mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-02-20 12:12:41 -05:00
357 lines
13 KiB
C
357 lines
13 KiB
C
// Copyright (c) 2014 Pieter Wuille
|
|
// Distributed under the MIT software license, see the accompanying
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
#ifndef _SECP256K1_SCALAR_REPR_IMPL_H_
|
|
#define _SECP256K1_SCALAR_REPR_IMPL_H_
|
|
|
|
typedef unsigned __int128 uint128_t;
|
|
|
|
// Limbs of the secp256k1 order.
|
|
#define SECP256K1_N_0 ((uint64_t)0xBFD25E8CD0364141ULL)
|
|
#define SECP256K1_N_1 ((uint64_t)0xBAAEDCE6AF48A03BULL)
|
|
#define SECP256K1_N_2 ((uint64_t)0xFFFFFFFFFFFFFFFEULL)
|
|
#define SECP256K1_N_3 ((uint64_t)0xFFFFFFFFFFFFFFFFULL)
|
|
|
|
// Limbs of 2^256 minus the secp256k1 order.
|
|
#define SECP256K1_N_C_0 (~SECP256K1_N_0 + 1)
|
|
#define SECP256K1_N_C_1 (~SECP256K1_N_1)
|
|
#define SECP256K1_N_C_2 (1)
|
|
|
|
// Limbs of half the secp256k1 order.
|
|
#define SECP256K1_N_H_0 ((uint64_t)0xDFE92F46681B20A0ULL)
|
|
#define SECP256K1_N_H_1 ((uint64_t)0x5D576E7357A4501DULL)
|
|
#define SECP256K1_N_H_2 ((uint64_t)0xFFFFFFFFFFFFFFFFULL)
|
|
#define SECP256K1_N_H_3 ((uint64_t)0x7FFFFFFFFFFFFFFFULL)
|
|
|
|
SECP256K1_INLINE static void secp256k1_scalar_clear(secp256k1_scalar_t *r) {
|
|
r->d[0] = 0;
|
|
r->d[1] = 0;
|
|
r->d[2] = 0;
|
|
r->d[3] = 0;
|
|
}
|
|
|
|
SECP256K1_INLINE static int secp256k1_scalar_get_bits(const secp256k1_scalar_t *a, int offset, int count) {
|
|
VERIFY_CHECK((offset + count - 1) / 64 == offset / 64);
|
|
return (a->d[offset / 64] >> (offset % 64)) & ((((uint64_t)1) << count) - 1);
|
|
}
|
|
|
|
SECP256K1_INLINE static int secp256k1_scalar_check_overflow(const secp256k1_scalar_t *a) {
|
|
int yes = 0;
|
|
int no = 0;
|
|
no |= (a->d[3] < SECP256K1_N_3); // No need for a > check.
|
|
no |= (a->d[2] < SECP256K1_N_2);
|
|
yes |= (a->d[2] > SECP256K1_N_2) & ~no;
|
|
no |= (a->d[1] < SECP256K1_N_1);
|
|
yes |= (a->d[1] > SECP256K1_N_1) & ~no;
|
|
yes |= (a->d[0] >= SECP256K1_N_0) & ~no;
|
|
return yes;
|
|
}
|
|
|
|
SECP256K1_INLINE static int secp256k1_scalar_reduce(secp256k1_scalar_t *r, unsigned int overflow) {
|
|
VERIFY_CHECK(overflow <= 1);
|
|
uint128_t t = (uint128_t)r->d[0] + overflow * SECP256K1_N_C_0;
|
|
r->d[0] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
|
|
t += (uint128_t)r->d[1] + overflow * SECP256K1_N_C_1;
|
|
r->d[1] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
|
|
t += (uint128_t)r->d[2] + overflow * SECP256K1_N_C_2;
|
|
r->d[2] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
|
|
t += (uint64_t)r->d[3];
|
|
r->d[3] = t & 0xFFFFFFFFFFFFFFFFULL;
|
|
return overflow;
|
|
}
|
|
|
|
static void secp256k1_scalar_add(secp256k1_scalar_t *r, const secp256k1_scalar_t *a, const secp256k1_scalar_t *b) {
|
|
uint128_t t = (uint128_t)a->d[0] + b->d[0];
|
|
r->d[0] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
|
|
t += (uint128_t)a->d[1] + b->d[1];
|
|
r->d[1] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
|
|
t += (uint128_t)a->d[2] + b->d[2];
|
|
r->d[2] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
|
|
t += (uint128_t)a->d[3] + b->d[3];
|
|
r->d[3] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
