) | (a->d[4] ^ b->d[4]) | (a->d[5] ^ b->d[5]) | (a->d[6] ^ b->d[6]) | (a->d[7] ^ b->d[7])) == 0;
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static void secp256k1_scalar_mul_shift_var(secp256k1_scalar_t *r, const secp256k1_scalar_t *a, const secp256k1_scalar_t *b, unsigned int shift) {
|
||||
SECP256K1_INLINE static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b, unsigned int shift) {
|
||||
uint32_t l[16];
|
||||
unsigned int shiftlimbs;
|
||||
unsigned int shiftlow;
|
||||
|
|
|
@ -25,14 +25,14 @@
|
|||
#endif
|
||||
|
||||
#ifndef USE_NUM_NONE
|
||||
static void secp256k1_scalar_get_num(secp256k1_num_t *r, const secp256k1_scalar_t *a) {
|
||||
static void secp256k1_scalar_get_num(secp256k1_num *r, const secp256k1_scalar *a) {
|
||||
unsigned char c[32];
|
||||
secp256k1_scalar_get_b32(c, a);
|
||||
secp256k1_num_set_bin(r, c, 32);
|
||||
}
|
||||
|
||||
/** secp256k1 curve order, see secp256k1_ecdsa_const_order_as_fe in ecdsa_impl.h */
|
||||
static void secp256k1_scalar_order_get_num(secp256k1_num_t *r) {
|
||||
static void secp256k1_scalar_order_get_num(secp256k1_num *r) {
|
||||
static const unsigned char order[32] = {
|
||||
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
||||
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,
|
||||
|
@ -43,11 +43,11 @@ static void secp256k1_scalar_order_get_num(secp256k1_num_t *r) {
|
|||
}
|
||||
#endif
|
||||
|
||||
static void secp256k1_scalar_inverse(secp256k1_scalar_t *r, const secp256k1_scalar_t *x) {
|
||||
secp256k1_scalar_t *t;
|
||||
static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *x) {
|
||||
secp256k1_scalar *t;
|
||||
int i;
|
||||
/* First compute x ^ (2^N - 1) for some values of N. */
|
||||
secp256k1_scalar_t x2, x3, x4, x6, x7, x8, x15, x30, x60, x120, x127;
|
||||
secp256k1_scalar x2, x3, x4, x6, x7, x8, x15, x30, x60, x120, x127;
|
||||
|
||||
secp256k1_scalar_sqr(&x2, x);
|
||||
secp256k1_scalar_mul(&x2, &x2, x);
|
||||
|
@ -234,18 +234,18 @@ static void secp256k1_scalar_inverse(secp256k1_scalar_t *r, const secp256k1_scal
|
|||
secp256k1_scalar_mul(r, t, &x6); /* 111111 */
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static int secp256k1_scalar_is_even(const secp256k1_scalar_t *a) {
|
||||
SECP256K1_INLINE static int secp256k1_scalar_is_even(const secp256k1_scalar *a) {
|
||||
/* d[0] is present and is the lowest word for all representations */
|
||||
return !(a->d[0] & 1);
|
||||
}
|
||||
|
||||
static void secp256k1_scalar_inverse_var(secp256k1_scalar_t *r, const secp256k1_scalar_t *x) {
|
||||
static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *x) {
|
||||
#if defined(USE_SCALAR_INV_BUILTIN)
|
||||
secp256k1_scalar_inverse(r, x);
|
||||
#elif defined(USE_SCALAR_INV_NUM)
|
||||
unsigned char b[32];
|
||||
secp256k1_num_t n, m;
|
||||
secp256k1_scalar_t t = *x;
|
||||
secp256k1_num n, m;
|
||||
secp256k1_scalar t = *x;
|
||||
secp256k1_scalar_get_b32(b, &t);
|
||||
secp256k1_num_set_bin(&n, b, 32);
|
||||
secp256k1_scalar_order_get_num(&m);
|
||||
|
@ -299,25 +299,25 @@ static void secp256k1_scalar_inverse_var(secp256k1_scalar_t *r, const secp256k1_
|
|||
* The function below splits a in r1 and r2, such that r1 + lambda * r2 == a (mod order).
