0
0
Fork 0
mirror of https://github.com/bitcoin/bitcoin.git synced 2025-02-04 10:07:27 -05:00
bitcoin-bitcoin-core/src/script/standard.cpp
Andrew Chow 58da1619be
Merge bitcoin/bitcoin#25877: refactor: Do not use CScript for tapleaf scripts until the tapleaf version is known
dee89438b8 Abstract out ComputeTapbranchHash (Russell O'Connor)
8e3fc99427 Do not use CScript for tapleaf scripts until the tapleaf version is known (Russell O'Connor)

Pull request description:

  While BIP-341 calls the contents of tapleaf a "script", only in the case that the tapleaf version is `0xc0` is this script known to be a tapscript.  Otherwise the tapleaf "script" is simply an uninterpreted string of bytes.

  This PR corrects the issue where the type `CScript` is used prior to the tapleaf version being known to be a tapscript.  This prevents `CScript` methods from erroneously being called on non-tapscript data.

  A second commit abstracts out the TapBranch hash computation in the same manner that the TapLeaf computation is already abstracted.  These two abstractions ensure that the TapLeaf and TapBranch tagged hashes are always constructed properly.

ACKs for top commit:
  ajtowns:
    ACK dee89438b8
  instagibbs:
    ACK dee89438b8
  achow101:
    ACK dee89438b8
  sipa:
    ACK dee89438b8
  aureleoules:
    reACK dee89438b8 - I verified that there is no behavior change.

Tree-SHA512: 4a1d37f3e9a1890e7f5eadcf65562688cc451389581fe6e2da0feb2368708edacdd95392578d8afff05270d88fc61dce732d83d1063d84d12cf47b5f4633ec7e
2023-01-19 17:51:21 -05:00

653 lines
26 KiB
C++

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <script/standard.h>
#include <crypto/sha256.h>
#include <hash.h>
#include <pubkey.h>
#include <script/interpreter.h>
#include <script/script.h>
#include <util/strencodings.h>
#include <string>
typedef std::vector<unsigned char> valtype;
CScriptID::CScriptID(const CScript& in) : BaseHash(Hash160(in)) {}
CScriptID::CScriptID(const ScriptHash& in) : BaseHash(static_cast<uint160>(in)) {}
ScriptHash::ScriptHash(const CScript& in) : BaseHash(Hash160(in)) {}
ScriptHash::ScriptHash(const CScriptID& in) : BaseHash(static_cast<uint160>(in)) {}
PKHash::PKHash(const CPubKey& pubkey) : BaseHash(pubkey.GetID()) {}
PKHash::PKHash(const CKeyID& pubkey_id) : BaseHash(pubkey_id) {}
WitnessV0KeyHash::WitnessV0KeyHash(const CPubKey& pubkey) : BaseHash(pubkey.GetID()) {}
WitnessV0KeyHash::WitnessV0KeyHash(const PKHash& pubkey_hash) : BaseHash(static_cast<uint160>(pubkey_hash)) {}
CKeyID ToKeyID(const PKHash& key_hash)
{
return CKeyID{static_cast<uint160>(key_hash)};
}
CKeyID ToKeyID(const WitnessV0KeyHash& key_hash)
{
return CKeyID{static_cast<uint160>(key_hash)};
}
WitnessV0ScriptHash::WitnessV0ScriptHash(const CScript& in)
{
CSHA256().Write(in.data(), in.size()).Finalize(begin());
}
std::string GetTxnOutputType(TxoutType t)
{
switch (t) {
case TxoutType::NONSTANDARD: return "nonstandard";
case TxoutType::PUBKEY: return "pubkey";
case TxoutType::PUBKEYHASH: return "pubkeyhash";
case TxoutType::SCRIPTHASH: return "scripthash";
case TxoutType::MULTISIG: return "multisig";
case TxoutType::NULL_DATA: return "nulldata";
case TxoutType::WITNESS_V0_KEYHASH: return "witness_v0_keyhash";
case TxoutType::WITNESS_V0_SCRIPTHASH: return "witness_v0_scripthash";
