mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-02-03 09:56:38 -05:00
83933eff00
Refactored a variable name to be less confusing
441 lines
21 KiB
C++
441 lines
21 KiB
C++
// Copyright (c) 2023 The Bitcoin Core developers
|
||
// Distributed under the MIT software license, see the accompanying
|
||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||
|
||
#include <node/mini_miner.h>
|
||
|
||
#include <boost/multi_index/detail/hash_index_iterator.hpp>
|
||
#include <boost/operators.hpp>
|
||
#include <consensus/amount.h>
|
||
#include <policy/feerate.h>
|
||
#include <primitives/transaction.h>
|
||
#include <sync.h>
|
||
#include <txmempool.h>
|
||
#include <uint256.h>
|
||
#include <util/check.h>
|
||
|
||
#include <algorithm>
|
||
#include <numeric>
|
||
#include <utility>
|
||
|
||
namespace node {
|
||
|
||
MiniMiner::MiniMiner(const CTxMemPool& mempool, const std::vector<COutPoint>& outpoints)
|
||
{
|
||
LOCK(mempool.cs);
|
||
// Find which outpoints to calculate bump fees for.
|
||
// Anything that's spent by the mempool is to-be-replaced
|
||
// Anything otherwise unavailable just has a bump fee of 0
|
||
for (const auto& outpoint : outpoints) {
|
||
if (!mempool.exists(GenTxid::Txid(outpoint.hash))) {
|
||
// This UTXO is either confirmed or not yet submitted to mempool.
|
||
// If it's confirmed, no bump fee is required.
|
||
// If it's not yet submitted, we have no information, so return 0.
|
||
m_bump_fees.emplace(outpoint, 0);
|
||
continue;
|
||
}
|
||
|
||
// UXTO is created by transaction in mempool, add to map.
|
||
// Note: This will either create a missing entry or add the outpoint to an existing entry
|
||
m_requested_outpoints_by_txid[outpoint.hash].push_back(outpoint);
|
||
|
||
if (const auto ptx{mempool.GetConflictTx(outpoint)}) {
|
||
// This outpoint is already being spent by another transaction in the mempool. We
|
||
// assume that the caller wants to replace this transaction and its descendants. It
|
||
// would be unusual for the transaction to have descendants as the wallet won’t normally
|
||
// attempt to replace transactions with descendants. If the outpoint is from a mempool
|
||
// transaction, we still need to calculate its ancestors bump fees (added to
|
||
// m_requested_outpoints_by_txid below), but after removing the to-be-replaced entries.
|
||
//
|
||
// Note that the descendants of a transaction include the transaction itself. Also note,
|
||
// that this is only calculating bump fees. RBF fee rules should be handled separately.
|
||
CTxMemPool::setEntries descendants;
|
||
mempool.CalculateDescendants(mempool.GetIter(ptx->GetHash()).value(), descendants);
|
||
for (const auto& desc_txiter : descendants) {
|
||
m_to_be_replaced.insert(desc_txiter->GetTx().GetHash());
|
||
}
|
||
}
|
||
}
|
||
|
||
// No unconfirmed UTXOs, so nothing mempool-related needs to be calculated.
|
||
if (m_requested_outpoints_by_txid.empty()) return;
|
||
|
||
// Calculate the cluster and construct the entry map.
|
||
std::vector<uint256> txids_needed;
|
||
txids_needed.reserve(m_requested_outpoints_by_txid.size());
|
||
for (const auto& [txid, _]: m_requested_outpoints_by_txid) {
|
||
txids_needed.push_back(txid);
|
||
}
|
||
const auto cluster = mempool.GatherClusters(txids_needed);
|
||
if (cluster.empty()) {
|
||
// An empty cluster means that at least one of the transactions is missing from the mempool
|
||
// (should not be possible given processing above) or DoS limit was hit.
|
||
m_ready_to_calculate = false;
|
||
return;
|
||
}
|
||
|
||
// Add every entry to m_entries_by_txid and m_entries, except the ones that will be replaced.
