mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-02-04 10:07:27 -05:00
fb82d91a9c
6c7a17a8e0
psbt: support externally provided preimages for Miniscript satisfaction (Antoine Poinsot)840a396029
qa: add a "smart" Miniscript fuzz target (Antoine Poinsot)17e3547241
qa: add a fuzz target generating random nodes from a binary encoding (Antoine Poinsot)611e12502a
qa: functional test Miniscript signing with key and timelocks (Antoine Poinsot)d57b7f2021
refactor: make descriptors in Miniscript functional test more readable (Antoine Poinsot)0a8fc9e200
wallet: check solvability using descriptor in AvailableCoins (Antoine Poinsot)560e62b1e2
script/sign: signing support for Miniscripts with hash preimage challenges (Antoine Poinsot)a2f81b6a8f
script/sign: signing support for Miniscript with timelocks (Antoine Poinsot)61c6d1a844
script/sign: basic signing support for Miniscript descriptors (Antoine Poinsot)4242c1c521
Align 'e' property of or_d and andor with website spec (Pieter Wuille)f5deb41780
Various additional explanations of the satisfaction logic from Pieter (Pieter Wuille)22c5b00345
miniscript: satisfaction support (Antoine Poinsot) Pull request description: This makes the Miniscript descriptors solvable. Note this introduces signing support for much more complex scripts than the wallet was previously able to solve, and the whole tooling isn't provided for a complete Miniscript integration in the wallet. Particularly, the PSBT<->Miniscript integration isn't entirely covered in this PR. ACKs for top commit: achow101: ACK6c7a17a8e0
sipa: utACK6c7a17a8e0
(to the extent that it's not my own code). Tree-SHA512: a71ec002aaf66bd429012caa338fc58384067bcd2f453a46e21d381ed1bacc8e57afb9db57c0fb4bf40de43b30808815e9ebc0ae1fbd9e61df0e7b91a17771cc
412 lines
19 KiB
C++
412 lines
19 KiB
C++
// Copyright (c) 2019-2022 The Bitcoin Core developers
|
|
// Distributed under the MIT software license, see the accompanying
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
#include <string>
|
|
#include <vector>
|
|
#include <script/script.h>
|
|
#include <script/standard.h>
|
|
#include <script/miniscript.h>
|
|
|
|
#include <assert.h>
|
|
|
|
namespace miniscript {
|
|
namespace internal {
|
|
|
|
Type SanitizeType(Type e) {
|
|
int num_types = (e << "K"_mst) + (e << "V"_mst) + (e << "B"_mst) + (e << "W"_mst);
|
|
if (num_types == 0) return ""_mst; // No valid type, don't care about the rest
|
|
assert(num_types == 1); // K, V, B, W all conflict with each other
|
|
assert(!(e << "z"_mst) || !(e << "o"_mst)); // z conflicts with o
|
|
assert(!(e << "n"_mst) || !(e << "z"_mst)); // n conflicts with z
|
|
assert(!(e << "n"_mst) || !(e << "W"_mst)); // n conflicts with W
|
|
assert(!(e << "V"_mst) || !(e << "d"_mst)); // V conflicts with d
|
|
assert(!(e << "K"_mst) || (e << "u"_mst)); // K implies u
|
|
assert(!(e << "V"_mst) || !(e << "u"_mst)); // V conflicts with u
|
|
assert(!(e << "e"_mst) || !(e << "f"_mst)); // e conflicts with f
|
|
assert(!(e << "e"_mst) || (e << "d"_mst)); // e implies d
|
|
assert(!(e << "V"_mst) || !(e << "e"_mst)); // V conflicts with e
|
|
assert(!(e << "d"_mst) || !(e << "f"_mst)); // d conflicts with f
|
|
assert(!(e << "V"_mst) || (e << "f"_mst)); // V implies f
|
|
assert(!(e << "K"_mst) || (e << "s"_mst)); // K implies s
|
|
assert(!(e << "z"_mst) || (e << "m"_mst)); // z implies m
|
|
return e;
|
|
}
|
|
|
|
Type ComputeType(Fragment fragment, Type x, Type y, Type z, const std::vector<Type>& sub_types, uint32_t k, size_t data_size, size_t n_subs, size_t n_keys) {