case TxoutType::WITNESS_V1_TAPROOT: return "witness_v1_taproot";
case TxoutType::WITNESS_UNKNOWN: return "witness_unknown";
} // no default case, so the compiler can warn about missing cases
assert(false);
}
static bool MatchPayToPubkey(const CScript& script, valtype& pubkey)
{
if (script.size() == CPubKey::SIZE + 2 && script[0] == CPubKey::SIZE && script.back() == OP_CHECKSIG) {
pubkey = valtype(script.begin() + 1, script.begin() + CPubKey::SIZE + 1);
return CPubKey::ValidSize(pubkey);
}
if (script.size() == CPubKey::COMPRESSED_SIZE + 2 && script[0] == CPubKey::COMPRESSED_SIZE && script.back() == OP_CHECKSIG) {
pubkey = valtype(script.begin() + 1, script.begin() + CPubKey::COMPRESSED_SIZE + 1);
return CPubKey::ValidSize(pubkey);
}
return false;
}
static bool MatchPayToPubkeyHash(const CScript& script, valtype& pubkeyhash)
{
if (script.size() == 25 && script[0] == OP_DUP && script[1] == OP_HASH160 && script[2] == 20 && script[23] == OP_EQUALVERIFY && script[24] == OP_CHECKSIG) {
pubkeyhash = valtype(script.begin () + 3, script.begin() + 23);
return true;
}
return false;
}
/** Test for "small positive integer" script opcodes - OP_1 through OP_16. */
static constexpr bool IsSmallInteger(opcodetype opcode)
{
return opcode >= OP_1 && opcode <= OP_16;
}
/** Retrieve a minimally-encoded number in range [min,max] from an (opcode, data) pair,
* whether it's OP_n or through a push. */
static std::optional<int> GetScriptNumber(opcodetype opcode, valtype data, int min, int max)
{
int count;
if (IsSmallInteger(opcode)) {
count = CScript::DecodeOP_N(opcode);
} else if (IsPushdataOp(opcode)) {
if (!CheckMinimalPush(data, opcode)) return {};
try {
count = CScriptNum(data, /* fRequireMinimal = */ true).getint();
} catch (const scriptnum_error&) {
return {};
}
} else {
return {};
}
if (count < min || count > max) return {};
return count;
}
static bool MatchMultisig(const CScript& script, int& required_sigs, std::vector<valtype>& pubkeys)
{
opcodetype opcode;
valtype data;
CScript::const_iterator it = script.begin();
if (script.size() < 1 || script.back() != OP_CHECKMULTISIG) return false;
if (!script.GetOp(it, opcode, data)) return false;
auto req_sigs = GetScriptNumber(opcode, data, 1, MAX_PUBKEYS_PER_MULTISIG);
if (!req_sigs) return false;
required_sigs = *req_sigs;
while (script.GetOp(it, opcode, data) && CPubKey::ValidSize(data)) {
pubkeys.emplace_back(std::move(data));
}
auto num_keys = GetScriptNumber(opcode, data, required_sigs, MAX_PUBKEYS_PER_MULTISIG);
if (!num_keys) return false;
if (pubkeys.size() != static_cast<unsigned long>(*num_keys)) return false;
return (it + 1 == script.end());
}
std::optional<std::pair<int, std::vector<Span<const unsigned char>>>> MatchMultiA(const CScript& script)
{
std::vector<Span<const unsigned char>> keyspans;
// Redundant, but very fast and selective test.
if (script.size() == 0 || script[0] != 32 || script.back() != OP_NUMEQUAL) return {};
// Parse keys
auto it = script.begin();
while (script.end() - it >= 34) {
if (*it != 32) return {};
++it;
keyspans.emplace_back(&*it, 32);
it += 32;
if (*it != (keyspans.size() == 1 ? OP_CHECKSIG : OP_CHECKSIGADD)) return {};
++it;
}
if (keyspans.size() == 0 || keyspans.size() > MAX_PUBKEYS_PER_MULTI_A) return {};
// Parse threshold.