|
||
for (const auto& txiter : cluster) {
|
||
if (!m_to_be_replaced.count(txiter->GetTx().GetHash())) {
|
||
auto [mapiter, success] = m_entries_by_txid.emplace(txiter->GetTx().GetHash(),
|
||
MiniMinerMempoolEntry{/*tx_in=*/txiter->GetSharedTx(),
|
||
/*vsize_self=*/txiter->GetTxSize(),
|
||
/*vsize_ancestor=*/txiter->GetSizeWithAncestors(),
|
||
/*fee_self=*/txiter->GetModifiedFee(),
|
||
/*fee_ancestor=*/txiter->GetModFeesWithAncestors()});
|
||
m_entries.push_back(mapiter);
|
||
} else {
|
||
auto outpoints_it = m_requested_outpoints_by_txid.find(txiter->GetTx().GetHash());
|
||
if (outpoints_it != m_requested_outpoints_by_txid.end()) {
|
||
// This UTXO is the output of a to-be-replaced transaction. Bump fee is 0; spending
|
||
// this UTXO is impossible as it will no longer exist after the replacement.
|
||
for (const auto& outpoint : outpoints_it->second) {
|
||
m_bump_fees.emplace(outpoint, 0);
|
||
}
|
||
m_requested_outpoints_by_txid.erase(outpoints_it);
|
||
}
|
||
}
|
||
}
|
||
|
||
// Build the m_descendant_set_by_txid cache.
|
||
for (const auto& txiter : cluster) {
|
||
const auto& txid = txiter->GetTx().GetHash();
|
||
// Cache descendants for future use. Unlike the real mempool, a descendant MiniMinerMempoolEntry
|
||
// will not exist without its ancestor MiniMinerMempoolEntry, so these sets won't be invalidated.
|
||
std::vector<MockEntryMap::iterator> cached_descendants;
|
||
const bool remove{m_to_be_replaced.count(txid) > 0};
|
||
CTxMemPool::setEntries descendants;
|
||
mempool.CalculateDescendants(txiter, descendants);
|
||
Assume(descendants.count(txiter) > 0);
|
||
for (const auto& desc_txiter : descendants) {
|
||
const auto txid_desc = desc_txiter->GetTx().GetHash();
|
||
const bool remove_desc{m_to_be_replaced.count(txid_desc) > 0};
|
||
auto desc_it{m_entries_by_txid.find(txid_desc)};
|
||
Assume((desc_it == m_entries_by_txid.end()) == remove_desc);
|
||
if (remove) Assume(remove_desc);
|
||
// It's possible that remove=false but remove_desc=true.
|
||
if (!remove && !remove_desc) {
|
||
cached_descendants.push_back(desc_it);
|
||
}
|
||
}
|
||
if (remove) {
|
||
Assume(cached_descendants.empty());
|
||
} else {
|
||
m_descendant_set_by_txid.emplace(txid, cached_descendants);
|
||
}
|
||
}
|
||
|
||
// Release the mempool lock; we now have all the information we need for a subset of the entries
|
||
// we care about. We will solely operate on the MiniMinerMempoolEntry map from now on.
|
||
Assume(m_in_block.empty());
|
||
Assume(m_requested_outpoints_by_txid.size() <= outpoints.size());
|
||
SanityCheck();
|
||
}
|
||
|
||
MiniMiner::MiniMiner(const std::vector<MiniMinerMempoolEntry>& manual_entries,
|
||
const std::map<Txid, std::set<Txid>>& descendant_caches)
|
||
{
|
||
for (const auto& entry : manual_entries) {
|
||
const auto& txid = entry.GetTx().GetHash();
|
||
// We need to know the descendant set of every transaction.
|
||
if (!Assume(descendant_caches.count(txid) > 0)) {
|
||
m_ready_to_calculate = false;
|
||
return;
|
||
}
|
||
// Just forward these args onto MiniMinerMempoolEntry
|
||
auto [mapiter, success] = m_entries_by_txid.emplace(txid, entry);
|
||
// Txids must be unique; this txid shouldn't already be an entry in m_entries_by_txid
|
||
if (Assume(success)) m_entries.push_back(mapiter);
|
||
}
|
||
// Descendant cache is already built, but we need to translate them to m_entries_by_txid iters.