|
|
// Sanity check on data
|
|
if (fragment == Fragment::SHA256 || fragment == Fragment::HASH256) {
|
|
assert(data_size == 32);
|
|
} else if (fragment == Fragment::RIPEMD160 || fragment == Fragment::HASH160) {
|
|
assert(data_size == 20);
|
|
} else {
|
|
assert(data_size == 0);
|
|
}
|
|
// Sanity check on k
|
|
if (fragment == Fragment::OLDER || fragment == Fragment::AFTER) {
|
|
assert(k >= 1 && k < 0x80000000UL);
|
|
} else if (fragment == Fragment::MULTI) {
|
|
assert(k >= 1 && k <= n_keys);
|
|
} else if (fragment == Fragment::THRESH) {
|
|
assert(k >= 1 && k <= n_subs);
|
|
} else {
|
|
assert(k == 0);
|
|
}
|
|
// Sanity check on subs
|
|
if (fragment == Fragment::AND_V || fragment == Fragment::AND_B || fragment == Fragment::OR_B ||
|
|
fragment == Fragment::OR_C || fragment == Fragment::OR_I || fragment == Fragment::OR_D) {
|
|
assert(n_subs == 2);
|
|
} else if (fragment == Fragment::ANDOR) {
|
|
assert(n_subs == 3);
|
|
} else if (fragment == Fragment::WRAP_A || fragment == Fragment::WRAP_S || fragment == Fragment::WRAP_C ||
|
|
fragment == Fragment::WRAP_D || fragment == Fragment::WRAP_V || fragment == Fragment::WRAP_J ||
|
|
fragment == Fragment::WRAP_N) {
|
|
assert(n_subs == 1);
|
|
} else if (fragment != Fragment::THRESH) {
|
|
assert(n_subs == 0);
|
|
}
|
|
// Sanity check on keys
|
|
if (fragment == Fragment::PK_K || fragment == Fragment::PK_H) {
|
|
assert(n_keys == 1);
|
|
} else if (fragment == Fragment::MULTI) {
|
|
assert(n_keys >= 1 && n_keys <= 20);
|
|
} else {
|
|
assert(n_keys == 0);
|
|
}
|
|
|
|
// Below is the per-fragment logic for computing the expression types.
|
|
// It heavily relies on Type's << operator (where "X << a_mst" means
|
|
// "X has all properties listed in a").
|
|
switch (fragment) {
|
|
case Fragment::PK_K: return "Konudemsxk"_mst;
|
|
case Fragment::PK_H: return "Knudemsxk"_mst;
|
|
case Fragment::OLDER: return
|
|
"g"_mst.If(k & CTxIn::SEQUENCE_LOCKTIME_TYPE_FLAG) |
|
|
"h"_mst.If(!(k & CTxIn::SEQUENCE_LOCKTIME_TYPE_FLAG)) |
|
|
"Bzfmxk"_mst;
|
|
case Fragment::AFTER: return
|
|
"i"_mst.If(k >= LOCKTIME_THRESHOLD) |
|
|
"j"_mst.If(k < LOCKTIME_THRESHOLD) |
|
|
"Bzfmxk"_mst;
|
|
case Fragment::SHA256: return "Bonudmk"_mst;
|
|
case Fragment::RIPEMD160: return "Bonudmk"_mst;
|
|
case Fragment::HASH256: return "Bonudmk"_mst;
|
|
case Fragment::HASH160: return "Bonudmk"_mst;
|
|
case Fragment::JUST_1: return "Bzufmxk"_mst;
|
|
case Fragment::JUST_0: return "Bzudemsxk"_mst;
|
|
case Fragment::WRAP_A: return
|
|
"W"_mst.If(x << "B"_mst) | // W=B_x
|
|
(x & "ghijk"_mst) | // g=g_x, h=h_x, i=i_x, j=j_x, k=k_x
|
|
(x & "udfems"_mst) | // u=u_x, d=d_x, f=f_x, e=e_x, m=m_x, s=s_x
|
|
"x"_mst; // x
|
|
case Fragment::WRAP_S: return
|
|
"W"_mst.If(x << "Bo"_mst) | // W=B_x*o_x
|
|
(x & "ghijk"_mst) | // g=g_x, h=h_x, i=i_x, j=j_x, k=k_x
|
|
(x & "udfemsx"_mst); // u=u_x, d=d_x, f=f_x, e=e_x, m=m_x, s=s_x, x=x_x
|
|
case Fragment::WRAP_C: return
|
|
"B"_mst.If(x << "K"_mst) | // B=K_x
|
|
(x & "ghijk"_mst) | // g=g_x, h=h_x, i=i_x, j=j_x, k=k_x
|
|
(x & "ondfem"_mst) | // o=o_x, n=n_x, d=d_x, f=f_x, e=e_x, m=m_x
|
|
"us"_mst; // u, s
|
|
case Fragment::WRAP_D: return
|
|
"B"_mst.If(x << "Vz"_mst) | // B=V_x*z_x
|
|
"o"_mst.If(x << "z"_mst) | // o=z_x
|
|
"e"_mst.If(x << "f"_mst) | // e=f_x
|
|
(x & "ghijk"_mst) | // g=g_x, h=h_x, i=i_x, j=j_x, k=k_x
|
|
(x & "ms"_mst) | // m=m_x, s=s_x
|
|
// NOTE: 'd:' is not 'u' under P2WSH as MINIMALIF is only a policy rule there.
