mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-02-10 10:52:31 -05:00
![fanquake](/assets/img/avatar_default.png)
d8311688bd Merge bitcoin-core/secp256k1#1515: ci: Note affected clangs in comment on ASLR quirk a85e2233e7 ci: Note affected clangs in comment on ASLR quirk 4b77fec67a Merge bitcoin-core/secp256k1#1512: msan: notate more variable assignments from assembly code f7f0184ba1 msan: notate more variable assignments from assembly code a61339149f change inconsistent array param to pointer 05bfab69ae Merge bitcoin-core/secp256k1#1507: ci: Add workaround for ASLR bug in sanitizers a5e8ab2484 ci: Add sanitizer env variables to debug output 84a93de4d2 ci: Add workaround for ASLR bug in sanitizers 427e86b9ed Merge bitcoin-core/secp256k1#1490: tests: improve fe_sqr test (issue #1472) 2028069df2 doc: clarify input requirements for secp256k1_fe_mul 11420a7a28 tests: improve fe_sqr test cdc9a6258e Merge bitcoin-core/secp256k1#1489: tests: add missing fe comparison checks for inverse field test cases d926510cf7 Merge bitcoin-core/secp256k1#1496: msan: notate variable assignments from assembly code 31ba404944 msan: notate variable assignments from assembly code e7ea32e30a msan: Add SECP256K1_CHECKMEM_MSAN_DEFINE which applies to memory sanitizer and not valgrind e7bdddd9c9 refactor: rename `check_fe_equal` -> `fe_equal` 00111c9c56 tests: add missing fe comparison checks for inverse field test cases 0653a25d50 Merge bitcoin-core/secp256k1#1486: ci: Update cache action 94a14d5290 ci: Update cache action 2483627299 Merge bitcoin-core/secp256k1#1483: cmake: Recommend native CMake commands in README 5ad3aa3dcd Merge bitcoin-core/secp256k1#1484: tests: Drop redundant _scalar_check_overflow calls 51df2d9ab3 tests: Drop redundant _scalar_check_overflow calls 3777e3f36a cmake: Recommend native CMake commands in README e4af41c61b Merge bitcoin-core/secp256k1#1249: cmake: Add `SECP256K1_LATE_CFLAGS` configure option 3bf4d68fc0 Merge bitcoin-core/secp256k1#1482: build: Clean up handling of module dependencies e6822678ea build: Error if required module explicitly off 89ec583ccf build: Clean up handling of module dependencies 44378867a0 Merge bitcoin-core/secp256k1#1468: v0.4.1 release aftermath a9db9f2d75 Merge bitcoin-core/secp256k1#1480: Get rid of untested sizeof(secp256k1_ge_storage) == 64 code path 74b7c3b53e Merge bitcoin-core/secp256k1#1476: include: make docs more consistent b37fdb28ce check-abi: Minor UI improvements ad5f589a94 check-abi: Default to HEAD for new version 9fb7e2f156 release process: Style and formatting nits ba5d72d626 assumptions: Use new STATIC_ASSERT macro e53c2d9ffc Require that sizeof(secp256k1_ge_storage) == 64 d0ba2abbff util: Add STATIC_ASSERT macro da7bc1b803 include: in doc, remove article in front of "pointer" aa3dd5280b include: make doc about ctx more consistent e3f690015a include: remove obvious "cannot be NULL" doc d373bf6d08 Merge bitcoin-core/secp256k1#1474: tests: restore scalar_mul test 79e094517c Merge bitcoin-core/secp256k1#1473: Fix typos 3dbfb48946 tests: restore scalar_mul test d77170a88d Fix typos e7053d065b release process: Add email step 429d21dc79 release process: Run sanity checks on release PR 42f8c51402 cmake: Add `SECP256K1_LATE_CFLAGS` configure option git-subtree-dir: src/secp256k1 git-subtree-split: d8311688bd383d3a923a1b11789cded3cc8e5e03
317 lines
12 KiB
C
317 lines
12 KiB
C
/***********************************************************************
|
|
* Copyright (c) 2014 Pieter Wuille *
|
|
* Distributed under the MIT software license, see the accompanying *