opcodetype opcode;
std::vector<unsigned char> data;
if (!script.GetOp(it, opcode, data)) return {};
if (it == script.end()) return {};
if (*it != OP_NUMEQUAL) return {};
++it;
if (it != script.end()) return {};
auto threshold = GetScriptNumber(opcode, data, 1, (int)keyspans.size());
if (!threshold) return {};
// Construct result.
return std::pair{*threshold, std::move(keyspans)};
}
TxoutType Solver(const CScript& scriptPubKey, std::vector<std::vector<unsigned char>>& vSolutionsRet)
{
vSolutionsRet.clear();
// Shortcut for pay-to-script-hash, which are more constrained than the other types:
// it is always OP_HASH160 20 [20 byte hash] OP_EQUAL
if (scriptPubKey.IsPayToScriptHash())
{
std::vector<unsigned char> hashBytes(scriptPubKey.begin()+2, scriptPubKey.begin()+22);
vSolutionsRet.push_back(hashBytes);
return TxoutType::SCRIPTHASH;
}
int witnessversion;
std::vector<unsigned char> witnessprogram;
if (scriptPubKey.IsWitnessProgram(witnessversion, witnessprogram)) {
if (witnessversion == 0 && witnessprogram.size() == WITNESS_V0_KEYHASH_SIZE) {
vSolutionsRet.push_back(std::move(witnessprogram));
return TxoutType::WITNESS_V0_KEYHASH;
}
if (witnessversion == 0 && witnessprogram.size() == WITNESS_V0_SCRIPTHASH_SIZE) {
vSolutionsRet.push_back(std::move(witnessprogram));
return TxoutType::WITNESS_V0_SCRIPTHASH;
}
if (witnessversion == 1 && witnessprogram.size() == WITNESS_V1_TAPROOT_SIZE) {
vSolutionsRet.push_back(std::move(witnessprogram));
return TxoutType::WITNESS_V1_TAPROOT;
}
if (witnessversion != 0) {
vSolutionsRet.push_back(std::vector<unsigned char>{(unsigned char)witnessversion});
vSolutionsRet.push_back(std::move(witnessprogram));
return TxoutType::WITNESS_UNKNOWN;
}
return TxoutType::NONSTANDARD;
}
// Provably prunable, data-carrying output
//
// So long as script passes the IsUnspendable() test and all but the first
// byte passes the IsPushOnly() test we don't care what exactly is in the
// script.
if (scriptPubKey.size() >= 1 && scriptPubKey[0] == OP_RETURN && scriptPubKey.IsPushOnly(scriptPubKey.begin()+1)) {
return TxoutType::NULL_DATA;
}
std::vector<unsigned char> data;
if (MatchPayToPubkey(scriptPubKey, data)) {
vSolutionsRet.push_back(std::move(data));
return TxoutType::PUBKEY;
}
if (MatchPayToPubkeyHash(scriptPubKey, data)) {
vSolutionsRet.push_back(std::move(data));
return TxoutType::PUBKEYHASH;
}
int required;
std::vector<std::vector<unsigned char>> keys;
if (MatchMultisig(scriptPubKey, required, keys)) {
vSolutionsRet.push_back({static_cast<unsigned char>(required)}); // safe as required is in range 1..20
vSolutionsRet.insert(vSolutionsRet.end(), keys.begin(), keys.end());
vSolutionsRet.push_back({static_cast<unsigned char>(keys.size())}); // safe as size is in range 1..20
return TxoutType::MULTISIG;
}
vSolutionsRet.clear();
return TxoutType::NONSTANDARD;
}
bool ExtractDestination(const CScript& scriptPubKey, CTxDestination& addressRet)
{
std::vector<valtype> vSolutions;
TxoutType whichType = Solver(scriptPubKey, vSolutions);
switch (whichType) {
case TxoutType::PUBKEY: {
CPubKey pubKey(vSolutions[0]);
if (!pubKey.IsValid())
return false;
addressRet = PKHash(pubKey);
return true;
}
case TxoutType::PUBKEYHASH: {
addressRet = PKHash(uint160(vSolutions[0]));