|
|
secp256k1_scalar_reduce(r, t + secp256k1_scalar_check_overflow(r));
|
|
}
|
|
|
|
static void secp256k1_scalar_set_b32(secp256k1_scalar_t *r, const unsigned char *b32, int *overflow) {
|
|
r->d[0] = (uint64_t)b32[31] | (uint64_t)b32[30] << 8 | (uint64_t)b32[29] << 16 | (uint64_t)b32[28] << 24 | (uint64_t)b32[27] << 32 | (uint64_t)b32[26] << 40 | (uint64_t)b32[25] << 48 | (uint64_t)b32[24] << 56;
|
|
r->d[1] = (uint64_t)b32[23] | (uint64_t)b32[22] << 8 | (uint64_t)b32[21] << 16 | (uint64_t)b32[20] << 24 | (uint64_t)b32[19] << 32 | (uint64_t)b32[18] << 40 | (uint64_t)b32[17] << 48 | (uint64_t)b32[16] << 56;
|
|
r->d[2] = (uint64_t)b32[15] | (uint64_t)b32[14] << 8 | (uint64_t)b32[13] << 16 | (uint64_t)b32[12] << 24 | (uint64_t)b32[11] << 32 | (uint64_t)b32[10] << 40 | (uint64_t)b32[9] << 48 | (uint64_t)b32[8] << 56;
|
|
r->d[3] = (uint64_t)b32[7] | (uint64_t)b32[6] << 8 | (uint64_t)b32[5] << 16 | (uint64_t)b32[4] << 24 | (uint64_t)b32[3] << 32 | (uint64_t)b32[2] << 40 | (uint64_t)b32[1] << 48 | (uint64_t)b32[0] << 56;
|
|
int over = secp256k1_scalar_reduce(r, secp256k1_scalar_check_overflow(r));
|
|
if (overflow) {
|
|
*overflow = over;
|
|
}
|
|
}
|
|
|
|
static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar_t* a) {
|
|
bin[0] = a->d[3] >> 56; bin[1] = a->d[3] >> 48; bin[2] = a->d[3] >> 40; bin[3] = a->d[3] >> 32; bin[4] = a->d[3] >> 24; bin[5] = a->d[3] >> 16; bin[6] = a->d[3] >> 8; bin[7] = a->d[3];
|
|
bin[8] = a->d[2] >> 56; bin[9] = a->d[2] >> 48; bin[10] = a->d[2] >> 40; bin[11] = a->d[2] >> 32; bin[12] = a->d[2] >> 24; bin[13] = a->d[2] >> 16; bin[14] = a->d[2] >> 8; bin[15] = a->d[2];
|
|
bin[16] = a->d[1] >> 56; bin[17] = a->d[1] >> 48; bin[18] = a->d[1] >> 40; bin[19] = a->d[1] >> 32; bin[20] = a->d[1] >> 24; bin[21] = a->d[1] >> 16; bin[22] = a->d[1] >> 8; bin[23] = a->d[1];
|
|
bin[24] = a->d[0] >> 56; bin[25] = a->d[0] >> 48; bin[26] = a->d[0] >> 40; bin[27] = a->d[0] >> 32; bin[28] = a->d[0] >> 24; bin[29] = a->d[0] >> 16; bin[30] = a->d[0] >> 8; bin[31] = a->d[0];
|
|
}
|
|
|
|
SECP256K1_INLINE static int secp256k1_scalar_is_zero(const secp256k1_scalar_t *a) {
|
|
return (a->d[0] | a->d[1] | a->d[2] | a->d[3]) == 0;
|
|
}
|
|
|
|
static void secp256k1_scalar_negate(secp256k1_scalar_t *r, const secp256k1_scalar_t *a) {
|
|
uint64_t nonzero = 0xFFFFFFFFFFFFFFFFULL * (secp256k1_scalar_is_zero(a) == 0);
|
|
uint128_t t = (uint128_t)(~a->d[0]) + SECP256K1_N_0 + 1;
|
|
r->d[0] = t & nonzero; t >>= 64;
|
|
t += (uint128_t)(~a->d[1]) + SECP256K1_N_1;
|
|
r->d[1] = t & nonzero; t >>= 64;
|
|
t += (uint128_t)(~a->d[2]) + SECP256K1_N_2;
|
|
r->d[2] = t & nonzero; t >>= 64;
|
|
t += (uint128_t)(~a->d[3]) + SECP256K1_N_3;
|
|
r->d[3] = t & nonzero;
|
|
}
|
|
|
|
SECP256K1_INLINE static int secp256k1_scalar_is_one(const secp256k1_scalar_t *a) {
|
|
return ((a->d[0] ^ 1) | a->d[1] | a->d[2] | a->d[3]) == 0;
|
|
}
|
|
|
|
static int secp256k1_scalar_is_high(const secp256k1_scalar_t *a) {
|
|
int yes = 0;
|
|
int no = 0;
|
|
no |= (a->d[3] < SECP256K1_N_H_3);
|
|
yes |= (a->d[3] > SECP256K1_N_H_3) & ~no;
|
|
no |= (a->d[2] < SECP256K1_N_H_2) & ~yes; // No need for a > check.