|
||
for (const auto& [txid, desc_txids] : descendant_caches) {
|
||
// Descendant cache should include at least the tx itself.
|
||
if (!Assume(!desc_txids.empty())) {
|
||
m_ready_to_calculate = false;
|
||
return;
|
||
}
|
||
std::vector<MockEntryMap::iterator> descendants;
|
||
for (const auto& desc_txid : desc_txids) {
|
||
auto desc_it{m_entries_by_txid.find(desc_txid)};
|
||
// Descendants should only include transactions with corresponding entries.
|
||
if (!Assume(desc_it != m_entries_by_txid.end())) {
|
||
m_ready_to_calculate = false;
|
||
return;
|
||
} else {
|
||
descendants.emplace_back(desc_it);
|
||
}
|
||
}
|
||
m_descendant_set_by_txid.emplace(txid, descendants);
|
||
}
|
||
Assume(m_to_be_replaced.empty());
|
||
Assume(m_requested_outpoints_by_txid.empty());
|
||
Assume(m_bump_fees.empty());
|
||
Assume(m_inclusion_order.empty());
|
||
SanityCheck();
|
||
}
|
||
|
||
// Compare by min(ancestor feerate, individual feerate), then iterator
|
||
//
|
||
// Under the ancestor-based mining approach, high-feerate children can pay for parents, but high-feerate
|
||
// parents do not incentive inclusion of their children. Therefore the mining algorithm only considers
|
||
// transactions for inclusion on basis of the minimum of their own feerate or their ancestor feerate.
|
||
struct AncestorFeerateComparator
|
||
{
|
||
template<typename I>
|
||
bool operator()(const I& a, const I& b) const {
|
||
auto min_feerate = [](const MiniMinerMempoolEntry& e) -> CFeeRate {
|
||
const CAmount ancestor_fee{e.GetModFeesWithAncestors()};
|
||
const int64_t ancestor_size{e.GetSizeWithAncestors()};
|
||
const CAmount tx_fee{e.GetModifiedFee()};
|
||
const int64_t tx_size{e.GetTxSize()};
|
||
// Comparing ancestor feerate with individual feerate:
|
||
// ancestor_fee / ancestor_size <= tx_fee / tx_size
|
||
// Avoid division and possible loss of precision by
|
||
// multiplying both sides by the sizes:
|
||
return ancestor_fee * tx_size < tx_fee * ancestor_size ?
|
||
CFeeRate(ancestor_fee, ancestor_size) :
|
||
CFeeRate(tx_fee, tx_size);
|
||
};
|
||
CFeeRate a_feerate{min_feerate(a->second)};
|
||
CFeeRate b_feerate{min_feerate(b->second)};
|
||
if (a_feerate != b_feerate) {
|
||
return a_feerate > b_feerate;
|
||
}
|
||
// Use txid as tiebreaker for stable sorting
|
||
return a->first < b->first;
|
||
}
|
||
};
|
||
|
||
void MiniMiner::DeleteAncestorPackage(const std::set<MockEntryMap::iterator, IteratorComparator>& ancestors)
|
||
{
|
||
Assume(ancestors.size() >= 1);
|
||
// "Mine" all transactions in this ancestor set.
|
||
for (auto& anc : ancestors) {
|
||
Assume(m_in_block.count(anc->first) == 0);
|
||
m_in_block.insert(anc->first);
|
||
m_total_fees += anc->second.GetModifiedFee();
|
||
m_total_vsize += anc->second.GetTxSize();
|
||
auto it = m_descendant_set_by_txid.find(anc->first);
|
||
// Each entry’s descendant set includes itself
|
||
Assume(it != m_descendant_set_by_txid.end());
|
||
for (auto& descendant : it->second) {
|
||
// If these fail, we must be double-deducting.
