mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-02-05 10:17:30 -05:00
![Martin Ankerl](/assets/img/avatar_default.png)
This replaces the current benchmarking framework with nanobench [1], an MIT licensed single-header benchmarking library, of which I am the autor. This has in my opinion several advantages, especially on Linux: * fast: Running all benchmarks takes ~6 seconds instead of 4m13s on an Intel i7-8700 CPU @ 3.20GHz. * accurate: I ran e.g. the benchmark for SipHash_32b 10 times and calculate standard deviation / mean = coefficient of variation: * 0.57% CV for old benchmarking framework * 0.20% CV for nanobench So the benchmark results with nanobench seem to vary less than with the old framework. * It automatically determines runtime based on clock precision, no need to specify number of evaluations. * measure instructions, cycles, branches, instructions per cycle, branch misses (only Linux, when performance counters are available) * output in markdown table format. * Warn about unstable environment (frequency scaling, turbo, ...) * For better profiling, it is possible to set the environment variable NANOBENCH_ENDLESS to force endless running of a particular benchmark without the need to recompile. This makes it to e.g. run "perf top" and look at hotspots. Here is an example copy & pasted from the terminal output: | ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark |--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:---------- | 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160` | 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1` | 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256` | 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024` | 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b` | 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512` [1] https://github.com/martinus/nanobench * Adds support for asymptotes This adds support to calculate asymptotic complexity of a benchmark. This is similar to #17375, but currently only one asymptote is supported, and I have added support in the benchmark `ComplexMemPool` as an example. Usage is e.g. like this: ``` ./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800 ``` This runs the benchmark `ComplexMemPool` several times but with different complexityN settings. The benchmark can extract that number and use it accordingly. Here, it's used for `childTxs`. The output is this: | complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark |------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:---------- | 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool` | 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool` | 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool` | 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool` | 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool` | 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool` | 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool` | coefficient | err% | complexity |--------------:|-------:|------------ | 4.78486e-07 | 4.5% | O(n^2) | 6.38557e-10 | 21.7% | O(n^3) | 3.42338e-05 | 38.0% | O(n log n) | 0.000313914 | 46.9% | O(n) | 0.0129823 | 114.4% | O(log n) | 0.0815055 | 133.8% | O(1) The best fitting curve is O(n^2), so the algorithm seems to scale quadratic with `childTxs` in the range 25 to 800.
80 lines
2.6 KiB
C++
80 lines
2.6 KiB
C++
// Copyright (c) 2015-2020 The Bitcoin Core developers
|
|
// Distributed under the MIT software license, see the accompanying
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
#include <bench/bench.h>
|
|
|
|
#include <chainparams.h>
|
|
#include <test/util/setup_common.h>
|
|
#include <validation.h>
|
|
|
|
#include <regex>
|
|
|
|
const std::function<void(const std::string&)> G_TEST_LOG_FUN{};
|
|
|
|
namespace {
|
|
|
|
void GenerateTemplateResults(const std::vector<ankerl::nanobench::Result>& benchmarkResults, const std::string& filename, const char* tpl)
|
|
{
|
|
if (benchmarkResults.empty() || filename.empty()) {
|
|
// nothing to write, bail out
|
|
return;
|
|
}
|
|
std::ofstream fout(filename);
|
|
if (fout.is_open()) {
|
|
ankerl::nanobench::render(tpl, benchmarkResults, fout);
|
|
} else {
|
|
std::cout << "Could write to file '" << filename << "'" << std::endl;
|
|
}
|
|
|
|
std::cout << "Created '" << filename << "'" << std::endl;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
benchmark::BenchRunner::BenchmarkMap& benchmark::BenchRunner::benchmarks()
|
|
{
|
|
static std::map<std::string, BenchFunction> benchmarks_map;
|
|
return benchmarks_map;
|
|
}
|
|
|
|
benchmark::BenchRunner::BenchRunner(std::string name, benchmark::BenchFunction func)
|
|
{
|
|
benchmarks().insert(std::make_pair(name, func));
|
|
}
|
|
|
|
void benchmark::BenchRunner::RunAll(const Args& args)
|
|
{
|
|
std::regex reFilter(args.regex_filter);
|
|
std::smatch baseMatch;
|
|
|
|
std::vector<ankerl::nanobench::Result> benchmarkResults;
|
|
for (const auto& p : benchmarks()) {
|
|
if (!std::regex_match(p.first, baseMatch, reFilter)) {
|
|
continue;
|
|
}
|
|
|
|
if (args.is_list_only) {
|
|
std::cout << p.first << std::endl;
|
|
continue;
|
|
}
|
|
|
|
Bench bench;
|
|
bench.name(p.first);
|
|
if (args.asymptote.empty()) {
|
|
p.second(bench);
|
|
} else {
|
|
for (auto n : args.asymptote) {
|
|
bench.complexityN(n);
|
|
p.second(bench);
|
|
}
|
|
std::cout << bench.complexityBigO() << std::endl;
|
|
}
|
|
benchmarkResults.push_back(bench.results().back());
|
|
}
|
|
|
|
GenerateTemplateResults(benchmarkResults, args.output_csv, "# Benchmark, evals, iterations, total, min, max, median\n"
|
|
"{{#result}}{{name}}, {{epochs}}, {{average(iterations)}}, {{sumProduct(iterations, elapsed)}}, {{minimum(elapsed)}}, {{maximum(elapsed)}}, {{median(elapsed)}}\n"
|
|
"{{/result}}");
|
|
GenerateTemplateResults(benchmarkResults, args.output_json, ankerl::nanobench::templates::json());
|
|
}
|