|
||||
*/
|
||||
|
||||
static void secp256k1_scalar_split_lambda(secp256k1_scalar_t *r1, secp256k1_scalar_t *r2, const secp256k1_scalar_t *a) {
|
||||
secp256k1_scalar_t c1, c2;
|
||||
static const secp256k1_scalar_t minus_lambda = SECP256K1_SCALAR_CONST(
|
||||
static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) {
|
||||
secp256k1_scalar c1, c2;
|
||||
static const secp256k1_scalar minus_lambda = SECP256K1_SCALAR_CONST(
|
||||
0xAC9C52B3UL, 0x3FA3CF1FUL, 0x5AD9E3FDUL, 0x77ED9BA4UL,
|
||||
0xA880B9FCUL, 0x8EC739C2UL, 0xE0CFC810UL, 0xB51283CFUL
|
||||
);
|
||||
static const secp256k1_scalar_t minus_b1 = SECP256K1_SCALAR_CONST(
|
||||
static const secp256k1_scalar minus_b1 = SECP256K1_SCALAR_CONST(
|
||||
0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00000000UL,
|
||||
0xE4437ED6UL, 0x010E8828UL, 0x6F547FA9UL, 0x0ABFE4C3UL
|
||||
);
|
||||
static const secp256k1_scalar_t minus_b2 = SECP256K1_SCALAR_CONST(
|
||||
static const secp256k1_scalar minus_b2 = SECP256K1_SCALAR_CONST(
|
||||
0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL,
|
||||
0x8A280AC5UL, 0x0774346DUL, 0xD765CDA8UL, 0x3DB1562CUL
|
||||
);
|
||||
static const secp256k1_scalar_t g1 = SECP256K1_SCALAR_CONST(
|
||||
static const secp256k1_scalar g1 = SECP256K1_SCALAR_CONST(
|
||||
0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00003086UL,
|
||||
0xD221A7D4UL, 0x6BCDE86CUL, 0x90E49284UL, 0xEB153DABUL
|
||||
);
|
||||
static const secp256k1_scalar_t g2 = SECP256K1_SCALAR_CONST(
|
||||
static const secp256k1_scalar g2 = SECP256K1_SCALAR_CONST(
|
||||
0x00000000UL, 0x00000000UL, 0x00000000UL, 0x0000E443UL,
|
||||
0x7ED6010EUL, 0x88286F54UL, 0x7FA90ABFUL, 0xE4C42212UL
|
||||
);
|
||||
|
|
144
src/secp256k1.c
144
src/secp256k1.c
|
@ -22,7 +22,7 @@
|
|||
|
||||
#define ARG_CHECK(cond) do { \
|
||||
if (EXPECT(!(cond), 0)) { \
|
||||
secp256k1_callback(&ctx->illegal_callback, #cond); \
|
||||
secp256k1_callback_call(&ctx->illegal_callback, #cond); \
|
||||
return 0; \
|
||||
} \
|
||||
} while(0)
|
||||
|
@ -33,7 +33,7 @@ static void default_illegal_callback_fn(const char* str, void* data) {
|
|||
abort();
|
||||
}
|
||||
|
||||
static const callback_t default_illegal_callback = {
|
||||
static const secp256k1_callback default_illegal_callback = {
|
||||
default_illegal_callback_fn,
|
||||
NULL
|
||||
};
|
||||
|
@ -44,21 +44,21 @@ static void default_error_callback_fn(const char* str, void* data) {
|
|||
abort();
|
||||
}
|
||||
|
||||
static const callback_t default_error_callback = {
|
||||
static const secp256k1_callback default_error_callback = {
|
||||
default_error_callback_fn,
|
||||
NULL
|
||||
};
|
||||
|
||||
|
||||
struct secp256k1_context_struct {
|
||||
secp256k1_ecmult_context_t ecmult_ctx;
|
||||
secp256k1_ecmult_gen_context_t ecmult_gen_ctx;
|
||||
callback_t illegal_callback;
|
||||
callback_t error_callback;
|
||||
secp256k1_ecmult_context ecmult_ctx;
|
||||
secp256k1_ecmult_gen_context ecmult_gen_ctx;
|
||||
secp256k1_callback illegal_callback;
|
||||
secp256k1_callback error_callback;
|
||||
};
|
||||
|
||||
