/********************************************************************** * Copyright (c) 2015 Pieter Wuille, Andrew Poelstra * * Distributed under the MIT software license, see the accompanying * * file COPYING or http://www.opensource.org/licenses/mit-license.php.* **********************************************************************/ #ifndef _SECP256K1_ECMULT_CONST_IMPL_ #define _SECP256K1_ECMULT_CONST_IMPL_ #include "scalar.h" #include "group.h" #include "ecmult_const.h" #include "ecmult_impl.h" #define WNAF_BITS 256 #define WNAF_SIZE(w) ((WNAF_BITS + (w) - 1) / (w)) /* This is like `ECMULT_TABLE_GET_GE` but is constant time */ #define ECMULT_CONST_TABLE_GET_GE(r,pre,n,w) do { \ int m; \ int abs_n = (n) * (((n) > 0) * 2 - 1); \ secp256k1_fe_t neg_y; \ VERIFY_CHECK(((n) & 1) == 1); \ VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \ VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \ for (m = 1; m < (1 << ((w) - 1)); m += 2) { \ /* This loop is used to avoid secret data in array indices. See * the comment in ecmult_gen_impl.h for rationale. */ \ secp256k1_fe_cmov(&(r)->x, &(pre)[(m - 1) / 2].x, m == abs_n); \ secp256k1_fe_cmov(&(r)->y, &(pre)[(m - 1) / 2].y, m == abs_n); \ } \ (r)->infinity = 0; \ secp256k1_fe_normalize_weak(&(r)->x); \ secp256k1_fe_normalize_weak(&(r)->y); \ secp256k1_fe_negate(&neg_y, &(r)->y, 1); \ secp256k1_fe_cmov(&(r)->y, &neg_y, (n) != abs_n); \ } while(0) /** Convert a number to WNAF notation. The number becomes represented by sum(2^{wi} * wnaf[i], i=0..return_val) * with the following guarantees: * - each wnaf[i] an odd integer between -(1 << w) and (1 << w) * - each wnaf[i] is nonzero * - the number of words set is returned; this is always (WNAF_BITS + w - 1) / w * * Adapted from `The Width-w NAF Method Provides Small Memory and Fast Elliptic Scalar * Multiplications Secure against Side Channel Attacks`, Okeya and Tagaki. M. Joye (Ed.) * CT-RSA 2003, LNCS 2612, pp. 328-443, 2003. Springer-Verlagy Berlin Heidelberg 2003 * * Numbers reference steps of `Algorithm SPA-resistant Width-w NAF with Odd Scalar` on pp. 335 */ static void secp256k1_wnaf_const(int *wnaf, const secp256k1_scalar_t *a, int w) { secp256k1_scalar_t s = *a; /* Negate to force oddness */ int is_even = secp256k1_scalar_is_even(&s); int global_sign = secp256k1_scalar_cond_negate(&s, is_even); int word = 0; /* 1 2 3 */ int u_last = secp256k1_scalar_shr_int(&s, w); int u; /* 4 */ while (word * w < WNAF_BITS) { int sign; int even; /* 4.1 4.4 */ u = secp256k1_scalar_shr_int(&s, w); /* 4.2 */ even = ((u & 1) == 0); sign = 2 * (u_last > 0) - 1; u += sign * even; u_last -= sign * even * (1 << w); /* 4.3, adapted for global sign change */ wnaf[word++] = u_last * global_sign; u_last = u; } wnaf[word] = u * global_sign; VERIFY_CHECK(secp256k1_scalar_is_zero(&s)); VERIFY_CHECK(word == WNAF_SIZE(w)); } static void secp256k1_ecmult_const(secp256k1_gej_t *r, const secp256k1_ge_t *a, const secp256k1_scalar_t *scalar) { secp256k1_ge_t pre_a[ECMULT_TABLE_SIZE(WINDOW_A)]; secp256k1_ge_t tmpa; secp256k1_fe_t Z; int wnaf[1 + WNAF_SIZE(WINDOW_A - 1)]; int i; int is_zero = secp256k1_scalar_is_zero(scalar); secp256k1_scalar_t sc = *scalar; /* the wNAF ladder cannot handle zero, so bump this to one .. we will * correct the result after the fact */ sc.d[0] += is_zero; /* build wnaf representation for q. */ secp256k1_wnaf_const(wnaf, &sc, WINDOW_A - 1); /* Calculate odd multiples of a. * All multiples are brought to the same Z 'denominator', which is stored * in Z. Due to secp256k1' isomorphism we can do all operations pretending * that the Z coordinate was 1, use affine addition formulae, and correct * the Z coordinate of the result once at the end. */ secp256k1_gej_set_ge(r, a); secp256k1_ecmult_odd_multiples_table_globalz_windowa(pre_a, &Z, r); /* first loop iteration (separated out so we can directly set r, rather * than having it start at infinity, get doubled several times, then have * its new value added to it) */ i = wnaf[WNAF_SIZE(WINDOW_A - 1)]; VERIFY_CHECK(i != 0); ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, i, WINDOW_A); secp256k1_gej_set_ge(r, &tmpa); /* remaining loop iterations */ for (i = WNAF_SIZE(WINDOW_A - 1) - 1; i >= 0; i--) { int n; int j; for (j = 0; j < WINDOW_A - 1; ++j) { secp256k1_gej_double_nonzero(r, r, NULL); } n = wnaf[i]; VERIFY_CHECK(n != 0); ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A); secp256k1_gej_add_ge(r, r, &tmpa); } secp256k1_fe_mul(&r->z, &r->z, &Z); /* correct for zero */ r->infinity |= is_zero; } #endif