mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-02-24 12:41:41 -05:00
200 lines
8.8 KiB
C++
200 lines
8.8 KiB
C++
// Copyright (c) 2020-2021 The Bitcoin Core developers
|
|
// Distributed under the MIT software license, see the accompanying
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
#include <crypto/chacha20poly1305.h>
|
|
#include <random.h>
|
|
#include <span.h>
|
|
#include <test/fuzz/FuzzedDataProvider.h>
|
|
#include <test/fuzz/fuzz.h>
|
|
#include <test/fuzz/util.h>
|
|
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <vector>
|
|
|
|
constexpr static inline void crypt_till_rekey(FSChaCha20Poly1305& aead, int rekey_interval, bool encrypt)
|
|
{
|
|
for (int i = 0; i < rekey_interval; ++i) {
|
|
std::byte dummy_tag[FSChaCha20Poly1305::EXPANSION] = {{}};
|
|
if (encrypt) {
|
|
aead.Encrypt(Span{dummy_tag}.first(0), Span{dummy_tag}.first(0), dummy_tag);
|
|
} else {
|
|
aead.Decrypt(dummy_tag, Span{dummy_tag}.first(0), Span{dummy_tag}.first(0));
|
|
}
|
|
}
|
|
}
|
|
|
|
FUZZ_TARGET(crypto_aeadchacha20poly1305)
|
|
{
|
|
FuzzedDataProvider provider{buffer.data(), buffer.size()};
|
|
|
|
auto key = provider.ConsumeBytes<std::byte>(32);
|
|
key.resize(32);
|
|
AEADChaCha20Poly1305 aead(key);
|
|
|
|
// Initialize RNG deterministically, to generate contents and AAD. We assume that there are no
|
|
// (potentially buggy) edge cases triggered by specific values of contents/AAD, so we can avoid
|
|
// reading the actual data for those from the fuzzer input (which would need large amounts of
|
|
// data).
|
|
InsecureRandomContext rng(provider.ConsumeIntegral<uint64_t>());
|
|
|
|
LIMITED_WHILE(provider.ConsumeBool(), 10000)
|
|
{
|
|
// Mode:
|
|
// - Bit 0: whether to use single-plain Encrypt/Decrypt; otherwise use a split at prefix.
|
|
// - Bit 2: whether this ciphertext will be corrupted (making it the last sent one)
|
|
// - Bit 3-4: controls the maximum aad length (max 511 bytes)
|
|
// - Bit 5-7: controls the maximum content length (max 16383 bytes, for performance reasons)
|
|
unsigned mode = provider.ConsumeIntegral<uint8_t>();
|
|
bool use_splits = mode & 1;
|
|
bool damage = mode & 4;
|
|
unsigned aad_length_bits = 3 * ((mode >> 3) & 3);
|
|
unsigned aad_length = provider.ConsumeIntegralInRange<unsigned>(0, (1 << aad_length_bits) - 1);
|
|
unsigned length_bits = 2 * ((mode >> 5) & 7);
|
|
unsigned length = provider.ConsumeIntegralInRange<unsigned>(0, (1 << length_bits) - 1);
|
|
// Generate aad and content.
|
|
auto aad = rng.randbytes<std::byte>(aad_length);
|
|
auto plain = rng.randbytes<std::byte>(length);
|
|
std::vector<std::byte> cipher(length + AEADChaCha20Poly1305::EXPANSION);
|
|
// Generate nonce
|
|
AEADChaCha20Poly1305::Nonce96 nonce = {(uint32_t)rng(), rng()};
|
|
|
|
if (use_splits && length > 0) {
|
|
size_t split_index = provider.ConsumeIntegralInRange<size_t>(1, length);
|
|
aead.Encrypt(Span{plain}.first(split_index), Span{plain}.subspan(split_index), aad, nonce, cipher);
|
|
} else {
|
|
aead.Encrypt(plain, aad, nonce, cipher);
|
|
}
|
|
|
|
// Test Keystream output
|
|
std::vector<std::byte> keystream(length);
|
|
aead.Keystream(nonce, keystream);
|
|
for (size_t i = 0; i < length; ++i) {
|
|
assert((plain[i] ^ keystream[i]) == cipher[i]);
|
|
}
|
|
|
|
std::vector<std::byte> decrypted_contents(length);
|
|
bool ok{false};
|
|
|
|
// damage the key
|
|
unsigned key_position = provider.ConsumeIntegralInRange<unsigned>(0, 31);
|
|
std::byte damage_val{(uint8_t)(1U << (key_position & 7))};
|
|
std::vector<std::byte> bad_key = key;
|
|
bad_key[key_position] ^= damage_val;
|
|
|
|
AEADChaCha20Poly1305 bad_aead(bad_key);
|
|
ok = bad_aead.Decrypt(cipher, aad, nonce, decrypted_contents);
|
|
assert(!ok);
|
|
|
|
// Optionally damage 1 bit in either the cipher (corresponding to a change in transit)
|
|
// or the aad (to make sure that decryption will fail if the AAD mismatches).
|
|
if (damage) {
|
|
unsigned damage_bit = provider.ConsumeIntegralInRange<unsigned>(0, (cipher.size() + aad.size()) * 8U - 1U);
|
|
unsigned damage_pos = damage_bit >> 3;
|
|
std::byte damage_val{(uint8_t)(1U << (damage_bit & 7))};
|
|
if (damage_pos >= cipher.size()) {
|
|
aad[damage_pos - cipher.size()] ^= damage_val;
|
|
} else {
|
|
cipher[damage_pos] ^= damage_val;
|
|
}
|
|
}
|
|
|
|
if (use_splits && length > 0) {
|
|
size_t split_index = provider.ConsumeIntegralInRange<size_t>(1, length);
|
|
ok = aead.Decrypt(cipher, aad, nonce, Span{decrypted_contents}.first(split_index), Span{decrypted_contents}.subspan(split_index));
|
|
} else {
|
|
ok = aead.Decrypt(cipher, aad, nonce, decrypted_contents);
|
|
}
|
|
|
|
// Decryption *must* fail if the packet was damaged, and succeed if it wasn't.