secp256k1_context_t* secp256k1_context_create(unsigned int flags) {
|
||||
secp256k1_context_t* ret = (secp256k1_context_t*)checked_malloc(&default_error_callback, sizeof(secp256k1_context_t));
|
||||
secp256k1_context* secp256k1_context_create(unsigned int flags) {
|
||||
secp256k1_context* ret = (secp256k1_context*)checked_malloc(&default_error_callback, sizeof(secp256k1_context));
|
||||
ret->illegal_callback = default_illegal_callback;
|
||||
ret->error_callback = default_error_callback;
|
||||
|
||||
|
@ -75,8 +75,8 @@ secp256k1_context_t* secp256k1_context_create(unsigned int flags) {
|
|||
return ret;
|
||||
}
|
||||
|
||||
secp256k1_context_t* secp256k1_context_clone(const secp256k1_context_t* ctx) {
|
||||
secp256k1_context_t* ret = (secp256k1_context_t*)checked_malloc(&ctx->error_callback, sizeof(secp256k1_context_t));
|
||||
secp256k1_context* secp256k1_context_clone(const secp256k1_context* ctx) {
|
||||
secp256k1_context* ret = (secp256k1_context*)checked_malloc(&ctx->error_callback, sizeof(secp256k1_context));
|
||||
ret->illegal_callback = ctx->illegal_callback;
|
||||
ret->error_callback = ctx->error_callback;
|
||||
secp256k1_ecmult_context_clone(&ret->ecmult_ctx, &ctx->ecmult_ctx, &ctx->error_callback);
|
||||
|
@ -84,7 +84,7 @@ secp256k1_context_t* secp256k1_context_clone(const secp256k1_context_t* ctx) {
|
|||
return ret;
|
||||
}
|
||||
|
||||
void secp256k1_context_destroy(secp256k1_context_t* ctx) {
|
||||
void secp256k1_context_destroy(secp256k1_context* ctx) {
|
||||
if (ctx) {
|
||||
secp256k1_ecmult_context_clear(&ctx->ecmult_ctx);
|
||||
secp256k1_ecmult_gen_context_clear(&ctx->ecmult_gen_ctx);
|
||||
|
@ -93,7 +93,7 @@ void secp256k1_context_destroy(secp256k1_context_t* ctx) {
|
|||
}
|
||||
}
|
||||
|
||||
void secp256k1_context_set_illegal_callback(secp256k1_context_t* ctx, void (*fun)(const char* message, void* data), const void* data) {
|
||||
void secp256k1_context_set_illegal_callback(secp256k1_context* ctx, void (*fun)(const char* message, void* data), const void* data) {
|
||||
if (!fun) {
|
||||
fun = default_illegal_callback_fn;
|
||||
}
|
||||
|
@ -101,7 +101,7 @@ void secp256k1_context_set_illegal_callback(secp256k1_context_t* ctx, void (*fun
|
|||
ctx->illegal_callback.data = data;
|
||||
}
|
||||
|
||||
void secp256k1_context_set_error_callback(secp256k1_context_t* ctx, void (*fun)(const char* message, void* data), const void* data) {
|
||||
void secp256k1_context_set_error_callback(secp256k1_context* ctx, void (*fun)(const char* message, void* data), const void* data) {
|
||||
if (!fun) {
|
||||
fun = default_error_callback_fn;
|
||||
}
|
||||
|
@ -109,17 +109,17 @@ void secp256k1_context_set_error_callback(secp256k1_context_t* ctx, void (*fun)(
|
|||
ctx->error_callback.data = data;
|
||||
}
|
||||
|
||||
static int secp256k1_pubkey_load(const secp256k1_context_t* ctx, secp256k1_ge_t* ge, const secp256k1_pubkey_t* pubkey) {
|
||||
if (sizeof(secp256k1_ge_storage_t) == 64) {
|
||||
/* When the secp256k1_ge_storage_t type is exactly 64 byte, use its
|
||||
* representation inside secp256k1_pubkey_t, as conversion is very fast.
