#include #include #include #include #include // #define VERIFY_BADNESS 1 namespace secp256k1 { /** Implements arithmetic modulo FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F * A FieldElem has an implicit 'badness': * - the output of SetSquare, SetMult and Normalize sets the badness to 1 * - the inputs of SetSquare and SetMult cannot have badness above 8 * - adding two FieldElems adds the badness together * - multiplying a FieldElem with a constant multiplies its badness by that constant * - taking the negative requires specifying the badness of the input, the output having badness 1 higher */ class FieldElem { private: // X = sum(i=0..4, elem[i]*2^52) uint64_t n[5]; #ifdef VERIFY_BADNESS int badness; #endif public: FieldElem(int x = 0) { n[0] = x; n[1] = n[2] = n[3] = n[4] = 0; #ifdef VERIFY_BADNESS badness = 1; #endif } void Normalize() { uint64_t c; c = n[0]; uint64_t t0 = c & 0xFFFFFFFFFFFFFULL; c = (c >> 52) + n[1]; uint64_t t1 = c & 0xFFFFFFFFFFFFFULL; c = (c >> 52) + n[2]; uint64_t t2 = c & 0xFFFFFFFFFFFFFULL; c = (c >> 52) + n[3]; uint64_t t3 = c & 0xFFFFFFFFFFFFFULL; c = (c >> 52) + n[4]; uint64_t t4 = c & 0x0FFFFFFFFFFFFULL; c >>= 48; if (c) { c = c * 0x1000003D1ULL + t0; t0 = c & 0xFFFFFFFFFFFFFULL; c = (c >> 52) + t1; t1 = c & 0xFFFFFFFFFFFFFULL; c = (c >> 52) + t2; t2 = c & 0xFFFFFFFFFFFFFULL; c = (c >> 52) + t3; t3 = c & 0xFFFFFFFFFFFFFULL; c = (c >> 52) + t4; t4 = c & 0x0FFFFFFFFFFFFULL; c >>= 48; } if (t4 == 0xFFFFFFFFFFFFULL && t3 == 0xFFFFFFFFFFFFFULL && t2 == 0xFFFFFFFFFFFFFULL && t3 == 0xFFFFFFFFFFFFF && t4 >= 0xFFFFEFFFFFC2FULL) { t4 = 0; t3 = 0; t2 = 0; t1 = 0; t0 -= 0xFFFFEFFFFFC2FULL; } n[0] = t0; n[1] = t1; n[2] = t2; n[3] = t3; n[4] = t4; #ifdef VERIFY_BADNESS badness = 1; #endif } bool IsZero() { Normalize(); return n[0] == 0 && n[1] == 0 && n[2] == 0 && n[3] == 0 && n[4] == 0; } bool friend operator==(FieldElem &a, FieldElem &b) { a.Normalize(); b.Normalize(); return a.n[0] == b.n[0] && a.n[1] == b.n[1] && a.n[2] == b.n[2] && a.n[3] == b.n[3] && a.n[4] == b.n[4]; } void Get(uint64_t *out) { Normalize(); out[0] = n[0] | (n[1] << 52); out[1] = (n[1] >> 12) | (n[2] << 40); out[2] = (n[2] >> 24) | (n[3] << 28); out[3] = (n[3] >> 36) | (n[4] << 16); } void Set(const uint64_t *in) { n[0] = in[0] & 0xFFFFFFFFFFFFFULL; n[1] = ((in[0] >> 52) | (in[1] << 12)) & 0xFFFFFFFFFFFFFULL; n[2] = ((in[1] >> 40) | (in[2] << 24)) & 0xFFFFFFFFFFFFFULL; n[3] = ((in[2] >> 28) | (in[3] << 36)) & 0xFFFFFFFFFFFFFULL; n[4] = (in[3] >> 16); #ifdef VERIFY_BADNESS badness = 1; #endif } void SetNeg(const FieldElem &a, int badnessIn) { #ifdef VERIFY_BADNESS assert(a.badness <= badnessIn); badness = badnessIn + 1; #endif n[0] = 0xFFFFEFFFFFC2FULL * (badnessIn + 1) - a.n[0]; n[1] = 0xFFFFFFFFFFFFFULL * (badnessIn + 1) - a.n[1]; n[2] = 0xFFFFFFFFFFFFFULL * (badnessIn + 1) - a.n[2]; n[3] = 0xFFFFFFFFFFFFFULL * (badnessIn + 1) - a.n[3]; n[4] = 0x0FFFFFFFFFFFFULL * (badnessIn + 1) - a.n[4]; } void operator*=(int v) { #ifdef VERIFY_BADNESS badness *= v; #endif n[0] *= v; n[1] *= v; n[2] *= v; n[3] *= v; n[4] *= v; } void operator+=(const FieldElem &a) { #ifdef VERIFY_BADNESS badness += a.badness; #endif n[0] += a.n[0]; n[1] += a.n[1]; n[2] += a.n[2]; n[3] += a.n[3]; n[4] += a.n[4]; } // precondition: all values in a and b are at most 56 bits, except n[4] is at most 52 