return true;
}
case TxoutType::SCRIPTHASH: {
addressRet = ScriptHash(uint160(vSolutions[0]));
return true;
}
case TxoutType::WITNESS_V0_KEYHASH: {
WitnessV0KeyHash hash;
std::copy(vSolutions[0].begin(), vSolutions[0].end(), hash.begin());
addressRet = hash;
return true;
}
case TxoutType::WITNESS_V0_SCRIPTHASH: {
WitnessV0ScriptHash hash;
std::copy(vSolutions[0].begin(), vSolutions[0].end(), hash.begin());
addressRet = hash;
return true;
}
case TxoutType::WITNESS_V1_TAPROOT: {
WitnessV1Taproot tap;
std::copy(vSolutions[0].begin(), vSolutions[0].end(), tap.begin());
addressRet = tap;
return true;
}
case TxoutType::WITNESS_UNKNOWN: {
WitnessUnknown unk;
unk.version = vSolutions[0][0];
std::copy(vSolutions[1].begin(), vSolutions[1].end(), unk.program);
unk.length = vSolutions[1].size();
addressRet = unk;
return true;
}
case TxoutType::MULTISIG:
case TxoutType::NULL_DATA:
case TxoutType::NONSTANDARD:
return false;
} // no default case, so the compiler can warn about missing cases
assert(false);
}
namespace {
class CScriptVisitor
{
public:
CScript operator()(const CNoDestination& dest) const
{
return CScript();
}
CScript operator()(const PKHash& keyID) const
{
return CScript() << OP_DUP << OP_HASH160 << ToByteVector(keyID) << OP_EQUALVERIFY << OP_CHECKSIG;
}
CScript operator()(const ScriptHash& scriptID) const
{
return CScript() << OP_HASH160 << ToByteVector(scriptID) << OP_EQUAL;
}
CScript operator()(const WitnessV0KeyHash& id) const
{
return CScript() << OP_0 << ToByteVector(id);
}
CScript operator()(const WitnessV0ScriptHash& id) const
{
return CScript() << OP_0 << ToByteVector(id);
}
CScript operator()(const WitnessV1Taproot& tap) const
{
return CScript() << OP_1 << ToByteVector(tap);
}
CScript operator()(const WitnessUnknown& id) const
{
return CScript() << CScript::EncodeOP_N(id.version) << std::vector<unsigned char>(id.program, id.program + id.length);
}
};
} // namespace
CScript GetScriptForDestination(const CTxDestination& dest)
{
return std::visit(CScriptVisitor(), dest);
}
CScript GetScriptForRawPubKey(const CPubKey& pubKey)
{
return CScript() << std::vector<unsigned char>(pubKey.begin(), pubKey.end()) << OP_CHECKSIG;
}
CScript GetScriptForMultisig(int nRequired, const std::vector<CPubKey>& keys)
{
CScript script;
script << nRequired;
for (const CPubKey& key : keys)
script << ToByteVector(key);
script << keys.size() << OP_CHECKMULTISIG;
return script;
}
bool IsValidDestination(const CTxDestination& dest) {
return dest.index() != 0;
}
/*static*/ TaprootBuilder::NodeInfo TaprootBuilder::Combine(NodeInfo&& a, NodeInfo&& b)
{
NodeInfo ret;
/* Iterate over all tracked leaves in a, add b's hash to their Merkle branch, and move them to ret. */
for (auto& leaf : a.leaves) {
leaf.merkle_branch.push_back(b.hash);
ret.leaves.emplace_back(std::move(leaf));
}
/* Iterate over all tracked leaves in b, add a's hash to their Merkle branch, and move them to ret. */
for (auto& leaf : b.leaves) {
leaf.merkle_branch.push_back(a.hash);
ret.leaves.emplace_back(std::move(leaf));
}
ret.hash = ComputeTapbranchHash(a.hash, b.hash);
return ret;
}
void TaprootSpendData::Merge(TaprootSpendData other)
{
// TODO: figure out how to better deal with conflicting information
// being merged.