|
||||
static int secp256k1_pubkey_load(const secp256k1_context* ctx, secp256k1_ge* ge, const secp256k1_pubkey* pubkey) {
|
||||
if (sizeof(secp256k1_ge_storage) == 64) {
|
||||
/* When the secp256k1_ge_storage type is exactly 64 byte, use its
|
||||
* representation inside secp256k1_pubkey, as conversion is very fast.
|
||||
* Note that secp256k1_pubkey_save must use the same representation. */
|
||||
secp256k1_ge_storage_t s;
|
||||
secp256k1_ge_storage s;
|
||||
memcpy(&s, &pubkey->data[0], 64);
|
||||
secp256k1_ge_from_storage(ge, &s);
|
||||
} else {
|
||||
/* Otherwise, fall back to 32-byte big endian for X and Y. */
|
||||
secp256k1_fe_t x, y;
|
||||
secp256k1_fe x, y;
|
||||
secp256k1_fe_set_b32(&x, pubkey->data);
|
||||
secp256k1_fe_set_b32(&y, pubkey->data + 32);
|
||||
secp256k1_ge_set_xy(ge, &x, &y);
|
||||
|
@ -128,9 +128,9 @@ static int secp256k1_pubkey_load(const secp256k1_context_t* ctx, secp256k1_ge_t*
|
|||
return 1;
|
||||
}
|
||||
|
||||
static void secp256k1_pubkey_save(secp256k1_pubkey_t* pubkey, secp256k1_ge_t* ge) {
|
||||
if (sizeof(secp256k1_ge_storage_t) == 64) {
|
||||
secp256k1_ge_storage_t s;
|
||||
static void secp256k1_pubkey_save(secp256k1_pubkey* pubkey, secp256k1_ge* ge) {
|
||||
if (sizeof(secp256k1_ge_storage) == 64) {
|
||||
secp256k1_ge_storage s;
|
||||
secp256k1_ge_to_storage(&s, ge);
|
||||
memcpy(&pubkey->data[0], &s, 64);
|
||||
} else {
|
||||
|
@ -142,8 +142,8 @@ static void secp256k1_pubkey_save(secp256k1_pubkey_t* pubkey, secp256k1_ge_t* ge
|
|||
}
|
||||
}
|
||||
|
||||
int secp256k1_ec_pubkey_parse(const secp256k1_context_t* ctx, secp256k1_pubkey_t* pubkey, const unsigned char *input, size_t inputlen) {
|
||||
secp256k1_ge_t Q;
|
||||
int secp256k1_ec_pubkey_parse(const secp256k1_context* ctx, secp256k1_pubkey* pubkey, const unsigned char *input, size_t inputlen) {
|
||||
secp256k1_ge Q;
|
||||
|
||||
(void)ctx;
|
||||
if (!secp256k1_eckey_pubkey_parse(&Q, input, inputlen)) {
|
||||
|
@ -155,19 +155,19 @@ int secp256k1_ec_pubkey_parse(const secp256k1_context_t* ctx, secp256k1_pubkey_t
|
|||
return 1;
|
||||
}
|
||||
|
||||
int secp256k1_ec_pubkey_serialize(const secp256k1_context_t* ctx, unsigned char *output, size_t *outputlen, const secp256k1_pubkey_t* pubkey, unsigned int flags) {
|
||||
secp256k1_ge_t Q;
|
||||
int secp256k1_ec_pubkey_serialize(const secp256k1_context* ctx, unsigned char *output, size_t *outputlen, const secp256k1_pubkey* pubkey, unsigned int flags) {
|
||||
secp256k1_ge Q;
|
||||
|
||||
(void)ctx;
|
||||
return (secp256k1_pubkey_load(ctx, &Q, pubkey) &&
|
||||
secp256k1_eckey_pubkey_serialize(&Q, output, outputlen, flags));
|
||||
}
|
||||
|
||||
static void secp256k1_ecdsa_signature_load(const secp256k1_context_t* ctx, secp256k1_scalar_t* r, secp256k1_scalar_t* s, const secp256k1_ecdsa_signature_t* sig) {
|
||||
static void secp256k1_ecdsa_signature_load(const secp256k1_context* ctx, secp256k1_scalar* r, secp256k1_scalar* s, const secp256k1_ecdsa_signature* sig) {
|
||||
(void)ctx;
|
||||
if (sizeof(secp256k1_scalar_t) == 32) {
|
||||
/* When the secp256k1_scalar_t type is exactly 32 byte, use its
|
||||
* representation inside secp256k1_ecdsa_signature_t, as conversion is very fast.