|
|
assert(!ok == damage);
|
|
if (!ok) break;
|
|
assert(decrypted_contents == plain);
|
|
}
|
|
}
|
|
|
|
FUZZ_TARGET(crypto_fschacha20poly1305)
|
|
{
|
|
FuzzedDataProvider provider{buffer.data(), buffer.size()};
|
|
|
|
uint32_t rekey_interval = provider.ConsumeIntegralInRange<size_t>(32, 512);
|
|
auto key = provider.ConsumeBytes<std::byte>(32);
|
|
key.resize(32);
|
|
FSChaCha20Poly1305 enc_aead(key, rekey_interval);
|
|
FSChaCha20Poly1305 dec_aead(key, rekey_interval);
|
|
|
|
// Initialize RNG deterministically, to generate contents and AAD. We assume that there are no
|
|
// (potentially buggy) edge cases triggered by specific values of contents/AAD, so we can avoid
|
|
// reading the actual data for those from the fuzzer input (which would need large amounts of
|
|
// data).
|
|
InsecureRandomContext rng(provider.ConsumeIntegral<uint64_t>());
|
|
|
|
LIMITED_WHILE(provider.ConsumeBool(), 10000)
|
|
{
|
|
// Mode:
|
|
// - Bit 0: whether to use single-plain Encrypt/Decrypt; otherwise use a split at prefix.
|
|
// - Bit 2: whether this ciphertext will be corrupted (making it the last sent one)
|
|
// - Bit 3-4: controls the maximum aad length (max 511 bytes)
|
|
// - Bit 5-7: controls the maximum content length (max 16383 bytes, for performance reasons)
|
|
unsigned mode = provider.ConsumeIntegral<uint8_t>();
|
|
bool use_splits = mode & 1;
|
|
bool damage = mode & 4;
|
|
unsigned aad_length_bits = 3 * ((mode >> 3) & 3);
|
|
unsigned aad_length = provider.ConsumeIntegralInRange<unsigned>(0, (1 << aad_length_bits) - 1);
|
|
unsigned length_bits = 2 * ((mode >> 5) & 7);
|
|
unsigned length = provider.ConsumeIntegralInRange<unsigned>(0, (1 << length_bits) - 1);
|
|
// Generate aad and content.
|
|
auto aad = rng.randbytes<std::byte>(aad_length);
|
|
auto plain = rng.randbytes<std::byte>(length);
|
|
std::vector<std::byte> cipher(length + FSChaCha20Poly1305::EXPANSION);
|
|
|
|
crypt_till_rekey(enc_aead, rekey_interval, true);
|
|
if (use_splits && length > 0) {
|
|
size_t split_index = provider.ConsumeIntegralInRange<size_t>(1, length);
|
|
enc_aead.Encrypt(Span{plain}.first(split_index), Span{plain}.subspan(split_index), aad, cipher);
|
|
} else {
|
|
enc_aead.Encrypt(plain, aad, cipher);
|
|
}
|
|
|
|
std::vector<std::byte> decrypted_contents(length);
|
|
bool ok{false};
|
|
|
|
// damage the key
|
|
unsigned key_position = provider.ConsumeIntegralInRange<unsigned>(0, 31);
|
|
std::byte damage_val{(uint8_t)(1U << (key_position & 7))};
|
|
std::vector<std::byte> bad_key = key;
|
|
bad_key[key_position] ^= damage_val;
|
|
|
|
FSChaCha20Poly1305 bad_fs_aead(bad_key, rekey_interval);
|
|
crypt_till_rekey(bad_fs_aead, rekey_interval, false);
|
|
ok = bad_fs_aead.Decrypt(cipher, aad, decrypted_contents);
|
|
assert(!ok);
|
|
|
|
// Optionally damage 1 bit in either the cipher (corresponding to a change in transit)
|
|
// or the aad (to make sure that decryption will fail if the AAD mismatches).
|
|
if (damage) {
|
|
unsigned damage_bit = provider.ConsumeIntegralInRange<unsigned>(0, (cipher.size() + aad.size()) * 8U - 1U);
|
|
unsigned damage_pos = damage_bit >> 3;
|
|
std::byte damage_val{(uint8_t)(1U << (damage_bit & 7))};
|
|
if (damage_pos >= cipher.size()) {
|
|
aad[damage_pos - cipher.size()] ^= damage_val;
|
|
} else {
|
|
cipher[damage_pos] ^= damage_val;
|
|
}
|
|
}
|
|
|
|
crypt_till_rekey(dec_aead, rekey_interval, false);
|
|
if (use_splits && length > 0) {
|
|
size_t split_index = provider.ConsumeIntegralInRange<size_t>(1, length);
|
|
ok = dec_aead.Decrypt(cipher, aad, Span{decrypted_contents}.first(split_index), Span{decrypted_contents}.subspan(split_index));
|
|
} else {
|
|
ok = dec_aead.Decrypt(cipher, aad, decrypted_contents);
|
|
}
|
|
|
|
// Decryption *must* fail if the packet was damaged, and succeed if it wasn't.
|
|
assert(!ok == damage);
|
|
if (!ok) break;
|
|
assert(decrypted_contents == plain);
|
|
}
|
|
}
|