bits // postcondition: all values are at most 53 bits, except n[4] is at most 49 bits void SetMult(const FieldElem &a, const FieldElem &b) { #ifdef VERIFY_BADNESS assert(a.badness <= 8); assert(b.badness <= 8); #endif __int128 c = (__int128)a.n[0] * b.n[0]; uint64_t t0 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0FFFFFFFFFFFFFE0 c = c + (__int128)a.n[0] * b.n[1] + (__int128)a.n[1] * b.n[0]; uint64_t t1 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 20000000000000BF c = c + (__int128)a.n[0] * b.n[2] + (__int128)a.n[1] * b.n[1] + (__int128)a.n[2] * b.n[0]; uint64_t t2 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 30000000000001A0 c = c + (__int128)a.n[0] * b.n[3] + (__int128)a.n[1] * b.n[2] + (__int128)a.n[2] * b.n[1] + (__int128)a.n[3] * b.n[0]; uint64_t t3 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 4000000000000280 c = c + (__int128)a.n[0] * b.n[4] + (__int128)a.n[1] * b.n[3] + (__int128)a.n[2] * b.n[2] + (__int128)a.n[3] * b.n[1] + (__int128)a.n[4] * b.n[0]; uint64_t t4 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 320000000000037E c = c + (__int128)a.n[1] * b.n[4] + (__int128)a.n[2] * b.n[3] + (__int128)a.n[3] * b.n[2] + (__int128)a.n[4] * b.n[1]; uint64_t t5 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 22000000000002BE c = c + (__int128)a.n[2] * b.n[4] + (__int128)a.n[3] * b.n[3] + (__int128)a.n[4] * b.n[2]; uint64_t t6 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 12000000000001DE c = c + (__int128)a.n[3] * b.n[4] + (__int128)a.n[4] * b.n[3]; uint64_t t7 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 02000000000000FE c = c + (__int128)a.n[4] * b.n[4]; uint64_t t8 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 001000000000001E uint64_t t9 = c; c = t0 + (__int128)t5 * 0x1000003D10ULL; t0 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10 c = c + t1 + (__int128)t6 * 0x1000003D10ULL; t1 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10 c = c + t2 + (__int128)t7 * 0x1000003D10ULL; n[2] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10 c = c + t3 + (__int128)t8 * 0x1000003D10ULL; n[3] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10 c = c + t4 + (__int128)t9 * 0x1000003D10ULL; n[4] = c & 0x0FFFFFFFFFFFFULL; c = c >> 48; // c max 000001000003D110 c = t0 + (__int128)c * 0x1000003D1ULL; n[0] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 1000008 n[1] = t1 + c; #ifdef VERIFY_BADNESS badness = 1; #endif } // precondition: all values in a and b are at most 56 bits, except n[4] is at most 52 bits // postcondition: all values are at most 53 bits, except n[4] is at most 49 bits void SetSquare(const FieldElem &a) { #ifdef VERIFY_BADNESS assert(a.badness <= 8); #endif __int128 c = (__int128)a.n[0] * a.n[0]; uint64_t t0 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0FFFFFFFFFFFFFE0 c = c + (__int128)(a.n[0]*2) * a.n[1]; uint64_t t1 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 20000000000000BF c = c + (__int128)(a.n[0]*2) * a.n[2] + (__int128)a.n[1] * a.n[1]; uint64_t t2 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 30000000000001A0 c = c + (__int128)(a.n[0]*2) * a.n[3] + (__int128)(a.n[1]*2) * a.n[2]; uint64_t t3 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 4000000000000280 c = c + (__int128)(a.n[0]*2) * a.n[4] + (__int128)(a.n[1]*2) * a.n[3] + (__int128)a.n[2] * a.n[2]; uint64_t