mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-02-18 11:57:37 -05:00

- In secp256k1_gej_split_exp, there are two divisions used. Since the denominator is a constant known at compile-time, each can be replaced by a multiplication followed by a right-shift (and rounding). - Add the constants g1, g2 for this purpose and rewrite secp256k1_scalar_split_lambda_var accordingly. - Remove secp256k1_num_div since no longer used Rebased-by: Pieter Wuille
68 lines
2.5 KiB
C
68 lines
2.5 KiB
C
/**********************************************************************
|
|
* Copyright (c) 2013, 2014 Pieter Wuille *
|
|
* Distributed under the MIT software license, see the accompanying *
|
|
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
|
|
**********************************************************************/
|
|
|
|
#ifndef _SECP256K1_NUM_
|
|
#define _SECP256K1_NUM_
|
|
|
|
#ifndef USE_NUM_NONE
|
|
|
|
#if defined HAVE_CONFIG_H
|
|
#include "libsecp256k1-config.h"
|
|
#endif
|
|
|
|
#if defined(USE_NUM_GMP)
|
|
#include "num_gmp.h"
|
|
#else
|
|
#error "Please select num implementation"
|
|
#endif
|
|
|
|
/** Copy a number. */
|
|
static void secp256k1_num_copy(secp256k1_num_t *r, const secp256k1_num_t *a);
|
|
|
|
/** Convert a number's absolute value to a binary big-endian string.
|
|
* There must be enough place. */
|
|
static void secp256k1_num_get_bin(unsigned char *r, unsigned int rlen, const secp256k1_num_t *a);
|
|
|
|
/** Set a number to the value of a binary big-endian string. */
|
|
static void secp256k1_num_set_bin(secp256k1_num_t *r, const unsigned char *a, unsigned int alen);
|
|
|
|
/** Compute a modular inverse. The input must be less than the modulus. */
|
|
static void secp256k1_num_mod_inverse(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *m);
|
|
|
|
/** Compare the absolute value of two numbers. */
|
|
static int secp256k1_num_cmp(const secp256k1_num_t *a, const secp256k1_num_t *b);
|
|
|
|
/** Test whether two number are equal (including sign). */
|
|
static int secp256k1_num_eq(const secp256k1_num_t *a, const secp256k1_num_t *b);
|
|
|
|
/** Add two (signed) numbers. */
|
|
static void secp256k1_num_add(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b);
|
|
|
|
/** Subtract two (signed) numbers. */
|
|
static void secp256k1_num_sub(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b);
|
|
|
|
/** Multiply two (signed) numbers. */
|
|
static void secp256k1_num_mul(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b);
|
|
|
|
/** Replace a number by its remainder modulo m. M's sign is ignored. The result is a number between 0 and m-1,
|
|
even if r was negative. */
|
|
static void secp256k1_num_mod(secp256k1_num_t *r, const secp256k1_num_t *m);
|
|
|
|
/** Right-shift the passed number by bits bits. */
|
|
static void secp256k1_num_shift(secp256k1_num_t *r, int bits);
|
|
|
|
/** Check whether a number is zero. */
|
|
static int secp256k1_num_is_zero(const secp256k1_num_t *a);
|
|
|
|
/** Check whether a number is strictly negative. */
|
|
static int secp256k1_num_is_neg(const secp256k1_num_t *a);
|
|
|
|
/** Change a number's sign. */
|
|
static void secp256k1_num_negate(secp256k1_num_t *r);
|
|
|
|
#endif
|
|
|
|
#endif
|