|
||||
if (sizeof(secp256k1_scalar) == 32) {
|
||||
/* When the secp256k1_scalar type is exactly 32 byte, use its
|
||||
* representation inside secp256k1_ecdsa_signature, as conversion is very fast.
|
||||
* Note that secp256k1_ecdsa_signature_save must use the same representation. */
|
||||
memcpy(r, &sig->data[0], 32);
|
||||
memcpy(s, &sig->data[32], 32);
|
||||
|
@ -177,8 +177,8 @@ static void secp256k1_ecdsa_signature_load(const secp256k1_context_t* ctx, secp2
|
|||
}
|
||||
}
|
||||
|
||||
static void secp256k1_ecdsa_signature_save(secp256k1_ecdsa_signature_t* sig, const secp256k1_scalar_t* r, const secp256k1_scalar_t* s) {
|
||||
if (sizeof(secp256k1_scalar_t) == 32) {
|
||||
static void secp256k1_ecdsa_signature_save(secp256k1_ecdsa_signature* sig, const secp256k1_scalar* r, const secp256k1_scalar* s) {
|
||||
if (sizeof(secp256k1_scalar) == 32) {
|
||||
memcpy(&sig->data[0], r, 32);
|
||||
memcpy(&sig->data[32], s, 32);
|
||||
} else {
|
||||
|
@ -187,8 +187,8 @@ static void secp256k1_ecdsa_signature_save(secp256k1_ecdsa_signature_t* sig, con
|
|||
}
|
||||
}
|
||||
|
||||
int secp256k1_ecdsa_signature_parse_der(const secp256k1_context_t* ctx, secp256k1_ecdsa_signature_t* sig, const unsigned char *input, size_t inputlen) {
|
||||
secp256k1_scalar_t r, s;
|
||||
int secp256k1_ecdsa_signature_parse_der(const secp256k1_context* ctx, secp256k1_ecdsa_signature* sig, const unsigned char *input, size_t inputlen) {
|
||||
secp256k1_scalar r, s;
|
||||
|
||||
(void)ctx;
|
||||
ARG_CHECK(sig != NULL);
|
||||
|
@ -203,8 +203,8 @@ int secp256k1_ecdsa_signature_parse_der(const secp256k1_context_t* ctx, secp256k
|
|||
}
|
||||
}
|
||||
|
||||
int secp256k1_ecdsa_signature_serialize_der(const secp256k1_context_t* ctx, unsigned char *output, size_t *outputlen, const secp256k1_ecdsa_signature_t* sig) {
|
||||
secp256k1_scalar_t r, s;
|
||||
int secp256k1_ecdsa_signature_serialize_der(const secp256k1_context* ctx, unsigned char *output, size_t *outputlen, const secp256k1_ecdsa_signature* sig) {
|
||||
secp256k1_scalar r, s;
|
||||
|
||||
(void)ctx;
|
||||
ARG_CHECK(output != NULL);
|
||||
|
@ -215,10 +215,10 @@ int secp256k1_ecdsa_signature_serialize_der(const secp256k1_context_t* ctx, unsi
|
|||
return secp256k1_ecdsa_sig_serialize(output, outputlen, &r, &s);
|
||||
}
|
||||
|
||||
int secp256k1_ecdsa_verify(const secp256k1_context_t* ctx, const secp256k1_ecdsa_signature_t *sig, const unsigned char *msg32, const secp256k1_pubkey_t *pubkey) {
|
||||
secp256k1_ge_t q;
|
||||
secp256k1_scalar_t r, s;
|
||||
secp256k1_scalar_t m;
|
||||
int secp256k1_ecdsa_verify(const secp256k1_context* ctx, const secp256k1_ecdsa_signature *sig, const unsigned char *msg32, const secp256k1_pubkey *pubkey) {
|
||||