|
|
"ndx"_mst; // n, d, x
|
|
case Fragment::WRAP_V: return
|
|
"V"_mst.If(x << "B"_mst) | // V=B_x
|
|
(x & "ghijk"_mst) | // g=g_x, h=h_x, i=i_x, j=j_x, k=k_x
|
|
(x & "zonms"_mst) | // z=z_x, o=o_x, n=n_x, m=m_x, s=s_x
|
|
"fx"_mst; // f, x
|
|
case Fragment::WRAP_J: return
|
|
"B"_mst.If(x << "Bn"_mst) | // B=B_x*n_x
|
|
"e"_mst.If(x << "f"_mst) | // e=f_x
|
|
(x & "ghijk"_mst) | // g=g_x, h=h_x, i=i_x, j=j_x, k=k_x
|
|
(x & "oums"_mst) | // o=o_x, u=u_x, m=m_x, s=s_x
|
|
"ndx"_mst; // n, d, x
|
|
case Fragment::WRAP_N: return
|
|
(x & "ghijk"_mst) | // g=g_x, h=h_x, i=i_x, j=j_x, k=k_x
|
|
(x & "Bzondfems"_mst) | // B=B_x, z=z_x, o=o_x, n=n_x, d=d_x, f=f_x, e=e_x, m=m_x, s=s_x
|
|
"ux"_mst; // u, x
|
|
case Fragment::AND_V: return
|
|
(y & "KVB"_mst).If(x << "V"_mst) | // B=V_x*B_y, V=V_x*V_y, K=V_x*K_y
|
|
(x & "n"_mst) | (y & "n"_mst).If(x << "z"_mst) | // n=n_x+z_x*n_y
|
|
((x | y) & "o"_mst).If((x | y) << "z"_mst) | // o=o_x*z_y+z_x*o_y
|
|
(x & y & "dmz"_mst) | // d=d_x*d_y, m=m_x*m_y, z=z_x*z_y
|
|
((x | y) & "s"_mst) | // s=s_x+s_y
|
|
"f"_mst.If((y << "f"_mst) || (x << "s"_mst)) | // f=f_y+s_x
|
|
(y & "ux"_mst) | // u=u_y, x=x_y
|
|
((x | y) & "ghij"_mst) | // g=g_x+g_y, h=h_x+h_y, i=i_x+i_y, j=j_x+j_y
|
|
"k"_mst.If(((x & y) << "k"_mst) &&
|
|
!(((x << "g"_mst) && (y << "h"_mst)) ||
|
|
((x << "h"_mst) && (y << "g"_mst)) ||
|
|
((x << "i"_mst) && (y << "j"_mst)) ||
|
|
((x << "j"_mst) && (y << "i"_mst)))); // k=k_x*k_y*!(g_x*h_y + h_x*g_y + i_x*j_y + j_x*i_y)
|
|
case Fragment::AND_B: return
|
|
(x & "B"_mst).If(y << "W"_mst) | // B=B_x*W_y
|
|
((x | y) & "o"_mst).If((x | y) << "z"_mst) | // o=o_x*z_y+z_x*o_y
|
|
(x & "n"_mst) | (y & "n"_mst).If(x << "z"_mst) | // n=n_x+z_x*n_y
|
|
(x & y & "e"_mst).If((x & y) << "s"_mst) | // e=e_x*e_y*s_x*s_y
|
|
(x & y & "dzm"_mst) | // d=d_x*d_y, z=z_x*z_y, m=m_x*m_y
|
|
