0
0
Fork 0
mirror of https://github.com/bitcoin/bitcoin.git synced 2025-02-13 11:25:02 -05:00
bitcoin-bitcoin-core/src/uint256.h
Hodlinator b74d8d58fa
refactor: Add consteval uint256(hex_str)
Complements uint256::FromHex() nicely in that it naturally does all error checking at compile time and so doesn't need to return an std::optional.

Will be used in the following 2 commits to replace many calls to uint256S(). uint256S() calls taking C-string literals are littered throughout the codebase and executed at runtime to perform parsing unless a given optimizer was surprisingly efficient. While this may not be a hot spot, it's better hygiene in C++20 to store the parsed data blob directly in the binary, without any parsing at runtime.
2024-08-05 14:45:18 +02:00

199 lines
6.9 KiB
C++

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-present The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_UINT256_H
#define BITCOIN_UINT256_H
#include <crypto/common.h>
#include <span.h>
#include <util/strencodings.h>
#include <algorithm>
#include <array>
#include <cassert>
#include <cstdint>
#include <cstring>
#include <optional>
#include <string>
/** Template base class for fixed-sized opaque blobs. */
template<unsigned int BITS>
class base_blob
{
protected:
static constexpr int WIDTH = BITS / 8;
static_assert(BITS % 8 == 0, "base_blob currently only supports whole bytes.");
std::array<uint8_t, WIDTH> m_data;
static_assert(WIDTH == sizeof(m_data), "Sanity check");
public:
/* construct 0 value by default */
constexpr base_blob() : m_data() {}
/* constructor for constants between 1 and 255 */
constexpr explicit base_blob(uint8_t v) : m_data{v} {}
constexpr explicit base_blob(Span<const unsigned char> vch)
{
assert(vch.size() == WIDTH);
std::copy(vch.begin(), vch.end(), m_data.begin());
}
consteval explicit base_blob(std::string_view hex_str);
constexpr bool IsNull() const
{
return std::all_of(m_data.begin(), m_data.end(), [](uint8_t val) {
return val == 0;
});
}
constexpr void SetNull()
{
std::fill(m_data.begin(), m_data.end(), 0);
}
/** Lexicographic ordering
* @note Does NOT match the ordering on the corresponding \ref
* base_uint::CompareTo, which starts comparing from the end.
*/
constexpr int Compare(const base_blob& other) const { return std::memcmp(m_data.data(), other.m_data.data(), WIDTH); }
friend constexpr bool operator==(const base_blob& a, const base_blob& b) { return a.Compare(b) == 0; }
friend constexpr bool operator!=(const base_blob& a, const base_blob& b) { return a.Compare(b) != 0; }
friend constexpr bool operator<(const base_blob& a, const base_blob& b) { return a.Compare(b) < 0; }
/** @name Hex representation
*
* The reverse-byte hex representation is a convenient way to view the blob
* as a number, because it is consistent with the way the base_uint class
* converts blobs to numbers.
*
* @note base_uint treats the blob as an array of bytes with the numerically
* least significant byte first and the most significant byte last. Because
* numbers are typically written with the most significant digit first and
* the least significant digit last, the reverse hex display of the blob
* corresponds to the same numeric value that base_uint interprets from the
* blob.
* @{*/
std::string GetHex() const;
/** Unlike FromHex this accepts any invalid input, thus it is fragile and deprecated!
*
* - Hex numbers that don't specify enough bytes to fill the internal array
* will be treated as setting the beginning of it, which corresponds to
* the least significant bytes when converted to base_uint.
*
* - Hex numbers specifying too many bytes will have the numerically most
* significant bytes (the beginning of the string) narrowed away.
*
* - An odd count of hex digits will result in the high bits of the leftmost
* byte being zero.
* "0x123" => {0x23, 0x1, 0x0, ..., 0x0}
*/
void SetHexDeprecated(std::string_view str);
std::string ToString() const;
/**@}*/
constexpr const unsigned char* data() const { return m_data.data(); }
constexpr unsigned char* data() { return m_data.data(); }
constexpr unsigned char* begin() { return m_data.data(); }
constexpr unsigned char* end() { return m_data.data() + WIDTH; }
constexpr const unsigned char* begin() const { return m_data.data(); }
constexpr const unsigned char* end() const { return m_data.data() + WIDTH; }
static constexpr unsigned int size() { return WIDTH; }
constexpr uint64_t GetUint64(int pos) const { return ReadLE64(m_data.data() + pos * 8); }
template<typename Stream>
void Serialize(Stream& s) const
{
s << Span(m_data);
}
template<typename Stream>
void Unserialize(Stream& s)
{
s.read(MakeWritableByteSpan(m_data));
}
};
template <unsigned int BITS>
consteval base_blob<BITS>::base_blob(std::string_view hex_str)
{
// Non-lookup table version of HexDigit().
auto from_hex = [](const char c) -> int8_t {
if (c >= '0' && c <= '9') return c - '0';
if (c >= 'a' && c <= 'f') return c - 'a' + 0xA;
if (c >= 'A' && c <= 'F') return c - 'A' + 0xA;
assert(false); // Reached if ctor is called with an invalid hex digit.
};
assert(hex_str.length() == m_data.size() * 2); // 2 hex digits per byte.
auto str_it = hex_str.rbegin();
for (auto& elem : m_data) {
auto lo = from_hex(*(str_it++));
elem = (from_hex(*(str_it++)) << 4) | lo;
}
}
namespace detail {
/**
* Writes the hex string (in reverse byte order) into a new uintN_t object
* and only returns a value iff all of the checks pass:
* - Input length is uintN_t::size()*2
* - All characters are hex
*/
template <class uintN_t>
std::optional<uintN_t> FromHex(std::string_view str)
{
if (uintN_t::size() * 2 != str.size() || !IsHex(str)) return std::nullopt;
uintN_t rv;
rv.SetHexDeprecated(str);
return rv;
}
} // namespace detail
/** 160-bit opaque blob.
* @note This type is called uint160 for historical reasons only. It is an opaque
* blob of 160 bits and has no integer operations.
*/
class uint160 : public base_blob<160> {
public:
static std::optional<uint160> FromHex(std::string_view str) { return detail::FromHex<uint160>(str); }
constexpr uint160() = default;
constexpr explicit uint160(Span<const unsigned char> vch) : base_blob<160>(vch) {}
};
/** 256-bit opaque blob.
* @note This type is called uint256 for historical reasons only. It is an
* opaque blob of 256 bits and has no integer operations. Use arith_uint256 if
* those are required.
*/
class uint256 : public base_blob<256> {
public:
static std::optional<uint256> FromHex(std::string_view str) { return detail::FromHex<uint256>(str); }
constexpr uint256() = default;
consteval explicit uint256(std::string_view hex_str) : base_blob<256>(hex_str) {}
constexpr explicit uint256(uint8_t v) : base_blob<256>(v) {}
constexpr explicit uint256(Span<const unsigned char> vch) : base_blob<256>(vch) {}
static const uint256 ZERO;
static const uint256 ONE;
};
/* uint256 from std::string_view, containing byte-reversed hex encoding.
* DEPRECATED. Unlike FromHex this accepts any invalid input, thus it is fragile and deprecated!
*/
inline uint256 uint256S(std::string_view str)
{
uint256 rv;
rv.SetHexDeprecated(str);
return rv;
}
#endif // BITCOIN_UINT256_H