|
|
no |= (a->d[1] < SECP256K1_N_H_1) & ~yes;
|
|
yes |= (a->d[1] > SECP256K1_N_H_1) & ~no;
|
|
yes |= (a->d[0] > SECP256K1_N_H_0) & ~no;
|
|
return yes;
|
|
}
|
|
|
|
// Inspired by the macros in OpenSSL's crypto/bn/asm/x86_64-gcc.c.
|
|
|
|
/** Add a*b to the number defined by (c0,c1,c2). c2 must never overflow. */
|
|
#define muladd(a,b) { \
|
|
uint64_t tl, th; \
|
|
{ \
|
|
uint128_t t = (uint128_t)a * b; \
|
|
th = t >> 64; /* at most 0xFFFFFFFFFFFFFFFE */ \
|
|
tl = t; \
|
|
} \
|
|
c0 += tl; /* overflow is handled on the next line */ \
|
|
th += (c0 < tl) ? 1 : 0; /* at most 0xFFFFFFFFFFFFFFFF */ \
|
|
c1 += th; /* overflow is handled on the next line */ \
|
|
c2 += (c1 < th) ? 1 : 0; /* never overflows by contract (verified in the next line) */ \
|
|
VERIFY_CHECK((c1 >= th) || (c2 != 0)); \
|
|
}
|
|
|
|
/** Add a*b to the number defined by (c0,c1). c1 must never overflow. */
|
|
#define muladd_fast(a,b) { \
|
|
uint64_t tl, th; \
|
|
{ \
|
|
uint128_t t = (uint128_t)a * b; \
|
|
th = t >> 64; /* at most 0xFFFFFFFFFFFFFFFE */ \
|
|
tl = t; \
|
|
} \
|
|
c0 += tl; /* overflow is handled on the next line */ \
|
|
th += (c0 < tl) ? 1 : 0; /* at most 0xFFFFFFFFFFFFFFFF */ \
|
|
c1 += th; /* never overflows by contract (verified in the next line) */ \
|
|
VERIFY_CHECK(c1 >= th); \
|
|
}
|
|
|
|
/** Add 2*a*b to the number defined by (c0,c1,c2). c2 must never overflow. */
|
|
#define muladd2(a,b) { \
|
|
uint64_t tl, th; \
|
|
{ \
|
|
uint128_t t = (uint128_t)a * b; \
|
|
th = t >> 64; /* at most 0xFFFFFFFFFFFFFFFE */ \
|
|
tl = t; \
|
|
} \
|
|
uint64_t th2 = th + th; /* at most 0xFFFFFFFFFFFFFFFE (in case th was 0x7FFFFFFFFFFFFFFF) */ \
|
|
c2 += (th2 < th) ? 1 : 0; /* never overflows by contract (verified the next line) */ \
|
|
VERIFY_CHECK((th2 >= th) || (c2 != 0)); \
|
|
uint64_t tl2 = tl + tl; /* at most 0xFFFFFFFFFFFFFFFE (in case the lowest 63 bits of tl were 0x7FFFFFFFFFFFFFFF) */ \
|
|
th2 += (tl2 < tl) ? 1 : 0; /* at most 0xFFFFFFFFFFFFFFFF */ \
|
|
c0 += tl2; /* overflow is handled on the next line */ \
|
|
th2 += (c0 < tl2) ? 1 : 0; /* second overflow is handled on the next line */ \
|
|
c2 += (c0 < tl2) & (th2 == 0); /* never overflows by contract (verified the next line) */ \
|
|
VERIFY_CHECK((c0 >= tl2) || (th2 != 0) || (c2 != 0)); \
|
|
c1 += th2; /* overflow is handled on the next line */ \
|
|
c2 += (c1 < th2) ? 1 : 0; /* never overflows by contract (verified the next line) */ \
|
|
VERIFY_CHECK((c1 >= th2) || (c2 != 0)); \
|
|
}
|
|
|
|
/** Add a to the number defined by (c0,c1,c2). c2 must never overflow. */
|
|
#define sumadd(a) { \
|
|
