// Copyright (c) 2013 Pieter Wuille // Distributed under the MIT/X11 software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef _SECP256K1_ECMULT_IMPL_H_ #define _SECP256K1_ECMULT_IMPL_H_ #include #include "num.h" #include "group.h" #include "ecmult.h" // optimal for 128-bit and 256-bit exponents. #define WINDOW_A 5 // larger numbers may result in slightly better performance, at the cost of // exponentially larger precomputed tables. WINDOW_G == 14 results in 640 KiB. #define WINDOW_G 14 /** Fill a table 'pre' with precomputed odd multiples of a. W determines the size of the table. * pre will contains the values [1*a,3*a,5*a,...,(2^(w-1)-1)*a], so it needs place for * 2^(w-2) entries. * * There are two versions of this function: * - secp256k1_ecmult_precomp_wnaf_gej, which operates on group elements in jacobian notation, * fast to precompute, but slower to use in later additions. * - secp256k1_ecmult_precomp_wnaf_ge, which operates on group elements in affine notations, * (much) slower to precompute, but a bit faster to use in later additions. * To compute a*P + b*G, we use the jacobian version for P, and the affine version for G, as * G is constant, so it only needs to be done once in advance. */ void static secp256k1_ecmult_table_precomp_gej(secp256k1_gej_t *pre, const secp256k1_gej_t *a, int w) { pre[0] = *a; secp256k1_gej_t d; secp256k1_gej_double(&d, &pre[0]); for (int i=1; i<(1 << (w-2)); i++) secp256k1_gej_add(&pre[i], &d, &pre[i-1]); } void static secp256k1_ecmult_table_precomp_ge(secp256k1_ge_t *pre, const secp256k1_gej_t *a, int w) { const int table_size = 1 << (w-2); secp256k1_gej_t prej[table_size]; prej[0] = *a; secp256k1_gej_t d; secp256k1_gej_double(&d, a); for (int i=1; i= -((1 << ((w)-1)) - 1)); \ VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \ if ((n) > 0) \ *(r) = (pre)[((n)-1)/2]; \ else \ (neg)((r), &(pre)[(-(n)-1)/2]); \ } while(0) #define ECMULT_TABLE_GET_GEJ(r,pre,n,w) ECMULT_TABLE_GET((r),(pre),(n),(w),secp256k1_gej_neg) #define ECMULT_TABLE_GET_GE(r,pre,n,w) ECMULT_TABLE_GET((r),(pre),(n),(w),secp256k1_ge_neg) typedef struct { // For accelerating the computation of a*P + b*G: secp256k1_ge_t pre_g[ECMULT_TABLE_SIZE(WINDOW_G)]; // odd multiples of the generator secp256k1_ge_t pre_g_128[ECMULT_TABLE_SIZE(WINDOW_G)]; // odd multiples of 2^128*generator } secp256k1_ecmult_consts_t; typedef struct { // For accelerating the computation of a*G: // To harden against timing attacks, use the following mechanism: // * Break up the multiplicand into groups of 4 bits, called n_0, n_1, n_2, ..., n_63. // * Compute sum(n_i * 16^i * G + U_i, i=0..63), where: // * U_i = U * 2^i (for i=0..62) // * U_i = U * (1-2^63) (for i=63) // where U is a point with no known corresponding scalar. Note that sum(U_i, i=0..63) = 0. // For each i, and each of the 16 possible values of n_i, (n_i * 16^i * G + U_i) is // precomputed (call it prec(i, n_i)). The formula now becomes sum(prec(i, n_i), i=0..63). // None of the resulting prec group elements have a known scalar, and neither do any of // the intermediate sums while computing a*G. // To make memory access uniform, the bytes of prec(i, n_i) are sliced per value of n_i. unsigned char prec[64][sizeof(secp256k1_ge_t)][16]; // prec[j][k][i] = k'th byte of (16^j * i * G + U_i) } secp256k1_ecmult_gen_consts_t; static const secp256k1_ecmult_consts_t *secp256k1_ecmult_consts = NULL; static const secp256k1_ecmult_gen_consts_t *secp256k1_ecmult_gen_consts = NULL; static