// Copyright (c) 2013-2014 Pieter Wuille // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef _SECP256K1_ECMULT_GEN_IMPL_H_ #define _SECP256K1_ECMULT_GEN_IMPL_H_ #include #include "num.h" #include "group.h" #include "ecmult_gen.h" typedef struct { // For accelerating the computation of a*G: // To harden against timing attacks, use the following mechanism: // * Break up the multiplicand into groups of 4 bits, called n_0, n_1, n_2, ..., n_63. // * Compute sum(n_i * 16^i * G + U_i, i=0..63), where: // * U_i = U * 2^i (for i=0..62) // * U_i = U * (1-2^63) (for i=63) // where U is a point with no known corresponding scalar. Note that sum(U_i, i=0..63) = 0. // For each i, and each of the 16 possible values of n_i, (n_i * 16^i * G + U_i) is // precomputed (call it prec(i, n_i)). The formula now becomes sum(prec(i, n_i), i=0..63). // None of the resulting prec group elements have a known scalar, and neither do any of // the intermediate sums while computing a*G. // To make memory access uniform, the bytes of prec(i, n_i) are sliced per value of n_i. unsigned char prec[64][sizeof(secp256k1_ge_t)][16]; // prec[j][k][i] = k'th byte of (16^j * i * G + U_i) } secp256k1_ecmult_gen_consts_t; static const secp256k1_ecmult_gen_consts_t *secp256k1_ecmult_gen_consts = NULL; static void secp256k1_ecmult_gen_start(void) { if (secp256k1_ecmult_gen_consts != NULL) return; // Allocate the precomputation table. secp256k1_ecmult_gen_consts_t *ret = (secp256k1_ecmult_gen_consts_t*)malloc(sizeof(secp256k1_ecmult_gen_consts_t)); // get the generator const secp256k1_ge_t *g = &secp256k1_ge_consts->g; secp256k1_gej_t gj; secp256k1_gej_set_ge(&gj, g); // Construct a group element with no known corresponding scalar (nothing up my sleeve). secp256k1_gej_t nums_gej; { static const unsigned char nums_b32[32] = "The scalar for this x is unknown"; secp256k1_fe_t nums_x; secp256k1_fe_set_b32(&nums_x, nums_b32); secp256k1_ge_t nums_ge; VERIFY_CHECK(secp256k1_ge_set_xo(&nums_ge, &nums_x, 0)); secp256k1_gej_set_ge(&nums_gej, &nums_ge); // Add G to make the bits in x uniformly distributed. secp256k1_gej_add_ge(&nums_gej, &nums_gej, g); } // compute prec. secp256k1_ge_t prec[1024]; { secp256k1_gej_t precj[1024]; // Jacobian versions of prec. int j = 0; secp256k1_gej_t gbase; gbase = gj; // 16^j * G secp256k1_gej_t numsbase; numsbase = nums_gej; // 2^j * nums. for (int j=0; j<64; j++) { // Set precj[j*16 .. j*16+15] to (numsbase, numsbase + gbase, ..., numsbase + 15*gbase). precj[j*16] = numsbase; for (int i=1; i<16; i++) { secp256k1_gej_add(&precj[j*16 + i], &precj[j*16 + i - 1], &gbase); } // Multiply gbase by 16. for (int i=0; i<4; i++) { secp256k1_gej_double(&gbase, &gbase); } // Multiply numbase by 2. secp256k1_gej_double(&numsbase, &numsbase); if (j == 62) { // In the last iteration, numsbase is (1 - 2^j) * nums instead. secp256k1_gej_neg(&numsbase, &numsbase); secp256k1_gej_add(&numsbase, &numsbase, &nums_gej); } } secp256k1_ge_set_all_gej(1024, prec, precj); } for (int j=0; j<64; j++) { for (int i=0; i<16; i++) { const unsigned char* raw = (const unsigned char*)(&prec[j*16 + i]); for (int k=0; kprec[j][k][i] = raw[k]; } } // Set the global pointer to the precomputation table. secp256k1_ecmult_gen_consts = ret; } static void secp256k1_ecmult_gen_stop(void) { if (secp256k1_ecmult_gen_consts == NULL) return; secp256k1_ecmult_gen_consts_t *c = (secp256k1_ecmult_gen_consts_t*)secp256k1_ecmult_gen_consts; secp256k1_ecmult_gen_consts = NULL; free(c); } void static secp256k1_ecmult_gen(secp256k1_gej_t *r, const secp256k1_num_t *gn) { secp256k1_num_t n; secp256k1_num_init(&n); secp256k1_num_copy(&n, gn); const secp256k1_ecmult_gen_consts_t *c = secp256k1_ecmult_gen_consts; secp256k1_gej_set_infinity(r); secp256k1_ge_t add; int bits; for (int j=0; j<64; j++) { bits = secp256k1_num_shift(&n, 4); for (int k=0; kprec[j][k][bits]; secp256k1_gej_add_ge(r, r, &add); } bits = 0; secp256k1_ge_clear(&add); secp256k1_num_clear(&n); secp256k1_num_free(&n); } #endif