|
|
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
|
|
***********************************************************************/
|
|
|
|
#ifndef SECP256K1_SCALAR_IMPL_H
|
|
#define SECP256K1_SCALAR_IMPL_H
|
|
|
|
#ifdef VERIFY
|
|
#include <string.h>
|
|
#endif
|
|
|
|
#include "scalar.h"
|
|
#include "util.h"
|
|
|
|
#if defined(EXHAUSTIVE_TEST_ORDER)
|
|
#include "scalar_low_impl.h"
|
|
#elif defined(SECP256K1_WIDEMUL_INT128)
|
|
#include "scalar_4x64_impl.h"
|
|
#elif defined(SECP256K1_WIDEMUL_INT64)
|
|
#include "scalar_8x32_impl.h"
|
|
#else
|
|
#error "Please select wide multiplication implementation"
|
|
#endif
|
|
|
|
static const secp256k1_scalar secp256k1_scalar_one = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 1);
|
|
static const secp256k1_scalar secp256k1_scalar_zero = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0);
|
|
|
|
static int secp256k1_scalar_set_b32_seckey(secp256k1_scalar *r, const unsigned char *bin) {
|
|
int overflow;
|
|
secp256k1_scalar_set_b32(r, bin, &overflow);
|
|
|
|
SECP256K1_SCALAR_VERIFY(r);
|
|
return (!overflow) & (!secp256k1_scalar_is_zero(r));
|
|
}
|
|
|
|
static void secp256k1_scalar_verify(const secp256k1_scalar *r) {
|
|
VERIFY_CHECK(secp256k1_scalar_check_overflow(r) == 0);
|
|
|
|
(void)r;
|
|
}
|
|
|
|
#if defined(EXHAUSTIVE_TEST_ORDER)
|
|
/* Begin of section generated by sage/gen_exhaustive_groups.sage. */
|
|
# if EXHAUSTIVE_TEST_ORDER == 7
|
|
# define EXHAUSTIVE_TEST_LAMBDA 2
|
|
# elif EXHAUSTIVE_TEST_ORDER == 13
|
|
# define EXHAUSTIVE_TEST_LAMBDA 9
|
|
# elif EXHAUSTIVE_TEST_ORDER == 199
|
|
# define EXHAUSTIVE_TEST_LAMBDA 92
|
|
# else
|
|
# error No known lambda for the specified exhaustive test group order.
|
|
# endif
|
|
/* End of section generated by sage/gen_exhaustive_groups.sage. */
|
|
|
|
/**
|
|
* Find r1 and r2 given k, such that r1 + r2 * lambda == k mod n; unlike in the
|
|
* full case we don't bother making r1 and r2 be small, we just want them to be
|
|
* nontrivial to get full test coverage for the exhaustive tests. We therefore
|
|
* (arbitrarily) set r2 = k + 5 (mod n) and r1 = k - r2 * lambda (mod n).
|
|
*/
|
|
static void secp256k1_scalar_split_lambda(secp256k1_scalar * SECP256K1_RESTRICT r1, secp256k1_scalar * SECP256K1_RESTRICT r2, const secp256k1_scalar * SECP256K1_RESTRICT k) {
|
|
SECP256K1_SCALAR_VERIFY(k);
|
|
VERIFY_CHECK(r1 != k);
|
|
VERIFY_CHECK(r2 != k);
|
|
VERIFY_CHECK(r1 != r2);
|
|
|
|
*r2 = (*k + 5) % EXHAUSTIVE_TEST_ORDER;
|
|
*r1 = (*k + (EXHAUSTIVE_TEST_ORDER - *r2) * EXHAUSTIVE_TEST_LAMBDA) % EXHAUSTIVE_TEST_ORDER;
|
|
|
|
SECP256K1_SCALAR_VERIFY(r1);
|
|
SECP256K1_SCALAR_VERIFY(r2);
|
|
}
|
|
#else
|
|
/**
|
|
* The Secp256k1 curve has an endomorphism, where lambda * (x, y) = (beta * x, y), where
|
|
* lambda is: */
|
|
static const secp256k1_scalar secp256k1_const_lambda = SECP256K1_SCALAR_CONST(
|
|
0x5363AD4CUL, 0xC05C30E0UL, 0xA5261C02UL, 0x8812645AUL,
|
|
0x122E22EAUL, 0x20816678UL, 0xDF02967CUL, 0x1B23BD72UL
|
|
);
|
|
|
|
#ifdef VERIFY
|
|
static void secp256k1_scalar_split_lambda_verify(const secp256k1_scalar *r1, const secp256k1_scalar *r2, const secp256k1_scalar *k);
|
|
#endif
|
|
|
|
/*
|
|
* Both lambda and beta are primitive cube roots of unity. That is lamba^3 == 1 mod n and
|
|
* beta^3 == 1 mod p, where n is the curve order and p is the field order.
|
|
*
|
|
* Furthermore, because (X^3 - 1) = (X - 1)(X^2 + X + 1), the primitive cube roots of unity are
|
|
* roots of X^2 + X + 1. Therefore lambda^2 + lamba == -1 mod n and beta^2 + beta == -1 mod p.