|
||
Assume(descendant->second.GetModFeesWithAncestors() >= anc->second.GetModifiedFee());
|
||
Assume(descendant->second.GetSizeWithAncestors() >= anc->second.GetTxSize());
|
||
descendant->second.UpdateAncestorState(-anc->second.GetTxSize(), -anc->second.GetModifiedFee());
|
||
}
|
||
}
|
||
// Delete these entries.
|
||
for (const auto& anc : ancestors) {
|
||
m_descendant_set_by_txid.erase(anc->first);
|
||
// The above loop should have deducted each ancestor's size and fees from each of their
|
||
// respective descendants exactly once.
|
||
Assume(anc->second.GetModFeesWithAncestors() == 0);
|
||
Assume(anc->second.GetSizeWithAncestors() == 0);
|
||
auto vec_it = std::find(m_entries.begin(), m_entries.end(), anc);
|
||
Assume(vec_it != m_entries.end());
|
||
m_entries.erase(vec_it);
|
||
m_entries_by_txid.erase(anc);
|
||
}
|
||
}
|
||
|
||
void MiniMiner::SanityCheck() const
|
||
{
|
||
// m_entries, m_entries_by_txid, and m_descendant_set_by_txid all same size
|
||
Assume(m_entries.size() == m_entries_by_txid.size());
|
||
Assume(m_entries.size() == m_descendant_set_by_txid.size());
|
||
// Cached ancestor values should be at least as large as the transaction's own fee and size
|
||
Assume(std::all_of(m_entries.begin(), m_entries.end(), [](const auto& entry) {
|
||
return entry->second.GetSizeWithAncestors() >= entry->second.GetTxSize() &&
|
||
entry->second.GetModFeesWithAncestors() >= entry->second.GetModifiedFee();}));
|
||
// None of the entries should be to-be-replaced transactions
|
||
Assume(std::all_of(m_to_be_replaced.begin(), m_to_be_replaced.end(),
|
||
[&](const auto& txid){return m_entries_by_txid.find(txid) == m_entries_by_txid.end();}));
|
||
}
|
||
|
||
void MiniMiner::BuildMockTemplate(std::optional<CFeeRate> target_feerate)
|
||
{
|
||
const auto num_txns{m_entries_by_txid.size()};
|
||
uint32_t sequence_num{0};
|
||
while (!m_entries_by_txid.empty()) {
|
||
// Sort again, since transaction removal may change some m_entries' ancestor feerates.
|
||
std::sort(m_entries.begin(), m_entries.end(), AncestorFeerateComparator());
|
||
|
||
// Pick highest ancestor feerate entry.
|
||
auto best_iter = m_entries.begin();
|
||
Assume(best_iter != m_entries.end());
|
||
const auto ancestor_package_size = (*best_iter)->second.GetSizeWithAncestors();
|
||
const auto ancestor_package_fee = (*best_iter)->second.GetModFeesWithAncestors();
|
||
// Stop here. Everything that didn't "make it into the block" has bumpfee.
|
||
if (target_feerate.has_value() &&
|
||
ancestor_package_fee < target_feerate->GetFee(ancestor_package_size)) {
|
||
break;
|
||
}
|
||
|
||
// Calculate ancestors on the fly. This lookup should be fairly cheap, and ancestor sets
|
||
// change at every iteration, so this is more efficient than maintaining a cache.
|
||
std::set<MockEntryMap::iterator, IteratorComparator> ancestors;
|
||
{
|
||
std::set<MockEntryMap::iterator, IteratorComparator> to_process;
|
||
to_process.insert(*best_iter);
|
||
while (!to_process.empty()) {
|
||
auto iter = to_process.begin();
|
||
Assume(iter != to_process.end());
|
||
ancestors.insert(*iter);
|
||
for (const auto& input : (*iter)->second.GetTx().vin) {
|
||
if (auto parent_it{m_entries_by_txid.find(input.prevout.hash)}; parent_it != m_entries_by_txid.end()) {
|
||
if (ancestors.count(parent_it) == 0) {
|
||
to_process.insert(parent_it);
|
||
}
|
||
}
|
||
}
|
||
to_process.erase(iter);
|
||
}
|
||
}
|
||
// Track the order in which transactions were selected.