void secp256k1_ecmult_start(void) { if (secp256k1_ecmult_consts != NULL) return; // Allocate the precomputation table. secp256k1_ecmult_consts_t *ret = (secp256k1_ecmult_consts_t*)malloc(sizeof(secp256k1_ecmult_consts_t)); // get the generator const secp256k1_ge_t *g = &secp256k1_ge_consts->g; secp256k1_gej_t gj; secp256k1_gej_set_ge(&gj, g); // calculate 2^128*generator secp256k1_gej_t g_128j = gj; for (int i=0; i<128; i++) secp256k1_gej_double(&g_128j, &g_128j); // precompute the tables with odd multiples secp256k1_ecmult_table_precomp_ge(ret->pre_g, &gj, WINDOW_G); secp256k1_ecmult_table_precomp_ge(ret->pre_g_128, &g_128j, WINDOW_G); // Set the global pointer to the precomputation table. secp256k1_ecmult_consts = ret; } static void secp256k1_ecmult_gen_start(void) { if (secp256k1_ecmult_gen_consts != NULL) return; // Allocate the precomputation table. secp256k1_ecmult_gen_consts_t *ret = (secp256k1_ecmult_gen_consts_t*)malloc(sizeof(secp256k1_ecmult_gen_consts_t)); // get the generator const secp256k1_ge_t *g = &secp256k1_ge_consts->g; secp256k1_gej_t gj; secp256k1_gej_set_ge(&gj, g); // Construct a group element with no known corresponding scalar (nothing up my sleeve). secp256k1_gej_t nums_gej; { static const unsigned char nums_b32[32] = "The scalar for this x is unknown"; secp256k1_fe_t nums_x; secp256k1_fe_set_b32(&nums_x, nums_b32); secp256k1_ge_t nums_ge; VERIFY_CHECK(secp256k1_ge_set_xo(&nums_ge, &nums_x, 0)); secp256k1_gej_set_ge(&nums_gej, &nums_ge); // Add G to make the bits in x uniformly distributed. secp256k1_gej_add_ge(&nums_gej, &nums_gej, g); } // compute prec. secp256k1_ge_t prec[1024]; { secp256k1_gej_t precj[1024]; // Jacobian versions of prec. int j = 0; secp256k1_gej_t gbase; gbase = gj; // 16^j * G secp256k1_gej_t numsbase; numsbase = nums_gej; // 2^j * nums. for (int j=0; j<64; j++) { // Set precj[j*16 .. j*16+15] to (numsbase, numsbase + gbase, ..., numsbase + 15*gbase). precj[j*16] = numsbase; for (int i=1; i<16; i++) { secp256k1_gej_add(&precj[j*16 + i], &precj[j*16 + i - 1], &gbase); } // Multiply gbase by 16. for (int i=0; i<4; i++) { secp256k1_gej_double(&gbase, &gbase); } // Multiply numbase by 2. secp256k1_gej_double(&numsbase, &numsbase); if (j == 62) { // In the last iteration, numsbase is (1 - 2^j) * nums instead. secp256k1_gej_neg(&numsbase, &numsbase); secp256k1_gej_add(&numsbase, &numsbase, &nums_gej); } } secp256k1_ge_set_all_gej(1024, prec, precj); } for (int j=0; j<64; j++) { for (int i=0; i<16; i++) { const unsigned char* raw = (const unsigned char*)(&prec[j*16 + i]); for (int k=0; kprec[j][k][i] = raw[k]; } } // Set the global pointer to the precomputation table. secp256k1_ecmult_gen_consts = ret; } static void secp256k1_ecmult_stop(void) { if (secp256k1_ecmult_consts == NULL) return; secp256k1_ecmult_consts_t *c = (secp256k1_ecmult_consts_t*)secp256k1_ecmult_consts; secp256k1_ecmult_consts = NULL; free(c); } static void secp256k1_ecmult_gen_stop(void) { if (secp256k1_ecmult_gen_consts == NULL) return; secp256k1_ecmult_gen_consts_t *c = (secp256k1_ecmult_gen_consts_t*)secp256k1_ecmult_gen_consts; secp256k1_ecmult_gen_consts = NULL; free(c); } /** Convert a number to WNAF notation. The number becomes represented by sum(2^i * wnaf[i], i=0..bits), * with the following guarantees: * - each wnaf[i] is either 0, or an odd integer between -(1<<(w-1) - 1) and (1<<(w-1) - 1) * - two non-zero entries in wnaf are separated by at least w-1 zeroes. * - the index of the highest non-zero