if (internal_key.IsNull() && !other.internal_key.IsNull()) {
internal_key = other.internal_key;
}
if (merkle_root.IsNull() && !other.merkle_root.IsNull()) {
merkle_root = other.merkle_root;
}
for (auto& [key, control_blocks] : other.scripts) {
scripts[key].merge(std::move(control_blocks));
}
}
void TaprootBuilder::Insert(TaprootBuilder::NodeInfo&& node, int depth)
{
assert(depth >= 0 && (size_t)depth <= TAPROOT_CONTROL_MAX_NODE_COUNT);
/* We cannot insert a leaf at a lower depth while a deeper branch is unfinished. Doing
* so would mean the Add() invocations do not correspond to a DFS traversal of a
* binary tree. */
if ((size_t)depth + 1 < m_branch.size()) {
m_valid = false;
return;
}
/* As long as an entry in the branch exists at the specified depth, combine it and propagate up.
* The 'node' variable is overwritten here with the newly combined node. */
while (m_valid && m_branch.size() > (size_t)depth && m_branch[depth].has_value()) {
node = Combine(std::move(node), std::move(*m_branch[depth]));
m_branch.pop_back();
if (depth == 0) m_valid = false; /* Can't propagate further up than the root */
--depth;
}
if (m_valid) {
/* Make sure the branch is big enough to place the new node. */
if (m_branch.size() <= (size_t)depth) m_branch.resize((size_t)depth + 1);
assert(!m_branch[depth].has_value());
m_branch[depth] = std::move(node);
}
}
/*static*/ bool TaprootBuilder::ValidDepths(const std::vector<int>& depths)
{
std::vector<bool> branch;
for (int depth : depths) {
// This inner loop corresponds to effectively the same logic on branch
// as what Insert() performs on the m_branch variable. Instead of
// storing a NodeInfo object, just remember whether or not there is one
// at that depth.
if (depth < 0 || (size_t)depth > TAPROOT_CONTROL_MAX_NODE_COUNT) return false;
if ((size_t)depth + 1 < branch.size()) return false;
while (branch.size() > (size_t)depth && branch[depth]) {
branch.pop_back();
if (depth == 0) return false;
--depth;
}
if (branch.size() <= (size_t)depth) branch.resize((size_t)depth + 1);
assert(!branch[depth]);
branch[depth] = true;
}
// And this check corresponds to the IsComplete() check on m_branch.
return branch.size() == 0 || (branch.size() == 1 && branch[0]);
}
TaprootBuilder& TaprootBuilder::Add(int depth, Span<const unsigned char> script, int leaf_version, bool track)
{
assert((leaf_version & ~TAPROOT_LEAF_MASK) == 0);
if (!IsValid()) return *this;
/* Construct NodeInfo object with leaf hash and (if track is true) also leaf information. */
NodeInfo node;
node.hash = ComputeTapleafHash(leaf_version, script);
if (track) node.leaves.emplace_back(LeafInfo{std::vector<unsigned char>(script.begin(), script.end()), leaf_version, {}});
/* Insert into the branch. */
Insert(std::move(node), depth);
return *this;
}
TaprootBuilder& TaprootBuilder::AddOmitted(int depth, const uint256& hash)
{
if (!IsValid()) return *this;
/* Construct NodeInfo object with the hash directly, and insert it into the branch. */
NodeInfo node;
node.hash = hash;
Insert(std::move(node), depth);
return *this;
}
TaprootBuilder& TaprootBuilder::Finalize(const XOnlyPubKey& internal_key)
{
/* Can only call this function when IsComplete() is true. */
assert(IsComplete());
m_internal_key = internal_key;
auto ret = m_internal_key.CreateTapTweak(m_branch.size() == 0 ? nullptr : &m_branch[0]->hash);
assert(ret.has_value());
std::tie(m_output_key, m_parity) = *ret;
return *this;
}
WitnessV1Taproot TaprootBuilder::GetOutput() { return WitnessV1Taproot{m_output_key}; }
TaprootSpendData TaprootBuilder::GetSpendData() const
{
assert(IsComplete());
assert(m_output_key.IsFullyValid());
TaprootSpendData spd;
spd.merkle_root = m_branch.size() == 0 ? uint256() : m_branch[0]->hash;
spd.internal_key = m_internal_key;
if (m_branch.size()) {
// If any script paths exist, they have been combined into the root m_branch[0]
// by now. Compute the control block for each of its tracked leaves, and put them in
// spd.scripts.