|
|
* (The other primitive cube roots of unity are lambda^2 and beta^2 respectively.)
|
|
*
|
|
* Let l = -1/2 + i*sqrt(3)/2, the complex root of X^2 + X + 1. We can define a ring
|
|
* homomorphism phi : Z[l] -> Z_n where phi(a + b*l) == a + b*lambda mod n. The kernel of phi
|
|
* is a lattice over Z[l] (considering Z[l] as a Z-module). This lattice is generated by a
|
|
* reduced basis {a1 + b1*l, a2 + b2*l} where
|
|
*
|
|
* - a1 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15}
|
|
* - b1 = -{0xe4,0x43,0x7e,0xd6,0x01,0x0e,0x88,0x28,0x6f,0x54,0x7f,0xa9,0x0a,0xbf,0xe4,0xc3}
|
|
* - a2 = {0x01,0x14,0xca,0x50,0xf7,0xa8,0xe2,0xf3,0xf6,0x57,0xc1,0x10,0x8d,0x9d,0x44,0xcf,0xd8}
|
|
* - b2 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15}
|
|
*
|
|
* "Guide to Elliptic Curve Cryptography" (Hankerson, Menezes, Vanstone) gives an algorithm
|
|
* (algorithm 3.74) to find k1 and k2 given k, such that k1 + k2 * lambda == k mod n, and k1
|
|
* and k2 are small in absolute value.
|
|
*
|
|
* The algorithm computes c1 = round(b2 * k / n) and c2 = round((-b1) * k / n), and gives
|
|
* k1 = k - (c1*a1 + c2*a2) and k2 = -(c1*b1 + c2*b2). Instead, we use modular arithmetic, and
|
|
* compute r2 = k2 mod n, and r1 = k1 mod n = (k - r2 * lambda) mod n, avoiding the need for
|
|
* the constants a1 and a2.
|
|
*
|
|
* g1, g2 are precomputed constants used to replace division with a rounded multiplication
|
|
* when decomposing the scalar for an endomorphism-based point multiplication.
|
|
*
|
|
* The possibility of using precomputed estimates is mentioned in "Guide to Elliptic Curve
|
|
* Cryptography" (Hankerson, Menezes, Vanstone) in section 3.5.
|
|
*
|
|
* The derivation is described in the paper "Efficient Software Implementation of Public-Key
|
|
* Cryptography on Sensor Networks Using the MSP430X Microcontroller" (Gouvea, Oliveira, Lopez),
|
|
* Section 4.3 (here we use a somewhat higher-precision estimate):
|
|
* d = a1*b2 - b1*a2
|
|
* g1 = round(2^384 * b2/d)
|
|
* g2 = round(2^384 * (-b1)/d)
|
|
*
|
|
* (Note that d is also equal to the curve order, n, here because [a1,b1] and [a2,b2]
|
|
* can be found as outputs of the Extended Euclidean Algorithm on inputs n and lambda).
|
|
*
|
|
* The function below splits k into r1 and r2, such that
|
|
* - r1 + lambda * r2 == k (mod n)
|
|
* - either r1 < 2^128 or -r1 mod n < 2^128
|
|
* - either r2 < 2^128 or -r2 mod n < 2^128
|
|
*
|
|
* See proof below.