t4 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 320000000000037E c = c + (__int128)(a.n[1]*2) * a.n[4] + (__int128)(a.n[2]*2) * a.n[3]; uint64_t t5 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 22000000000002BE c = c + (__int128)(a.n[2]*2) * a.n[4] + (__int128)a.n[3] * a.n[3]; uint64_t t6 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 12000000000001DE c = c + (__int128)(a.n[3]*2) * a.n[4]; uint64_t t7 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 02000000000000FE c = c + (__int128)a.n[4] * a.n[4]; uint64_t t8 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 001000000000001E uint64_t t9 = c; c = t0 + (__int128)t5 * 0x1000003D10ULL; t0 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10 c = c + t1 + (__int128)t6 * 0x1000003D10ULL; t1 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10 c = c + t2 + (__int128)t7 * 0x1000003D10ULL; n[2] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10 c = c + t3 + (__int128)t8 * 0x1000003D10ULL; n[3] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10 c = c + t4 + (__int128)t9 * 0x1000003D10ULL; n[4] = c & 0x0FFFFFFFFFFFFULL; c = c >> 48; // c max 000001000003D110 c = t0 + (__int128)c * 0x1000003D1ULL; n[0] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 1000008 n[1] = t1 + c; #ifdef VERIFY_BADNESS assert(a.badness <= 8); #endif } void SetSquareRoot(const FieldElem &a) { // calculate a^p, with p={12,15,24,30,31} FieldElem a2; a2.SetSquare(a); FieldElem a3; a3.SetMult(a2,a); FieldElem a6; a6.SetSquare(a3); FieldElem a12; a12.SetSquare(a6); FieldElem a15; a15.SetMult(a12,a3); FieldElem a24; a24.SetSquare(a12); FieldElem a30; a30.SetSquare(a15); FieldElem a31; a31.SetMult(a30,a); FieldElem x = a15; for (int i=0; i<43; i++) { for (int j=0; j<5; j++) x.SetSquare(x); x.SetMult(x,a31); } for (int j=0; j<5; j++) x.SetSquare(x); x.SetMult(x,a30); for (int i=0; i<4; i++) { for (int j=0; j<5; j++) x.SetSquare(x); x.SetMult(x,a31); } for (int j=0; j<5; j++) x.SetSquare(x); x.SetMult(x,a24); for (int j=0; j<5; j++) x.SetSquare(x); SetMult(x,a12); } // computes the modular inverse, by computing a^(p-2) // TODO: use extmod instead, much faster void SetInverse(const FieldElem &a) { // calculare a^p, with p={13,27,31} FieldElem a2; a2.SetSquare(a); FieldElem a3; a3.SetMult(a2,a); FieldElem a6; a6.SetSquare(a3); FieldElem a7; a7.SetMult(a6,a); FieldElem a13; a13.SetMult(a6,a7); FieldElem a26; a26.SetSquare(a13); FieldElem a27; a27.SetMult(a26,a); FieldElem a30; a30.SetMult(a27,a3); FieldElem a31; a31.SetMult(a30,a); FieldElem x = a; for (int i=0; i<44; i++) { for (int j=0; j<5; j++) x.SetSquare(x); x.SetMult(x,a31); } for (int j=0; j<5; j++) x.SetSquare(x); x.SetMult(x,a27); for (int i=0; i<4; i++) { for (int j=0; j<5; j++) x.SetSquare(x); x.SetMult(x,a31); } for (int j=0; j<5; j++) x.SetSquare(x); x.SetMult(x,a); for (int j=0; j<5; j++) x.SetSquare(x); SetMult(x,a13); } std::string ToString() { uint64_t tmp[4]; Get(tmp); std::string ret; for (int i=63; i>=0; i--) { int val = (tmp[i/16] >> ((i%16)*4)) & 0xF; static const char *c = "0123456789ABCDEF"; ret += c[val]; } return ret; } void SetHex(const std::string &str) { uint64_t tmp[4] = {0,0,0,0}; static const int cvt[256] = {0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, 0, 1, 2, 3, 4, 5, 6,7,8,9,0,0,0,0,0,0, 