0
0
Fork 0
mirror of https://github.com/bitcoin/bitcoin.git synced 2025-02-14 11:26:09 -05:00
bitcoin-bitcoin-core/src/cluster_linearize.h
Pieter Wuille bbcee5a0d6 clusterlin: improve rechunking in LinearizationChunking (optimization)
When the transactions being marked done exactly match the first chunk of
what remains of the linearization, we can just remember to skip that
chunk instead of computing a full rechunking.

Further, chop off prefixes of the input linearization that are already done,
so they don't need to be reconsidered for further rechunkings.
2024-08-01 16:03:38 -04:00

1052 lines
46 KiB
C++

// Copyright (c) The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_CLUSTER_LINEARIZE_H
#define BITCOIN_CLUSTER_LINEARIZE_H
#include <algorithm>
#include <numeric>
#include <optional>
#include <stdint.h>
#include <vector>
#include <utility>
#include <random.h>
#include <span.h>
#include <util/feefrac.h>
#include <util/vecdeque.h>
namespace cluster_linearize {
/** Data type to represent cluster input.
*
* cluster[i].first is tx_i's fee and size.
* cluster[i].second[j] is true iff tx_i spends one or more of tx_j's outputs.
*/
template<typename SetType>
using Cluster = std::vector<std::pair<FeeFrac, SetType>>;
/** Data type to represent transaction indices in clusters. */
using ClusterIndex = uint32_t;
/** Data structure that holds a transaction graph's preprocessed data (fee, size, ancestors,
* descendants). */
template<typename SetType>
class DepGraph
{
/** Information about a single transaction. */
struct Entry
{
/** Fee and size of transaction itself. */
FeeFrac feerate;
/** All ancestors of the transaction (including itself). */
SetType ancestors;
/** All descendants of the transaction (including itself). */
SetType descendants;
/** Equality operator (primarily for for testing purposes). */
friend bool operator==(const Entry&, const Entry&) noexcept = default;
/** Construct an empty entry. */
Entry() noexcept = default;
/** Construct an entry with a given feerate, ancestor set, descendant set. */
Entry(const FeeFrac& f, const SetType& a, const SetType& d) noexcept : feerate(f), ancestors(a), descendants(d) {}
};
/** Data for each transaction, in the same order as the Cluster it was constructed from. */
std::vector<Entry> entries;
public:
/** Equality operator (primarily for testing purposes). */
friend bool operator==(const DepGraph&, const DepGraph&) noexcept = default;
// Default constructors.
DepGraph() noexcept = default;
DepGraph(const DepGraph&) noexcept = default;
DepGraph(DepGraph&&) noexcept = default;
DepGraph& operator=(const DepGraph&) noexcept = default;
DepGraph& operator=(DepGraph&&) noexcept = default;
/** Construct a DepGraph object for ntx transactions, with no dependencies.
*
* Complexity: O(N) where N=ntx.
**/
explicit DepGraph(ClusterIndex ntx) noexcept
{
Assume(ntx <= SetType::Size());
entries.resize(ntx);
for (ClusterIndex i = 0; i < ntx; ++i) {
entries[i].ancestors = SetType::Singleton(i);
entries[i].descendants = SetType::Singleton(i);
}
}
/** Construct a DepGraph object given a cluster.
*
* Complexity: O(N^2) where N=cluster.size().
*/
explicit DepGraph(const Cluster<SetType>& cluster) noexcept : entries(cluster.size())
{
for (ClusterIndex i = 0; i < cluster.size(); ++i) {
// Fill in fee and size.
entries[i].feerate = cluster[i].first;
// Fill in direct parents as ancestors.
entries[i].ancestors = cluster[i].second;
// Make sure transactions are ancestors of themselves.
entries[i].ancestors.Set(i);
}
// Propagate ancestor information.
for (ClusterIndex i = 0; i < entries.size(); ++i) {
// At this point, entries[a].ancestors[b] is true iff b is an ancestor of a and there
// is a path from a to b through the subgraph consisting of {a, b} union
// {0, 1, ..., (i-1)}.
SetType to_merge = entries[i].ancestors;
for (ClusterIndex j = 0; j < entries.size(); ++j) {
if (entries[j].ancestors[i]) {
entries[j].ancestors |= to_merge;
}
}
}
// Fill in descendant information by transposing the ancestor information.
for (ClusterIndex i = 0; i < entries.size(); ++i) {
for (auto j : entries[i].ancestors) {
entries[j].descendants.Set(i);
}
}
}
/** Get the number of transactions in the graph. Complexity: O(1). */
auto TxCount() const noexcept { return entries.size(); }
/** Get the feerate of a given transaction i. Complexity: O(1). */
const FeeFrac& FeeRate(ClusterIndex i) const noexcept { return entries[i].feerate; }
/** Get the mutable feerate of a given transaction i. Complexity: O(1). */
FeeFrac& FeeRate(ClusterIndex i) noexcept { return entries[i].feerate; }
/** Get the ancestors of a given transaction i. Complexity: O(1). */
const SetType& Ancestors(ClusterIndex i) const noexcept { return entries[i].ancestors; }
/** Get the descendants of a given transaction i. Complexity: O(1). */
const SetType& Descendants(ClusterIndex i) const noexcept { return entries[i].descendants; }
/** Add a new unconnected transaction to this transaction graph (at the end), and return its
* ClusterIndex.
*
* Complexity: O(1) (amortized, due to resizing of backing vector).
*/
ClusterIndex AddTransaction(const FeeFrac& feefrac) noexcept
{
Assume(TxCount() < SetType::Size());
ClusterIndex new_idx = TxCount();
entries.emplace_back(feefrac, SetType::Singleton(new_idx), SetType::Singleton(new_idx));
return new_idx;
}