|
||
for (const auto& ancestor : ancestors) {
|
||
m_inclusion_order.emplace(Txid::FromUint256(ancestor->first), sequence_num);
|
||
}
|
||
DeleteAncestorPackage(ancestors);
|
||
SanityCheck();
|
||
++sequence_num;
|
||
}
|
||
if (!target_feerate.has_value()) {
|
||
Assume(m_in_block.size() == num_txns);
|
||
} else {
|
||
Assume(m_in_block.empty() || m_total_fees >= target_feerate->GetFee(m_total_vsize));
|
||
}
|
||
Assume(m_in_block.empty() || sequence_num > 0);
|
||
Assume(m_in_block.size() == m_inclusion_order.size());
|
||
// Do not try to continue building the block template with a different feerate.
|
||
m_ready_to_calculate = false;
|
||
}
|
||
|
||
|
||
std::map<Txid, uint32_t> MiniMiner::Linearize()
|
||
{
|
||
BuildMockTemplate(std::nullopt);
|
||
return m_inclusion_order;
|
||
}
|
||
|
||
std::map<COutPoint, CAmount> MiniMiner::CalculateBumpFees(const CFeeRate& target_feerate)
|
||
{
|
||
if (!m_ready_to_calculate) return {};
|
||
// Build a block template until the target feerate is hit.
|
||
BuildMockTemplate(target_feerate);
|
||
|
||
// Each transaction that "made it into the block" has a bumpfee of 0, i.e. they are part of an
|
||
// ancestor package with at least the target feerate and don't need to be bumped.
|
||
for (const auto& txid : m_in_block) {
|
||
// Not all of the block transactions were necessarily requested.
|
||
auto it = m_requested_outpoints_by_txid.find(txid);
|
||
if (it != m_requested_outpoints_by_txid.end()) {
|
||
for (const auto& outpoint : it->second) {
|
||
m_bump_fees.emplace(outpoint, 0);
|
||
}
|
||
m_requested_outpoints_by_txid.erase(it);
|
||
}
|
||
}
|
||
|
||
// A transactions and its ancestors will only be picked into a block when
|
||
// both the ancestor set feerate and the individual feerate meet the target
|
||
// feerate.
|
||
//
|
||
// We had to convince ourselves that after running the mini miner and
|
||
// picking all eligible transactions into our MockBlockTemplate, there
|
||
// could still be transactions remaining that have a lower individual
|
||
// feerate than their ancestor feerate. So here is an example:
|
||
//
|
||
// ┌─────────────────┐
|
||
// │ │
|
||
// │ Grandparent │
|
||
// │ 1700 vB │
|
||
// │ 1700 sats │ Target feerate: 10 s/vB
|
||
// │ 1 s/vB │ GP Ancestor Set Feerate (ASFR): 1 s/vB
|
||
// │ │ P1_ASFR: 9.84 s/vB
|
||
// └──────▲───▲──────┘ P2_ASFR: 2.47 s/vB
|
||
// │ │ C_ASFR: 10.27 s/vB
|
||
// ┌───────────────┐ │ │ ┌──────────────┐
|
||
// │ ├────┘ └────┤ │ ⇒ C_FR < TFR < C_ASFR
|
||
// │ Parent 1 │ │ Parent 2 │
|
||
// │ 200 vB │ │ 200 vB │
|
||
// │ 17000 sats │ │ 3000 sats │
|
||
// │ 85 s/vB │ │ 15 s/vB │
|
||
// │ │ │ │
|
||
// └───────────▲───┘ └───▲──────────┘
|
||
// │ │
|
||
// │ ┌───────────┐ │
|
||
// └────┤ ├────┘
|
||
// │ Child │
|
||
// │ 100 vB │
|
||
// │ 900 sats │
|
||
// │ 9 s/vB │
|
||
// │ │
|
||
// └───────────┘
|
||
//
|
||
// We therefore calculate both the bump fee that is necessary to elevate
|
||
// the individual transaction to the target feerate:
|
||
// target_feerate × tx_size - tx_fees
|
||
// and the bump fee that is necessary to bump the entire ancestor set to
|
||
// the target feerate:
|
||
// target_feerate × ancestor_set_size - ancestor_set_fees
|
||
// By picking the maximum from the two, we ensure that a transaction meets
|
||
// both criteria.