"f"_mst.If(((x & y) << "f"_mst) || (x << "sf"_mst) || (y << "sf"_mst)) | // f=f_x*f_y + f_x*s_x + f_y*s_y
|
|
((x | y) & "s"_mst) | // s=s_x+s_y
|
|
"ux"_mst | // u, x
|
|
((x | y) & "ghij"_mst) | // g=g_x+g_y, h=h_x+h_y, i=i_x+i_y, j=j_x+j_y
|
|
"k"_mst.If(((x & y) << "k"_mst) &&
|
|
!(((x << "g"_mst) && (y << "h"_mst)) ||
|
|
((x << "h"_mst) && (y << "g"_mst)) ||
|
|
((x << "i"_mst) && (y << "j"_mst)) ||
|
|
((x << "j"_mst) && (y << "i"_mst)))); // k=k_x*k_y*!(g_x*h_y + h_x*g_y + i_x*j_y + j_x*i_y)
|
|
case Fragment::OR_B: return
|
|
"B"_mst.If(x << "Bd"_mst && y << "Wd"_mst) | // B=B_x*d_x*W_x*d_y
|
|
((x | y) & "o"_mst).If((x | y) << "z"_mst) | // o=o_x*z_y+z_x*o_y
|
|
(x & y & "m"_mst).If((x | y) << "s"_mst && (x & y) << "e"_mst) | // m=m_x*m_y*e_x*e_y*(s_x+s_y)
|
|
(x & y & "zse"_mst) | // z=z_x*z_y, s=s_x*s_y, e=e_x*e_y
|
|
"dux"_mst | // d, u, x
|
|
((x | y) & "ghij"_mst) | // g=g_x+g_y, h=h_x+h_y, i=i_x+i_y, j=j_x+j_y
|
|
(x & y & "k"_mst); // k=k_x*k_y
|
|
case Fragment::OR_D: return
|
|
(y & "B"_mst).If(x << "Bdu"_mst) | // B=B_y*B_x*d_x*u_x
|
|
(x & "o"_mst).If(y << "z"_mst) | // o=o_x*z_y
|
|
(x & y & "m"_mst).If(x << "e"_mst && (x | y) << "s"_mst) | // m=m_x*m_y*e_x*(s_x+s_y)
|
|
(x & y & "zs"_mst) | // z=z_x*z_y, s=s_x*s_y
|
|
(y & "ufde"_mst) | // u=u_y, f=f_y, d=d_y, e=e_y
|
|
"x"_mst | // x
|
|
((x | y) & "ghij"_mst) | // g=g_x+g_y, h=h_x+h_y, i=i_x+i_y, j=j_x+j_y
|
|
(x & y & "k"_mst); // k=k_x*k_y
|
|
case Fragment::OR_C: return
|
|
(y & "V"_mst).If(x << "Bdu"_mst) | // V=V_y*B_x*u_x*d_x
|
|
(x & "o"_mst).If(y << "z"_mst) | // o=o_x*z_y
|
|
(x & y & "m"_mst).If(x << "e"_mst && (x | y) << "s"_mst) | // m=m_x*m_y*e_x*(s_x+s_y)
|
|
(x & y & "zs"_mst) | // z=z_x*z_y, s=s_x*s_y
|
|
"fx"_mst | // f, x
|
|
((x | y) & "ghij"_mst) | // g=g_x+g_y, h=h_x+h_y, i=i_x+i_y, j=j_x+j_y
|
|
(x & y & "k"_mst); // k=k_x*k_y
|
|
case Fragment::OR_I: return