c0 += (a); /* overflow is handled on the next line */ \
|
|
unsigned int over = (c0 < (a)) ? 1 : 0; \
|
|
c1 += over; /* overflow is handled on the next line */ \
|
|
c2 += (c1 < over) ? 1 : 0; /* never overflows by contract */ \
|
|
}
|
|
|
|
/** Add a to the number defined by (c0,c1). c1 must never overflow, c2 must be zero. */
|
|
#define sumadd_fast(a) { \
|
|
c0 += (a); /* overflow is handled on the next line */ \
|
|
c1 += (c0 < (a)) ? 1 : 0; /* never overflows by contract (verified the next line) */ \
|
|
VERIFY_CHECK((c1 != 0) | (c0 >= (a))); \
|
|
VERIFY_CHECK(c2 == 0); \
|
|
}
|
|
|
|
/** Extract the lowest 64 bits of (c0,c1,c2) into n, and left shift the number 64 bits. */
|
|
#define extract(n) { \
|
|
(n) = c0; \
|
|
c0 = c1; \
|
|
c1 = c2; \
|
|
c2 = 0; \
|
|
}
|
|
|
|
/** Extract the lowest 64 bits of (c0,c1,c2) into n, and left shift the number 64 bits. c2 is required to be zero. */
|
|
#define extract_fast(n) { \
|
|
(n) = c0; \
|
|
c0 = c1; \
|
|
c1 = 0; \
|
|
VERIFY_CHECK(c2 == 0); \
|
|
}
|
|
|
|
static void secp256k1_scalar_reduce_512(secp256k1_scalar_t *r, const uint64_t *l) {
|
|
uint64_t n0 = l[4], n1 = l[5], n2 = l[6], n3 = l[7];
|
|
|
|
// 160 bit accumulator.
|
|
uint64_t c0, c1;
|
|
uint32_t c2;
|
|
|
|
// Reduce 512 bits into 385.
|
|
// m[0..6] = l[0..3] + n[0..3] * SECP256K1_N_C.
|
|
c0 = l[0]; c1 = 0; c2 = 0;
|
|
muladd_fast(n0, SECP256K1_N_C_0);
|
|
uint64_t m0; extract_fast(m0);
|
|
sumadd_fast(l[1]);
|
|
muladd(n1, SECP256K1_N_C_0);
|
|
muladd(n0, SECP256K1_N_C_1);
|
|
uint64_t m1; extract(m1);
|
|
sumadd(l[2]);
|
|
muladd(n2, SECP256K1_N_C_0);
|
|
muladd(n1, SECP256K1_N_C_1);
|
|
sumadd(n0);
|
|
uint64_t m2; extract(m2);
|
|
sumadd(l[3]);
|
|
muladd(n3, SECP256K1_N_C_0);
|
|
muladd(n2, SECP256K1_N_C_1);
|
|
sumadd(n1);
|
|
uint64_t m3; extract(m3);
|
|
muladd(n3, SECP256K1_N_C_1);
|
|
sumadd(n2);
|
|
uint64_t m4; extract(m4);
|
|
sumadd_fast(n3);
|
|
uint64_t m5; extract_fast(m5);
|
|
VERIFY_CHECK(c0 <= 1);
|
|
uint32_t m6 = c0;
|
|
|
|
// Reduce 385 bits into 258.
|
|
// p[0..4] = m[0..3] + m[4..6] * SECP256K1_N_C.
|
|
c0 = m0; c1 = 0; c2 = 0;
|
|
muladd_fast(m4, SECP256K1_N_C_0);
|
|
uint64_t p0; extract_fast(p0);
|
|
sumadd_fast(m1);
|
|
muladd(m5, SECP256K1_N_C_0);
|
|
muladd(m4, SECP256K1_N_C_1);
|
|
uint64_t p1; extract(p1);
|
|
sumadd(m2);
|
|
muladd(m6, SECP256K1_N_C_0);
|
|
muladd(m5, SECP256K1_N_C_1);
|
|
sumadd(m4);
|
|
uint64_t p2; extract(p2);
|
|
sumadd_fast(m3);
|
|
muladd_fast(m6, SECP256K1_N_C_1);
|
|
sumadd_fast(m5);
|
|
uint64_t p3; extract_fast(p3);
|
|
uint32_t p4 = c0 + m6;
|
|
VERIFY_CHECK(p4 <= 2);
|
|
|
|
// Reduce 258 bits into 256.