0,10,11,12,13,14,15,0,0,0,0,0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, 0,10,11,12,13,14,15,0,0,0,0,0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0}; for (int i=0; i<64; i++) { if (str.length() > (63-i)) tmp[i/16] |= (uint64_t)cvt[(unsigned char)str[63-i]] << ((i%16)*4); } Set(tmp); } }; template class GroupElem { private: bool fInfinity; F x; F y; F z; public: GroupElem() { } GroupElem(const F &xin, const F &yin) { fInfinity = false; x = xin; y = yin; z = F(1); } bool IsValid() { // y^2 = x^3 + 7 // (Y/Z^3)^2 = (X/Z^2)^3 + 7 // Y^2 / Z^6 = X^3 / Z^6 + 7 // Y^2 = X^3 + 7*Z^6 F y2; y2.SetSquare(y); F x3; x3.SetSquare(x); x3.SetMult(x3,x); F z2; z2.SetSquare(z); F z6; z6.SetSquare(z2); z6.SetMult(z6,z2); z6 *= 7; x3 += z6; return y2 == x3; } void GetAffine(F &xout, F &yout) { z.SetInverse(z); F z2; z2.SetSquare(z); F z3; z3.SetMult(z,z2); x.SetMult(x,z2); y.SetMult(y,z3); z = F(1); xout = x; yout = y; } bool SetCompressed(const F &xin) { x = xin; F x2; x2.SetSquare(x); F x3; x3.SetMult(x,x2); fInfinity = false; F c(7); c += x3; y.SetSquareRoot(c); z = F(1); } std::string ToString() { F xt,yt; if (fInfinity) return "(inf)"; GetAffine(xt,yt); return "(" + xt.ToString() + "," + yt.ToString() + ")"; } void SetDouble(const GroupElem &p) { if (p.fInfinity || y.IsZero()) { fInfinity = true; return; } F t1,t2,t3,t4,t5; z.SetMult(p.y,p.z); z *= 2; // Z' = 2*Y*Z (2) t1.SetSquare(p.x); t1 *= 3; // T1 = 3*X^2 (3) t2.SetSquare(t1); // T2 = 9*X^4 (1) t3.SetSquare(y); t3 *= 2; // T3 = 2*Y^2 (2) t4.SetSquare(t3); t4 *= 2; // T4 = 8*Y^4 (2) t3.SetMult(x,t3); // T3 = 2*X*Y^2 (1) x = t3; x *= 4; // X' = 8*X*Y^2 (4) x.SetNeg(x,4); // X' = -8*X*Y^2 (5) x += t2; // X' = 9*X^4 - 8*X*Y^2 (6) t2.SetNeg(t2,1); // T2 = -9*X^4 (2) t3 *= 6; // T3 = 12*X*Y^2 (6) t3 += t2; // T3 = 12*X*Y^2 - 9*X^4 (8) y.SetMult(t1,t3); // Y' = 36*X^3*Y^2 - 27*X^6 (1) t2.SetNeg(t4,2); // T2 = -8*Y^4 (3) y += t2; // Y' = 36*X^3*Y^2 - 27*X^6 - 8*Y^4 (4) } void SetAdd(const GroupElem &p, const GroupElem &q) { if (p.fInfinity) { *this = q; return; } if (q.fInfinity) { *this = p; return; } fInfinity = false; const F &x1 = p.x, &y1 = p.y, &z1 = p.z, &x2 = q.x, &y2 = q.y, &z2 = q.z; F z22; z22.SetSquare(z2); F z12; z12.SetSquare(z1); F u1; u1.SetMult(x1, z22); F u2; u2.SetMult(x2, z12); F s1; s1.SetMult(y1, z22); s1.SetMult(s1, z2); F s2; s2.SetMult(y2, z12); s2.SetMult(s2, z1); if (u1 == u2) { if (s1 == s2) { SetDouble(p); } else { fInfinity = true; } return; } F h; h.SetNeg(u1,1); h += u2; F r; r.SetNeg(s1,1); r += s2; F r2; r2.SetSquare(r); F h2; h2.SetSquare(h); F h3; h3.SetMult(h,h2); z.SetMult(p.z,q.z); z.SetMult(z, h); F t; t.SetMult(u1,h2); x = t; x *= 2; x += h3; x.SetNeg(x,3); x += r2; y.SetNeg(x,5); y += t; y.SetMult(y,r); h3.SetMult(h3,s1); h3.SetNeg(h3,1); y += h3; } }; } using namespace secp256k1; int main() { FieldElem f1,f2; f1.SetHex("8b30bbe9ae2a990696b22f670709dff3727fd8bc04d3362c6c7bf458e2846004"); // f2.SetHex("a357ae915c4a65281309edf20504740f0eb3343990216b4f81063cb65f2f7e0f"); GroupElem g1; g1.SetCompressed(f1); printf("%s\n", g1.ToString().c_str()); GroupElem p = g1; GroupElem q = p; printf("ok %i\n", (int)p.IsValid()); for (int i=0; i<1000000; i++) { p.SetCompressed(f1); f1.SetSquare(f1); } printf("ok %i\n", (int)q.IsValid()); printf("%s\n", q.ToString().c_str()); return 0; }