entry in wnaf (=return value-1) is at most bits, where * bits is the number of bits necessary to represent the absolute value of the input. */ static int secp256k1_ecmult_wnaf(int *wnaf, const secp256k1_num_t *a, int w) { int ret = 0; int zeroes = 0; secp256k1_num_t x; secp256k1_num_init(&x); secp256k1_num_copy(&x, a); int sign = 1; if (secp256k1_num_is_neg(&x)) { sign = -1; secp256k1_num_negate(&x); } while (!secp256k1_num_is_zero(&x)) { while (!secp256k1_num_is_odd(&x)) { zeroes++; secp256k1_num_shift(&x, 1); } int word = secp256k1_num_shift(&x, w); while (zeroes) { wnaf[ret++] = 0; zeroes--; } if (word & (1 << (w-1))) { secp256k1_num_inc(&x); wnaf[ret++] = sign * (word - (1 << w)); } else { wnaf[ret++] = sign * word; } zeroes = w-1; } secp256k1_num_free(&x); return ret; } void static secp256k1_ecmult_gen(secp256k1_gej_t *r, const secp256k1_num_t *gn) { secp256k1_num_t n; secp256k1_num_init(&n); secp256k1_num_copy(&n, gn); const secp256k1_ecmult_gen_consts_t *c = secp256k1_ecmult_gen_consts; secp256k1_gej_set_infinity(r); secp256k1_ge_t add; int bits; for (int j=0; j<64; j++) { bits = secp256k1_num_shift(&n, 4); for (int k=0; kprec[j][k][bits]; secp256k1_gej_add_ge(r, r, &add); } bits = 0; secp256k1_ge_clear(&add); secp256k1_num_clear(&n); secp256k1_num_free(&n); } void static secp256k1_ecmult(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_num_t *na, const secp256k1_num_t *ng) { const secp256k1_ecmult_consts_t *c = secp256k1_ecmult_consts; #ifdef USE_ENDOMORPHISM secp256k1_num_t na_1, na_lam; secp256k1_num_init(&na_1); secp256k1_num_init(&na_lam); // split na into na_1 and na_lam (where na = na_1 + na_lam*lambda, and na_1 and na_lam are ~128 bit) secp256k1_gej_split_exp(&na_1, &na_lam, na); // build wnaf representation for na_1 and na_lam. int wnaf_na_1[129]; int bits_na_1 = secp256k1_ecmult_wnaf(wnaf_na_1, &na_1, WINDOW_A); int wnaf_na_lam[129]; int bits_na_lam = secp256k1_ecmult_wnaf(wnaf_na_lam, &na_lam, WINDOW_A); int bits = bits_na_1; if (bits_na_lam > bits) bits = bits_na_lam; #else // build wnaf representation for na. int wnaf_na[257]; int bits_na = secp256k1_ecmult_wnaf(wnaf_na, na, WINDOW_A); int bits = bits_na; #endif // calculate odd multiples of a secp256k1_gej_t pre_a[ECMULT_TABLE_SIZE(WINDOW_A)]; secp256k1_ecmult_table_precomp_gej(pre_a, a, WINDOW_A); #ifdef USE_ENDOMORPHISM secp256k1_gej_t pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)]; for (int i=0; i bits) bits = bits_ng_1; if (bits_ng_128 > bits) bits = bits_ng_128; secp256k1_gej_set_infinity(r); secp256k1_gej_t tmpj; secp256k1_ge_t tmpa; for (int i=bits-1; i>=0; i--) { secp256k1_gej_double(r, r); int n; #ifdef USE_ENDOMORPHISM if (i < bits_na_1 && (n = wnaf_na_1[i])) { ECMULT_TABLE_GET_GEJ(&tmpj, pre_a, n, WINDOW_A); secp256k1_gej_add(r, r, &tmpj); } if (i < bits_na_lam && (n = wnaf_na_lam[i])) { ECMULT_TABLE_GET_GEJ(&tmpj, pre_a_lam, n, WINDOW_A); secp256k1_gej_add(r, r, &tmpj); } #else if (i < bits_na && (n = wnaf_na[i])) { ECMULT_TABLE_GET_GEJ(&tmpj, pre_a, n, WINDOW_A); secp256k1_gej_add(r, r, &tmpj); } #endif if (i < bits_ng_1 && (n = wnaf_ng_1[i])) { ECMULT_TABLE_GET_GE(&tmpa, c->pre_g, n, WINDOW_G); secp256k1_gej_add_ge(r, r, &tmpa); } if (i < bits_ng_128 && (n = wnaf_ng_128[i])) { ECMULT_TABLE_GET_GE(&tmpa, c->pre_g_128, n, WINDOW_G); secp256k1_gej_add_ge(r, r, &tmpa); } } #ifdef USE_ENDOMORPHISM secp256k1_num_free(&na_1); secp256k1_num_free(&na_lam); #endif secp256k1_num_free(&ng_1); secp256k1_num_free(&ng_128); } #endif