secp256k1_ge q;
|
||||
secp256k1_scalar r, s;
|
||||
secp256k1_scalar m;
|
||||
VERIFY_CHECK(ctx != NULL);
|
||||
ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
|
||||
ARG_CHECK(msg32 != NULL);
|
||||
|
@ -262,12 +262,12 @@ static int nonce_function_rfc6979(unsigned char *nonce32, const unsigned char *m
|
|||
return 1;
|
||||
}
|
||||
|
||||
const secp256k1_nonce_function_t secp256k1_nonce_function_rfc6979 = nonce_function_rfc6979;
|
||||
const secp256k1_nonce_function_t secp256k1_nonce_function_default = nonce_function_rfc6979;
|
||||
const secp256k1_nonce_function secp256k1_nonce_function_rfc6979 = nonce_function_rfc6979;
|
||||
const secp256k1_nonce_function secp256k1_nonce_function_default = nonce_function_rfc6979;
|
||||
|
||||
int secp256k1_ecdsa_sign(const secp256k1_context_t* ctx, secp256k1_ecdsa_signature_t *signature, const unsigned char *msg32, const unsigned char *seckey, secp256k1_nonce_function_t noncefp, const void* noncedata) {
|
||||
secp256k1_scalar_t r, s;
|
||||
secp256k1_scalar_t sec, non, msg;
|
||||
int secp256k1_ecdsa_sign(const secp256k1_context* ctx, secp256k1_ecdsa_signature *signature, const unsigned char *msg32, const unsigned char *seckey, secp256k1_nonce_function noncefp, const void* noncedata) {
|
||||
secp256k1_scalar r, s;
|
||||
secp256k1_scalar sec, non, msg;
|
||||
int ret = 0;
|
||||
int overflow = 0;
|
||||
unsigned int count = 0;
|
||||
|
@ -311,8 +311,8 @@ int secp256k1_ecdsa_sign(const secp256k1_context_t* ctx, secp256k1_ecdsa_signatu
|
|||
return ret;
|
||||
}
|
||||
|
||||
int secp256k1_ec_seckey_verify(const secp256k1_context_t* ctx, const unsigned char *seckey) {
|
||||
secp256k1_scalar_t sec;
|
||||
int secp256k1_ec_seckey_verify(const secp256k1_context* ctx, const unsigned char *seckey) {
|
||||
secp256k1_scalar sec;
|
||||
int ret;
|
||||
int overflow;
|
||||
VERIFY_CHECK(ctx != NULL);
|
||||
|
@ -325,10 +325,10 @@ int secp256k1_ec_seckey_verify(const secp256k1_context_t* ctx, const unsigned ch
|
|||
return ret;
|
||||
}
|
||||
|
||||
int secp256k1_ec_pubkey_create(const secp256k1_context_t* ctx, secp256k1_pubkey_t *pubkey, const unsigned char *seckey) {
|
||||
secp256k1_gej_t pj;
|
||||
secp256k1_ge_t p;
|
||||
secp256k1_scalar_t sec;
|
||||
int secp256k1_ec_pubkey_create(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *seckey) {
|
||||
secp256k1_gej pj;
|
||||
secp256k1_ge p;
|
||||
secp256k1_scalar sec;
|
||||
int overflow;
|
||||
int ret = 0;
|
||||
VERIFY_CHECK(ctx != NULL);
|
||||
|
@ -348,9 +348,9 @@ int secp256k1_ec_pubkey_create(const secp256k1_context_t* ctx, secp256k1_pubkey_
|
|||
return ret;
|
||||
}
|
||||
|
||||
int secp256k1_ec_privkey_tweak_add(const secp256k1_context_t* ctx, unsigned char *seckey, const unsigned char *tweak) {