|
||
for (const auto& [txid, outpoints] : m_requested_outpoints_by_txid) {
|
||
auto it = m_entries_by_txid.find(txid);
|
||
Assume(it != m_entries_by_txid.end());
|
||
if (it != m_entries_by_txid.end()) {
|
||
Assume(target_feerate.GetFee(it->second.GetSizeWithAncestors()) > std::min(it->second.GetModifiedFee(), it->second.GetModFeesWithAncestors()));
|
||
CAmount bump_fee_with_ancestors = target_feerate.GetFee(it->second.GetSizeWithAncestors()) - it->second.GetModFeesWithAncestors();
|
||
CAmount bump_fee_individual = target_feerate.GetFee(it->second.GetTxSize()) - it->second.GetModifiedFee();
|
||
const CAmount bump_fee{std::max(bump_fee_with_ancestors, bump_fee_individual)};
|
||
Assume(bump_fee >= 0);
|
||
for (const auto& outpoint : outpoints) {
|
||
m_bump_fees.emplace(outpoint, bump_fee);
|
||
}
|
||
}
|
||
}
|
||
return m_bump_fees;
|
||
}
|
||
|
||
std::optional<CAmount> MiniMiner::CalculateTotalBumpFees(const CFeeRate& target_feerate)
|
||
{
|
||
if (!m_ready_to_calculate) return std::nullopt;
|
||
// Build a block template until the target feerate is hit.
|
||
BuildMockTemplate(target_feerate);
|
||
|
||
// All remaining ancestors that are not part of m_in_block must be bumped, but no other relatives
|
||
std::set<MockEntryMap::iterator, IteratorComparator> ancestors;
|
||
std::set<MockEntryMap::iterator, IteratorComparator> to_process;
|
||
for (const auto& [txid, outpoints] : m_requested_outpoints_by_txid) {
|
||
// Skip any ancestors that already have a miner score higher than the target feerate
|
||
// (already "made it" into the block)
|
||
if (m_in_block.count(txid)) continue;
|
||
auto iter = m_entries_by_txid.find(txid);
|
||
if (iter == m_entries_by_txid.end()) continue;
|
||
to_process.insert(iter);
|
||
ancestors.insert(iter);
|
||
}
|
||
|
||
std::set<uint256> has_been_processed;
|
||
while (!to_process.empty()) {
|
||
auto iter = to_process.begin();
|
||
const CTransaction& tx = (*iter)->second.GetTx();
|
||
for (const auto& input : tx.vin) {
|
||
if (auto parent_it{m_entries_by_txid.find(input.prevout.hash)}; parent_it != m_entries_by_txid.end()) {
|
||
if (!has_been_processed.count(input.prevout.hash)) {
|
||
to_process.insert(parent_it);
|
||
}
|
||
ancestors.insert(parent_it);
|
||
}
|
||
}
|
||
has_been_processed.insert(tx.GetHash());
|
||
to_process.erase(iter);
|
||
}
|
||
const auto ancestor_package_size = std::accumulate(ancestors.cbegin(), ancestors.cend(), int64_t{0},
|
||
[](int64_t sum, const auto it) {return sum + it->second.GetTxSize();});
|
||
const auto ancestor_package_fee = std::accumulate(ancestors.cbegin(), ancestors.cend(), CAmount{0},
|
||
[](CAmount sum, const auto it) {return sum + it->second.GetModifiedFee();});
|
||
return target_feerate.GetFee(ancestor_package_size) - ancestor_package_fee;
|
||
}
|
||
} // namespace node
|