|
|
*/
|
|
static void secp256k1_scalar_split_lambda(secp256k1_scalar * SECP256K1_RESTRICT r1, secp256k1_scalar * SECP256K1_RESTRICT r2, const secp256k1_scalar * SECP256K1_RESTRICT k) {
|
|
secp256k1_scalar c1, c2;
|
|
static const secp256k1_scalar minus_b1 = SECP256K1_SCALAR_CONST(
|
|
0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00000000UL,
|
|
0xE4437ED6UL, 0x010E8828UL, 0x6F547FA9UL, 0x0ABFE4C3UL
|
|
);
|
|
static const secp256k1_scalar minus_b2 = SECP256K1_SCALAR_CONST(
|
|
0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL,
|
|
0x8A280AC5UL, 0x0774346DUL, 0xD765CDA8UL, 0x3DB1562CUL
|
|
);
|
|
static const secp256k1_scalar g1 = SECP256K1_SCALAR_CONST(
|
|
0x3086D221UL, 0xA7D46BCDUL, 0xE86C90E4UL, 0x9284EB15UL,
|
|
0x3DAA8A14UL, 0x71E8CA7FUL, 0xE893209AUL, 0x45DBB031UL
|
|
);
|
|
static const secp256k1_scalar g2 = SECP256K1_SCALAR_CONST(
|
|
0xE4437ED6UL, 0x010E8828UL, 0x6F547FA9UL, 0x0ABFE4C4UL,
|
|
0x221208ACUL, 0x9DF506C6UL, 0x1571B4AEUL, 0x8AC47F71UL
|
|
);
|
|
SECP256K1_SCALAR_VERIFY(k);
|
|
VERIFY_CHECK(r1 != k);
|
|
VERIFY_CHECK(r2 != k);
|
|
VERIFY_CHECK(r1 != r2);
|
|
|
|
/* these _var calls are constant time since the shift amount is constant */
|
|
secp256k1_scalar_mul_shift_var(&c1, k, &g1, 384);
|
|
secp256k1_scalar_mul_shift_var(&c2, k, &g2, 384);
|
|
secp256k1_scalar_mul(&c1, &c1, &minus_b1);
|
|
secp256k1_scalar_mul(&c2, &c2, &minus_b2);
|
|
secp256k1_scalar_add(r2, &c1, &c2);
|
|
secp256k1_scalar_mul(r1, r2, &secp256k1_const_lambda);
|
|
secp256k1_scalar_negate(r1, r1);
|
|
secp256k1_scalar_add(r1, r1, k);
|
|
|
|
SECP256K1_SCALAR_VERIFY(r1);
|
|
SECP256K1_SCALAR_VERIFY(r2);
|
|
#ifdef VERIFY
|
|
secp256k1_scalar_split_lambda_verify(r1, r2, k);
|
|
#endif
|
|
}
|
|
|
|
#ifdef VERIFY
|
|
/*
|
|
* Proof for secp256k1_scalar_split_lambda's bounds.
|
|
*
|
|
* Let
|
|
* - epsilon1 = 2^256 * |g1/2^384 - b2/d|
|
|
* - epsilon2 = 2^256 * |g2/2^384 - (-b1)/d|
|
|
* - c1 = round(k*g1/2^384)
|
|
* - c2 = round(k*g2/2^384)
|
|
*
|
|
* Lemma 1: |c1 - k*b2/d| < 2^-1 + epsilon1
|
|
*
|
|
* |c1 - k*b2/d|
|
|
* =
|
|
* |c1 - k*g1/2^384 + k*g1/2^384 - k*b2/d|
|
|
* <= {triangle inequality}
|
|
* |c1 - k*g1/2^384| + |k*g1/2^384 - k*b2/d|
|
|
* =
|
|
* |c1 - k*g1/2^384| + k*|g1/2^384 - b2/d|
|
|
* < {rounding in c1 and 0 <= k < 2^256}
|
|
* 2^-1 + 2^256 * |g1/2^384 - b2/d|
|
|
* = {definition of epsilon1}
|
|
* 2^-1 + epsilon1
|
|
*
|
|
* Lemma 2: |c2 - k*(-b1)/d| < 2^-1 + epsilon2
|
|
*
|
|
* |c2 - k*(-b1)/d|
|
|
* =
|
|
* |c2 - k*g2/2^384 + k*g2/2^384 - k*(-b1)/d|
|
|
* <= {triangle inequality}
|
|
* |c2 - k*g2/2^384| + |k*g2/2^384 - k*(-b1)/d|
|
|
* =
|
|
* |c2 - k*g2/2^384| + k*|g2/2^384 - (-b1)/d|
|
|
* < {rounding in c2 and 0 <= k < 2^256}
|
|
* 2^-1 + 2^256 * |g2/2^384 - (-b1)/d|
|
|
* = {definition of epsilon2}
|
|
* 2^-1 + epsilon2
|
|
*
|
|
* Let
|
|
* - k1 = k - c1*a1 - c2*a2
|
|
* - k2 = - c1*b1 - c2*b2
|
|
*
|
|
* Lemma 3: |k1| < (a1 + a2 + 1)/2 < 2^128
|
|
*
|
|
* |k1|
|
|
* = {definition of k1}
|
|
* |k - c1*a1 - c2*a2|
|
|
* = {(a1*b2 - b1*a2)/n = 1}
|
|
* |k*(a1*b2 - b1*a2)/n - c1*a1 - c2*a2|
|
|
* =
|
|
* |a1*(k*b2/n - c1) + a2*(k*(-b1)/n - c2)|
|
|
* <= {triangle inequality}
|
|
* a1*|k*b2/n - c1| + a2*|k*(-b1)/n - c2|
|
|
* < {Lemma 1 and Lemma 2}
|
|
* a1*(2^-1 + epsilon1) + a2*(2^-1 + epsilon2)
|
|
* < {rounding up to an integer}
|
|
* (a1 + a2 + 1)/2
|
|
* < {rounding up to a power of 2}
|
|
* 2^128
|
|
*
|
|
* Lemma 4: |k2| < (-b1 + b2)/2 + 1 < 2^128
|
|
*
|
|
* |k2|
|
|
* = {definition of k2}
|
|
* |- c1*a1 - c2*a2|
|
|
* = {(b1*b2 - b1*b2)/n = 0}
|
|
* |k*(b1*b2 - b1*b2)/n - c1*b1 - c2*b2|
|
|
* =
|
|
* |b1*(k*b2/n - c1) + b2*(k*(-b1)/n - c2)|
|
|
* <= {triangle inequality}
|
|
* (-b1)*|k*b2/n - c1| + b2*|k*(-b1)/n - c2|
|
|
* < {Lemma 1 and Lemma 2}
|
|
* (-b1)*(2^-1 + epsilon1) + b2*(2^-1 + epsilon2)
|
|
* < {rounding up to an integer}
|
|
* (-b1 + b2)/2 + 1
|
|
* < {rounding up to a power of 2}
|
|
* 2^128
|
|
*
|
|
* Let
|
|
* - r2 = k2 mod n
|
|
* - r1 = k - r2*lambda mod n.