|
||||
secp256k1_scalar_t term;
|
||||
secp256k1_scalar_t sec;
|
||||
int secp256k1_ec_privkey_tweak_add(const secp256k1_context* ctx, unsigned char *seckey, const unsigned char *tweak) {
|
||||
secp256k1_scalar term;
|
||||
secp256k1_scalar sec;
|
||||
int ret = 0;
|
||||
int overflow = 0;
|
||||
VERIFY_CHECK(ctx != NULL);
|
||||
|
@ -371,9 +371,9 @@ int secp256k1_ec_privkey_tweak_add(const secp256k1_context_t* ctx, unsigned char
|
|||
return ret;
|
||||
}
|
||||
|
||||
int secp256k1_ec_pubkey_tweak_add(const secp256k1_context_t* ctx, secp256k1_pubkey_t *pubkey, const unsigned char *tweak) {
|
||||
secp256k1_ge_t p;
|
||||
secp256k1_scalar_t term;
|
||||
int secp256k1_ec_pubkey_tweak_add(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *tweak) {
|
||||
secp256k1_ge p;
|
||||
secp256k1_scalar term;
|
||||
int ret = 0;
|
||||
int overflow = 0;
|
||||
VERIFY_CHECK(ctx != NULL);
|
||||
|
@ -394,9 +394,9 @@ int secp256k1_ec_pubkey_tweak_add(const secp256k1_context_t* ctx, secp256k1_pubk
|
|||
return ret;
|
||||
}
|
||||
|
||||
int secp256k1_ec_privkey_tweak_mul(const secp256k1_context_t* ctx, unsigned char *seckey, const unsigned char *tweak) {
|
||||
secp256k1_scalar_t factor;
|
||||
secp256k1_scalar_t sec;
|
||||
int secp256k1_ec_privkey_tweak_mul(const secp256k1_context* ctx, unsigned char *seckey, const unsigned char *tweak) {
|
||||
secp256k1_scalar factor;
|
||||
secp256k1_scalar sec;
|
||||
int ret = 0;
|
||||
int overflow = 0;
|
||||
VERIFY_CHECK(ctx != NULL);
|
||||
|
@ -416,9 +416,9 @@ int secp256k1_ec_privkey_tweak_mul(const secp256k1_context_t* ctx, unsigned char
|
|||
return ret;
|
||||
}
|
||||
|
||||
int secp256k1_ec_pubkey_tweak_mul(const secp256k1_context_t* ctx, secp256k1_pubkey_t *pubkey, const unsigned char *tweak) {
|
||||
secp256k1_ge_t p;
|
||||
secp256k1_scalar_t factor;
|
||||
int secp256k1_ec_pubkey_tweak_mul(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *tweak) {
|
||||
secp256k1_ge p;
|
||||
secp256k1_scalar factor;
|
||||
int ret = 0;
|
||||
int overflow = 0;
|
||||
VERIFY_CHECK(ctx != NULL);
|
||||
|
@ -439,8 +439,8 @@ int secp256k1_ec_pubkey_tweak_mul(const secp256k1_context_t* ctx, secp256k1_pubk
|
|||
return ret;
|
||||
}
|
||||
|
||||
int secp256k1_ec_privkey_export(const secp256k1_context_t* ctx, unsigned char *privkey, size_t *privkeylen, const unsigned char *seckey, unsigned int flags) {
|
||||
secp256k1_scalar_t key;
|
||||
int secp256k1_ec_privkey_export(const secp256k1_context* ctx, unsigned char *privkey, size_t *privkeylen, const unsigned char *seckey, unsigned int flags) {
|
||||
secp256k1_scalar key;
|
||||
int ret = 0;
|
||||
VERIFY_CHECK(ctx != NULL);
|
||||
ARG_CHECK(seckey != NULL);
|
||||
|