for (const auto& leaf : m_branch[0]->leaves) {
std::vector<unsigned char> control_block;
control_block.resize(TAPROOT_CONTROL_BASE_SIZE + TAPROOT_CONTROL_NODE_SIZE * leaf.merkle_branch.size());
control_block[0] = leaf.leaf_version | (m_parity ? 1 : 0);
std::copy(m_internal_key.begin(), m_internal_key.end(), control_block.begin() + 1);
if (leaf.merkle_branch.size()) {
std::copy(leaf.merkle_branch[0].begin(),
leaf.merkle_branch[0].begin() + TAPROOT_CONTROL_NODE_SIZE * leaf.merkle_branch.size(),
control_block.begin() + TAPROOT_CONTROL_BASE_SIZE);
}
spd.scripts[{leaf.script, leaf.leaf_version}].insert(std::move(control_block));
}
}
return spd;
}
std::optional<std::vector<std::tuple<int, std::vector<unsigned char>, int>>> InferTaprootTree(const TaprootSpendData& spenddata, const XOnlyPubKey& output)
{
// Verify that the output matches the assumed Merkle root and internal key.
auto tweak = spenddata.internal_key.CreateTapTweak(spenddata.merkle_root.IsNull() ? nullptr : &spenddata.merkle_root);
if (!tweak || tweak->first != output) return std::nullopt;
// If the Merkle root is 0, the tree is empty, and we're done.
std::vector<std::tuple<int, std::vector<unsigned char>, int>> ret;
if (spenddata.merkle_root.IsNull()) return ret;
/** Data structure to represent the nodes of the tree we're going to build. */
struct TreeNode {
/** Hash of this node, if known; 0 otherwise. */
uint256 hash;
/** The left and right subtrees (note that their order is irrelevant). */
std::unique_ptr<TreeNode> sub[2];
/** If this is known to be a leaf node, a pointer to the (script, leaf_ver) pair.
* nullptr otherwise. */
const std::pair<std::vector<unsigned char>, int>* leaf = nullptr;
/** Whether or not this node has been explored (is known to be a leaf, or known to have children). */
bool explored = false;
/** Whether or not this node is an inner node (unknown until explored = true). */
bool inner;
/** Whether or not we have produced output for this subtree. */
bool done = false;
};
// Build tree from the provided branches.
TreeNode root;
root.hash = spenddata.merkle_root;
for (const auto& [key, control_blocks] : spenddata.scripts) {
const auto& [script, leaf_ver] = key;
for (const auto& control : control_blocks) {
// Skip script records with nonsensical leaf version.
if (leaf_ver < 0 || leaf_ver >= 0x100 || leaf_ver & 1) continue;
// Skip script records with invalid control block sizes.
if (control.size() < TAPROOT_CONTROL_BASE_SIZE || control.size() > TAPROOT_CONTROL_MAX_SIZE ||
((control.size() - TAPROOT_CONTROL_BASE_SIZE) % TAPROOT_CONTROL_NODE_SIZE) != 0) continue;
// Skip script records that don't match the control block.
if ((control[0] & TAPROOT_LEAF_MASK) != leaf_ver) continue;
// Skip script records that don't match the provided Merkle root.
const uint256 leaf_hash = ComputeTapleafHash(leaf_ver, script);
const uint256 merkle_root = ComputeTaprootMerkleRoot(control, leaf_hash);
if (merkle_root != spenddata.merkle_root) continue;
TreeNode* node = &root;
size_t levels = (control.size() - TAPROOT_CONTROL_BASE_SIZE) / TAPROOT_CONTROL_NODE_SIZE;
for (size_t depth = 0; depth < levels; ++depth) {
// Can't descend into a node which we already know is a leaf.
if (node->explored && !node->inner) return std::nullopt;
// Extract partner hash from Merkle branch in control block.