|
|
// r[0..3] = p[0..3] + p[4] * SECP256K1_N_C.
|
|
uint128_t c = p0 + (uint128_t)SECP256K1_N_C_0 * p4;
|
|
r->d[0] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64;
|
|
c += p1 + (uint128_t)SECP256K1_N_C_1 * p4;
|
|
r->d[1] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64;
|
|
c += p2 + (uint128_t)p4;
|
|
r->d[2] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64;
|
|
c += p3;
|
|
r->d[3] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64;
|
|
|
|
// Final reduction of r.
|
|
secp256k1_scalar_reduce(r, c + secp256k1_scalar_check_overflow(r));
|
|
}
|
|
|
|
static void secp256k1_scalar_mul(secp256k1_scalar_t *r, const secp256k1_scalar_t *a, const secp256k1_scalar_t *b) {
|
|
// 160 bit accumulator.
|
|
uint64_t c0 = 0, c1 = 0;
|
|
uint32_t c2 = 0;
|
|
|
|
uint64_t l[8];
|
|
|
|
// l[0..7] = a[0..3] * b[0..3].
|
|
muladd_fast(a->d[0], b->d[0]);
|
|
extract_fast(l[0]);
|
|
muladd(a->d[0], b->d[1]);
|
|
muladd(a->d[1], b->d[0]);
|
|
extract(l[1]);
|
|
muladd(a->d[0], b->d[2]);
|
|
muladd(a->d[1], b->d[1]);
|
|
muladd(a->d[2], b->d[0]);
|
|
extract(l[2]);
|
|
muladd(a->d[0], b->d[3]);
|
|
muladd(a->d[1], b->d[2]);
|
|
muladd(a->d[2], b->d[1]);
|
|
muladd(a->d[3], b->d[0]);
|
|
extract(l[3]);
|
|
muladd(a->d[1], b->d[3]);
|
|
muladd(a->d[2], b->d[2]);
|
|
muladd(a->d[3], b->d[1]);
|
|
extract(l[4]);
|
|
muladd(a->d[2], b->d[3]);
|
|
muladd(a->d[3], b->d[2]);
|
|
extract(l[5]);
|
|
muladd_fast(a->d[3], b->d[3]);
|
|
extract_fast(l[6]);
|
|
VERIFY_CHECK(c1 <= 0);
|
|
l[7] = c0;
|
|
|
|
secp256k1_scalar_reduce_512(r, l);
|
|
}
|
|
|
|
static void secp256k1_scalar_sqr(secp256k1_scalar_t *r, const secp256k1_scalar_t *a) {
|
|
// 160 bit accumulator.
|
|
uint64_t c0 = 0, c1 = 0;
|
|
uint32_t c2 = 0;
|
|
|
|
uint64_t l[8];
|
|
|
|
// l[0..7] = a[0..3] * b[0..3].
|
|
muladd_fast(a->d[0], a->d[0]);
|
|
extract_fast(l[0]);
|
|
muladd2(a->d[0], a->d[1]);
|
|
extract(l[1]);
|
|
muladd2(a->d[0], a->d[2]);
|
|
muladd(a->d[1], a->d[1]);
|
|
extract(l[2]);
|
|
muladd2(a->d[0], a->d[3]);
|
|
muladd2(a->d[1], a->d[2]);
|
|
extract(l[3]);
|
|
muladd2(a->d[1], a->d[3]);
|
|
muladd(a->d[2], a->d[2]);
|
|
extract(l[4]);
|
|
muladd2(a->d[2], a->d[3]);
|
|
extract(l[5]);
|
|
muladd_fast(a->d[3], a->d[3]);
|
|
extract_fast(l[6]);
|
|
VERIFY_CHECK(c1 == 0);
|
|
l[7] = c0;
|
|
|
|
secp256k1_scalar_reduce_512(r, l);
|
|
}
|
|
|
|
#undef sumadd
|
|
#undef sumadd_fast
|
|
#undef muladd
|
|
#undef muladd_fast
|
|
#undef muladd2
|
|
#undef extract
|
|
#undef extract_fast
|
|
|
|
#endif
|