|
|
(x & y & "VBKufs"_mst) | // V=V_x*V_y, B=B_x*B_y, K=K_x*K_y, u=u_x*u_y, f=f_x*f_y, s=s_x*s_y
|
|
"o"_mst.If((x & y) << "z"_mst) | // o=z_x*z_y
|
|
((x | y) & "e"_mst).If((x | y) << "f"_mst) | // e=e_x*f_y+f_x*e_y
|
|
(x & y & "m"_mst).If((x | y) << "s"_mst) | // m=m_x*m_y*(s_x+s_y)
|
|
((x | y) & "d"_mst) | // d=d_x+d_y
|
|
"x"_mst | // x
|
|
((x | y) & "ghij"_mst) | // g=g_x+g_y, h=h_x+h_y, i=i_x+i_y, j=j_x+j_y
|
|
(x & y & "k"_mst); // k=k_x*k_y
|
|
case Fragment::ANDOR: return
|
|
(y & z & "BKV"_mst).If(x << "Bdu"_mst) | // B=B_x*d_x*u_x*B_y*B_z, K=B_x*d_x*u_x*K_y*K_z, V=B_x*d_x*u_x*V_y*V_z
|
|
(x & y & z & "z"_mst) | // z=z_x*z_y*z_z
|
|
((x | (y & z)) & "o"_mst).If((x | (y & z)) << "z"_mst) | // o=o_x*z_y*z_z+z_x*o_y*o_z
|
|
(y & z & "u"_mst) | // u=u_y*u_z
|
|
(z & "f"_mst).If((x << "s"_mst) || (y << "f"_mst)) | // f=(s_x+f_y)*f_z
|
|
(z & "d"_mst) | // d=d_z
|
|
(z & "e"_mst).If(x << "s"_mst || y << "f"_mst) | // e=e_z*(s_x+f_y)
|
|
(x & y & z & "m"_mst).If(x << "e"_mst && (x | y | z) << "s"_mst) | // m=m_x*m_y*m_z*e_x*(s_x+s_y+s_z)
|
|
(z & (x | y) & "s"_mst) | // s=s_z*(s_x+s_y)
|
|
"x"_mst | // x
|
|
((x | y | z) & "ghij"_mst) | // g=g_x+g_y+g_z, h=h_x+h_y+h_z, i=i_x+i_y+i_z, j=j_x+j_y_j_z
|
|
"k"_mst.If(((x & y & z) << "k"_mst) &&
|
|
!(((x << "g"_mst) && (y << "h"_mst)) ||
|
|
((x << "h"_mst) && (y << "g"_mst)) ||
|
|
((x << "i"_mst) && (y << "j"_mst)) ||
|
|
((x << "j"_mst) && (y << "i"_mst)))); // k=k_x*k_y*k_z* !(g_x*h_y + h_x*g_y + i_x*j_y + j_x*i_y)
|
|
case Fragment::MULTI: return "Bnudemsk"_mst;
|
|
case Fragment::THRESH: {
|
|
bool all_e = true;
|
|
bool all_m = true;
|
|
uint32_t args = 0;
|
|
uint32_t num_s = 0;
|
|
Type acc_tl = "k"_mst;
|
|
for (size_t i = 0; i < sub_types.size(); ++i) {
|
|
Type t = sub_types[i];
|
|
if (!(t << (i ? "Wdu"_mst : "Bdu"_mst))) return ""_mst; // Require Bdu, Wdu, Wdu, ...