|
|
*
|
|
* Notice that r1 is defined such that r1 + r2 * lambda == k (mod n).
|
|
*
|
|
* Lemma 5: r1 == k1 mod n.
|
|
*
|
|
* r1
|
|
* == {definition of r1 and r2}
|
|
* k - k2*lambda
|
|
* == {definition of k2}
|
|
* k - (- c1*b1 - c2*b2)*lambda
|
|
* ==
|
|
* k + c1*b1*lambda + c2*b2*lambda
|
|
* == {a1 + b1*lambda == 0 mod n and a2 + b2*lambda == 0 mod n}
|
|
* k - c1*a1 - c2*a2
|
|
* == {definition of k1}
|
|
* k1
|
|
*
|
|
* From Lemma 3, Lemma 4, Lemma 5 and the definition of r2, we can conclude that
|
|
*
|
|
* - either r1 < 2^128 or -r1 mod n < 2^128
|
|
* - either r2 < 2^128 or -r2 mod n < 2^128.
|
|
*
|
|
* Q.E.D.
|
|
*/
|
|
static void secp256k1_scalar_split_lambda_verify(const secp256k1_scalar *r1, const secp256k1_scalar *r2, const secp256k1_scalar *k) {
|
|
secp256k1_scalar s;
|
|
unsigned char buf1[32];
|
|
unsigned char buf2[32];
|
|
|
|
/* (a1 + a2 + 1)/2 is 0xa2a8918ca85bafe22016d0b917e4dd77 */
|
|
static const unsigned char k1_bound[32] = {
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0xa2, 0xa8, 0x91, 0x8c, 0xa8, 0x5b, 0xaf, 0xe2, 0x20, 0x16, 0xd0, 0xb9, 0x17, 0xe4, 0xdd, 0x77
|
|
};
|
|
|
|
/* (-b1 + b2)/2 + 1 is 0x8a65287bd47179fb2be08846cea267ed */
|
|
static const unsigned char k2_bound[32] = {
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x8a, 0x65, 0x28, 0x7b, 0xd4, 0x71, 0x79, 0xfb, 0x2b, 0xe0, 0x88, 0x46, 0xce, 0xa2, 0x67, 0xed
|
|
};
|
|
|
|
secp256k1_scalar_mul(&s, &secp256k1_const_lambda, r2);
|
|
secp256k1_scalar_add(&s, &s, r1);
|
|
VERIFY_CHECK(secp256k1_scalar_eq(&s, k));
|
|
|
|
secp256k1_scalar_negate(&s, r1);
|
|
secp256k1_scalar_get_b32(buf1, r1);
|
|
secp256k1_scalar_get_b32(buf2, &s);
|
|
VERIFY_CHECK(secp256k1_memcmp_var(buf1, k1_bound, 32) < 0 || secp256k1_memcmp_var(buf2, k1_bound, 32) < 0);
|
|
|
|
secp256k1_scalar_negate(&s, r2);
|
|
secp256k1_scalar_get_b32(buf1, r2);
|
|
secp256k1_scalar_get_b32(buf2, &s);
|
|
VERIFY_CHECK(secp256k1_memcmp_var(buf1, k2_bound, 32) < 0 || secp256k1_memcmp_var(buf2, k2_bound, 32) < 0);
|
|
}
|
|
#endif /* VERIFY */
|
|
#endif /* !defined(EXHAUSTIVE_TEST_ORDER) */
|
|
|
|
#endif /* SECP256K1_SCALAR_IMPL_H */
|