@ -454,8 +454,8 @@ int secp256k1_ec_privkey_export(const secp256k1_context_t* ctx, unsigned char *p
|
|||
return ret;
|
||||
}
|
||||
|
||||
int secp256k1_ec_privkey_import(const secp256k1_context_t* ctx, unsigned char *seckey, const unsigned char *privkey, size_t privkeylen) {
|
||||
secp256k1_scalar_t key;
|
||||
int secp256k1_ec_privkey_import(const secp256k1_context* ctx, unsigned char *seckey, const unsigned char *privkey, size_t privkeylen) {
|
||||
secp256k1_scalar key;
|
||||
int ret = 0;
|
||||
ARG_CHECK(seckey != NULL);
|
||||
ARG_CHECK(privkey != NULL);
|
||||
|
@ -469,17 +469,17 @@ int secp256k1_ec_privkey_import(const secp256k1_context_t* ctx, unsigned char *s
|
|||
return ret;
|
||||
}
|
||||
|
||||
int secp256k1_context_randomize(secp256k1_context_t* ctx, const unsigned char *seed32) {
|
||||
int secp256k1_context_randomize(secp256k1_context* ctx, const unsigned char *seed32) {
|
||||
VERIFY_CHECK(ctx != NULL);
|
||||
ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
|
||||
secp256k1_ecmult_gen_blind(&ctx->ecmult_gen_ctx, seed32);
|
||||
return 1;
|
||||
}
|
||||
|
||||
int secp256k1_ec_pubkey_combine(const secp256k1_context_t* ctx, secp256k1_pubkey_t *pubnonce, const secp256k1_pubkey_t * const *pubnonces, int n) {
|
||||
int secp256k1_ec_pubkey_combine(const secp256k1_context* ctx, secp256k1_pubkey *pubnonce, const secp256k1_pubkey * const *pubnonces, int n) {
|
||||
int i;
|
||||
secp256k1_gej_t Qj;
|
||||
secp256k1_ge_t Q;
|
||||
secp256k1_gej Qj;
|
||||
secp256k1_ge Q;
|
||||
|
||||
ARG_CHECK(pubnonce != NULL);
|
||||
ARG_CHECK(n >= 1);
|
||||
|
|
474
src/tests.c
474
src/tests.c
File diff suppressed because it is too large
Load diff
|
@ -18,9 +18,9 @@
|
|||
typedef struct {
|
||||
void (*fn)(const char *text, void* data);
|
||||
const void* data;
|
||||
} callback_t;
|
||||
} secp256k1_callback;
|
||||
|
||||
static SECP256K1_INLINE void secp256k1_callback(const callback_t * const cb, const char * const text) {
|
||||
static SECP256K1_INLINE void secp256k1_callback_call(const secp256k1_callback * const cb, const char * const text) {
|
||||
cb->fn(text, (void*)cb->data);
|
||||
}
|
||||
|
||||
|
@ -65,10 +65,10 @@ static SECP256K1_INLINE void secp256k1_callback(const callback_t * const cb, con
|
|||
#define VERIFY_SETUP(stmt)
|
||||
#endif
|
||||
|
||||
static SECP256K1_INLINE void *checked_malloc(const callback_t* cb, size_t size) {
|
||||
static SECP256K1_INLINE void *checked_malloc(const secp256k1_callback* cb, size_t size) {
|
||||
void *ret = malloc(size);
|
||||
if (ret == NULL) {
|
||||
secp256k1_callback(cb, "Out of memory");
|
||||
secp256k1_callback_call(cb, "Out of memory");
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
|
Loading…
Add table
Reference in a new issue