|
|
if (!(t << "e"_mst)) all_e = false;
|
|
if (!(t << "m"_mst)) all_m = false;
|
|
if (t << "s"_mst) num_s += 1;
|
|
args += (t << "z"_mst) ? 0 : (t << "o"_mst) ? 1 : 2;
|
|
acc_tl = ((acc_tl | t) & "ghij"_mst) |
|
|
// Thresh contains a combination of timelocks if it has threshold > 1 and
|
|
// it contains two different children that have different types of timelocks
|
|
// Note how if any of the children don't have "k", the parent also does not have "k"
|
|
"k"_mst.If(((acc_tl & t) << "k"_mst) && ((k <= 1) ||
|
|
((k > 1) && !(((acc_tl << "g"_mst) && (t << "h"_mst)) ||
|
|
((acc_tl << "h"_mst) && (t << "g"_mst)) ||
|
|
((acc_tl << "i"_mst) && (t << "j"_mst)) ||
|
|
((acc_tl << "j"_mst) && (t << "i"_mst))))));
|
|
}
|
|
return "Bdu"_mst |
|
|
"z"_mst.If(args == 0) | // z=all z
|
|
"o"_mst.If(args == 1) | // o=all z except one o
|
|
"e"_mst.If(all_e && num_s == n_subs) | // e=all e and all s
|
|
"m"_mst.If(all_e && all_m && num_s >= n_subs - k) | // m=all e, >=(n-k) s
|
|
"s"_mst.If(num_s >= n_subs - k + 1) | // s= >=(n-k+1) s
|
|
acc_tl; // timelock info
|
|
}
|
|
}
|
|
assert(false);
|
|
}
|
|
|
|
size_t ComputeScriptLen(Fragment fragment, Type sub0typ, size_t subsize, uint32_t k, size_t n_subs, size_t n_keys) {
|
|
switch (fragment) {
|
|
case Fragment::JUST_1:
|
|
case Fragment::JUST_0: return 1;
|
|
case Fragment::PK_K: return 34;
|
|
case Fragment::PK_H: return 3 + 21;
|
|
case Fragment::OLDER:
|
|
case Fragment::AFTER: return 1 + BuildScript(k).size();
|
|
case Fragment::HASH256:
|
|
case Fragment::SHA256: return 4 + 2 + 33;
|
|
case Fragment::HASH160:
|
|
case Fragment::RIPEMD160: return 4 + 2 + 21;
|
|
case Fragment::MULTI: return 1 + BuildScript(n_keys).size() + BuildScript(k).size() + 34 * n_keys;
|
|
case Fragment::AND_V: return subsize;
|
|
case Fragment::WRAP_V: return subsize + (sub0typ << "x"_mst);
|
|
case Fragment::WRAP_S:
|
|
case Fragment::WRAP_C:
|
|
case Fragment::WRAP_N:
|
|
case Fragment::AND_B:
|
|
case Fragment::OR_B: return subsize + 1;
|
|
case Fragment::WRAP_A:
|
|
case Fragment::OR_C: return subsize + 2;
|
|
case Fragment::WRAP_D:
|
|
case Fragment::OR_D:
|
|
case Fragment::OR_I:
|
|
case Fragment::ANDOR: return subsize + 3;
|
|
case Fragment::WRAP_J: return subsize + 4;
|
|
case Fragment::THRESH: return subsize + n_subs + BuildScript(k).size();
|
|
}
|
|
assert(false);
|
|
}
|
|
|
|
InputStack& InputStack::SetAvailable(Availability avail) {
|
|
available = avail;
|
|
if (avail == Availability::NO) {
|
|
stack.clear();
|
|
size = std::numeric_limits<size_t>::max();
|
|
has_sig = false;
|
|
malleable = false;
|
|
non_canon = false;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
InputStack& InputStack::SetWithSig() {
|
|
has_sig = true;
|
|
return *this;
|
|
}
|
|
|
|
InputStack& InputStack::SetNonCanon() {
|
|
non_canon = true;
|
|
return *this;
|
|
}
|
|
|
|
InputStack& InputStack::SetMalleable(bool x) {
|
|
malleable = x;
|
|
return *this;
|
|
}
|
|
|
|
InputStack operator+(InputStack a, InputStack b) {
|
|
a.stack = Cat(std::move(a.stack), std::move(b.stack));
|
|
if (a.available != Availability::NO && b.available != Availability::NO) a.size += b.size;
|
|
a.has_sig |= b.has_sig;
|
|
a.malleable |= b.malleable;
|
|
a.non_canon |= b.non_canon;
|
|
if (a.available == Availability::NO || b.available == Availability::NO) {
|
|
a.SetAvailable(Availability::NO);
|
|
} else if (a.available == Availability::MAYBE || b.available == Availability::MAYBE) {
|
|
a.SetAvailable(Availability::MAYBE);
|
|
}
|
|
return a;
|
|
}
|
|
|
|
InputStack operator|(InputStack a, InputStack b) {
|
|
// If only one is invalid, pick the other one. If both are invalid, pick an arbitrary one.
|
|
if (a.available == Availability::NO) return b;
|
|
if (b.available == Availability::NO) return a;
|
|
// If only one of the solutions has a signature, we must pick the other one.