uint256 hash;
std::copy(control.begin() + TAPROOT_CONTROL_BASE_SIZE + (levels - 1 - depth) * TAPROOT_CONTROL_NODE_SIZE,
control.begin() + TAPROOT_CONTROL_BASE_SIZE + (levels - depth) * TAPROOT_CONTROL_NODE_SIZE,
hash.begin());
if (node->sub[0]) {
// Descend into the existing left or right branch.
bool desc = false;
for (int i = 0; i < 2; ++i) {
if (node->sub[i]->hash == hash || (node->sub[i]->hash.IsNull() && node->sub[1-i]->hash != hash)) {
node->sub[i]->hash = hash;
node = &*node->sub[1-i];
desc = true;
break;
}
}
if (!desc) return std::nullopt; // This probably requires a hash collision to hit.
} else {
// We're in an unexplored node. Create subtrees and descend.
node->explored = true;
node->inner = true;
node->sub[0] = std::make_unique<TreeNode>();
node->sub[1] = std::make_unique<TreeNode>();
node->sub[1]->hash = hash;
node = &*node->sub[0];
}
}
// Cannot turn a known inner node into a leaf.
if (node->sub[0]) return std::nullopt;
node->explored = true;
node->inner = false;
node->leaf = &key;
node->hash = leaf_hash;
}
}
// Recursive processing to turn the tree into flattened output. Use an explicit stack here to avoid
// overflowing the call stack (the tree may be 128 levels deep).
std::vector<TreeNode*> stack{&root};
while (!stack.empty()) {
TreeNode& node = *stack.back();
if (!node.explored) {
// Unexplored node, which means the tree is incomplete.
return std::nullopt;
} else if (!node.inner) {
// Leaf node; produce output.
ret.emplace_back(stack.size() - 1, node.leaf->first, node.leaf->second);
node.done = true;
stack.pop_back();
} else if (node.sub[0]->done && !node.sub[1]->done && !node.sub[1]->explored && !node.sub[1]->hash.IsNull() &&
ComputeTapbranchHash(node.sub[1]->hash, node.sub[1]->hash) == node.hash) {
// Whenever there are nodes with two identical subtrees under it, we run into a problem:
// the control blocks for the leaves underneath those will be identical as well, and thus
// they will all be matched to the same path in the tree. The result is that at the location
// where the duplicate occurred, the left child will contain a normal tree that can be explored
// and processed, but the right one will remain unexplored.
//
// This situation can be detected, by encountering an inner node with unexplored right subtree
// with known hash, and H_TapBranch(hash, hash) is equal to the parent node (this node)'s hash.
//
// To deal with this, simply process the left tree a second time (set its done flag to false;
// noting that the done flag of its children have already been set to false after processing
// those). To avoid ending up in an infinite loop, set the done flag of the right (unexplored)
// subtree to true.
node.sub[0]->done = false;
node.sub[1]->done = true;
} else if (node.sub[0]->done && node.sub[1]->done) {
// An internal node which we're finished with.
node.sub[0]->done = false;
node.sub[1]->done = false;
node.done = true;
stack.pop_back();
} else if (!node.sub[0]->done) {
// An internal node whose left branch hasn't been processed yet. Do so first.
stack.push_back(&*node.sub[0]);
} else if (!node.sub[1]->done) {
// An internal node whose right branch hasn't been processed yet. Do so first.
stack.push_back(&*node.sub[1]);
}
}
return ret;
}
std::vector<std::tuple<uint8_t, uint8_t, std::vector<unsigned char>>> TaprootBuilder::GetTreeTuples() const
{
assert(IsComplete());
std::vector<std::tuple<uint8_t, uint8_t, std::vector<unsigned char>>> tuples;
if (m_branch.size()) {
const auto& leaves = m_branch[0]->leaves;
for (const auto& leaf : leaves) {
assert(leaf.merkle_branch.size() <= TAPROOT_CONTROL_MAX_NODE_COUNT);
uint8_t depth = (uint8_t)leaf.merkle_branch.size();
uint8_t leaf_ver = (uint8_t)leaf.leaf_version;
tuples.push_back(std::make_tuple(depth, leaf_ver, leaf.script));
}
}
return tuples;
}