|
|
if (!a.has_sig && b.has_sig) return a;
|
|
if (!b.has_sig && a.has_sig) return b;
|
|
if (!a.has_sig && !b.has_sig) {
|
|
// If neither solution requires a signature, the result is inevitably malleable.
|
|
a.malleable = true;
|
|
b.malleable = true;
|
|
} else {
|
|
// If both options require a signature, prefer the non-malleable one.
|
|
if (b.malleable && !a.malleable) return a;
|
|
if (a.malleable && !b.malleable) return b;
|
|
}
|
|
// Between two malleable or two non-malleable solutions, pick the smaller one between
|
|
// YESes, and the bigger ones between MAYBEs. Prefer YES over MAYBE.
|
|
if (a.available == Availability::YES && b.available == Availability::YES) {
|
|
return std::move(a.size <= b.size ? a : b);
|
|
} else if (a.available == Availability::MAYBE && b.available == Availability::MAYBE) {
|
|
return std::move(a.size >= b.size ? a : b);
|
|
} else if (a.available == Availability::YES) {
|
|
return a;
|
|
} else {
|
|
return b;
|
|
}
|
|
}
|
|
|
|
std::optional<std::vector<Opcode>> DecomposeScript(const CScript& script)
|
|
{
|
|
std::vector<Opcode> out;
|
|
CScript::const_iterator it = script.begin(), itend = script.end();
|
|
while (it != itend) {
|
|
std::vector<unsigned char> push_data;
|
|
opcodetype opcode;
|
|
if (!script.GetOp(it, opcode, push_data)) {
|
|
return {};
|
|
} else if (opcode >= OP_1 && opcode <= OP_16) {
|
|
// Deal with OP_n (GetOp does not turn them into pushes).
|
|
push_data.assign(1, CScript::DecodeOP_N(opcode));
|
|
} else if (opcode == OP_CHECKSIGVERIFY) {
|
|
// Decompose OP_CHECKSIGVERIFY into OP_CHECKSIG OP_VERIFY
|
|
out.emplace_back(OP_CHECKSIG, std::vector<unsigned char>());
|
|
opcode = OP_VERIFY;
|
|
} else if (opcode == OP_CHECKMULTISIGVERIFY) {
|
|
// Decompose OP_CHECKMULTISIGVERIFY into OP_CHECKMULTISIG OP_VERIFY
|
|
out.emplace_back(OP_CHECKMULTISIG, std::vector<unsigned char>());
|
|
opcode = OP_VERIFY;
|
|
} else if (opcode == OP_EQUALVERIFY) {
|
|
// Decompose OP_EQUALVERIFY into OP_EQUAL OP_VERIFY
|
|
out.emplace_back(OP_EQUAL, std::vector<unsigned char>());
|
|
opcode = OP_VERIFY;
|
|
} else if (IsPushdataOp(opcode)) {
|
|
if (!CheckMinimalPush(push_data, opcode)) return {};
|
|
} else if (it != itend && (opcode == OP_CHECKSIG || opcode == OP_CHECKMULTISIG || opcode == OP_EQUAL) && (*it == OP_VERIFY)) {
|
|
// Rule out non minimal VERIFY sequences
|
|
return {};
|
|
}
|
|
out.emplace_back(opcode, std::move(push_data));
|
|
}
|
|
std::reverse(out.begin(), out.end());
|
|
return out;
|
|
}
|
|
|
|
std::optional<int64_t> ParseScriptNumber(const Opcode& in) {
|
|
if (in.first == OP_0) {
|
|
return 0;
|
|
}
|
|
if (!in.second.empty()) {
|
|
if (IsPushdataOp(in.first) && !CheckMinimalPush(in.second, in.first)) return {};
|
|
try {
|
|
return CScriptNum(in.second, true).GetInt64();
|
|
} catch(const scriptnum_error&) {}
|
|
}
|
|
return {};
|
|
}
|
|
|
|
int FindNextChar(Span<const char> sp, const char m)
|
|
{
|
|
for (int i = 0; i < (int)sp.size(); ++i) {
|
|
if (sp[i] == m) return i;
|
|
// We only search within the current parentheses
|
|
if (sp[i] == ')') break;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
} // namespace internal
|
|
} // namespace miniscript
|