/** Modify this transaction graph, adding a dependency between a specified parent and child.
*
* Complexity: O(N) where N=TxCount().
**/
void AddDependency(ClusterIndex parent, ClusterIndex child) noexcept
{
// Bail out if dependency is already implied.
if (entries[child].ancestors[parent]) return;
// To each ancestor of the parent, add as descendants the descendants of the child.
const auto& chl_des = entries[child].descendants;
for (auto anc_of_par : Ancestors(parent)) {
entries[anc_of_par].descendants |= chl_des;
}
// To each descendant of the child, add as ancestors the ancestors of the parent.
const auto& par_anc = entries[parent].ancestors;
for (auto dec_of_chl : Descendants(child)) {
entries[dec_of_chl].ancestors |= par_anc;
}
}
/** Compute the aggregate feerate of a set of nodes in this graph.
*
* Complexity: O(N) where N=elems.Count().
**/
FeeFrac FeeRate(const SetType& elems) const noexcept
{
FeeFrac ret;
for (auto pos : elems) ret += entries[pos].feerate;
return ret;
}
/** Find some connected component within the subset "todo" of this graph.
*
* Specifically, this finds the connected component which contains the first transaction of
* todo (if any).
*
* Two transactions are considered connected if they are both in `todo`, and one is an ancestor
* of the other in the entire graph (so not just within `todo`), or transitively there is a
* path of transactions connecting them. This does mean that if `todo` contains a transaction
* and a grandparent, but misses the parent, they will still be part of the same component.
*
* Complexity: O(ret.Count()).
*/
SetType FindConnectedComponent(const SetType& todo) const noexcept
{
if (todo.None()) return todo;
auto to_add = SetType::Singleton(todo.First());
SetType ret;
do {
SetType old = ret;
for (auto add : to_add) {
ret |= Descendants(add);
ret |= Ancestors(add);
}
ret &= todo;
to_add = ret - old;
} while (to_add.Any());
return ret;
}
/** Determine if a subset is connected.
*
* Complexity: O(subset.Count()).
*/
bool IsConnected(const SetType& subset) const noexcept
{
return FindConnectedComponent(subset) == subset;
}
/** Determine if this entire graph is connected.
*
* Complexity: O(TxCount()).
*/
bool IsConnected() const noexcept { return IsConnected(SetType::Fill(TxCount())); }
/** Append the entries of select to list in a topologically valid order.
*
* Complexity: O(select.Count() * log(select.Count())).
*/
void AppendTopo(std::vector<ClusterIndex>& list, const SetType& select) const noexcept
{
ClusterIndex old_len = list.size();
for (auto i : select) list.push_back(i);
std::sort(list.begin() + old_len, list.end(), [&](ClusterIndex a, ClusterIndex b) noexcept {
const auto a_anc_count = entries[a].ancestors.Count();
const auto b_anc_count = entries[b].ancestors.Count();
if (a_anc_count != b_anc_count) return a_anc_count < b_anc_count;
return a < b;
});
}
};
/** A set of transactions together with their aggregate feerate. */
template<typename SetType>
struct SetInfo
{
/** The transactions in the set. */
SetType transactions;
/** Their combined fee and size. */
FeeFrac feerate;
/** Construct a SetInfo for the empty set. */
SetInfo() noexcept = default;
/** Construct a SetInfo for a specified set and feerate. */
SetInfo(const SetType& txn, const FeeFrac& fr) noexcept : transactions(txn), feerate(fr) {}
/** Construct a SetInfo for a given transaction in a depgraph. */
explicit SetInfo(const DepGraph<SetType>& depgraph, ClusterIndex pos) noexcept :
transactions(SetType::Singleton(pos)), feerate(depgraph.FeeRate(pos)) {}
/** Construct a SetInfo for a set of transactions in a depgraph. */
explicit SetInfo(const DepGraph<SetType>& depgraph, const SetType& txn) noexcept :
transactions(txn), feerate(depgraph.FeeRate(txn)) {}
/** Add the transactions of other to this SetInfo (no overlap allowed). */
SetInfo& operator|=(const SetInfo& other) noexcept
{
Assume(!transactions.Overlaps(other.transactions));
transactions |= other.transactions;
feerate += other.feerate;
return *this;
}
/** Construct a new SetInfo equal to this, with more transactions added (which may overlap
* with the existing transactions in the SetInfo). */
[[nodiscard]] SetInfo Add(const DepGraph<SetType>& depgraph, const SetType& txn) const noexcept
{
return {transactions | txn, feerate + depgraph.FeeRate(txn - transactions)};
}
/** Swap two SetInfo objects. */
friend void swap(SetInfo& a, SetInfo& b) noexcept
{
swap(a.transactions, b.transactions);
swap(a.feerate, b.feerate);
}
/** Permit equality testing. */
friend bool operator==(const SetInfo&, const SetInfo&) noexcept = default;
};
/** Compute the feerates of the chunks of linearization. */
template<typename SetType>
std::vector<FeeFrac> ChunkLinearization(const DepGraph<SetType>& depgraph, Span<const ClusterIndex> linearization) noexcept
{
std::vector<FeeFrac> ret;
for (ClusterIndex i : linearization) {
/** The new chunk to be added, initially a singleton. */
auto new_chunk = depgraph.FeeRate(i);
// As long as the new chunk has a higher feerate than the last chunk so far, absorb it.
while (!ret.empty() && new_chunk >> ret.back()) {
new_chunk += ret.back();
ret.pop_back();
}
// Actually move that new chunk into the chunking.
ret.push_back(std::move(new_chunk));
}
return ret;
}
/** Data structure encapsulating the chunking of a linearization, permitting removal of subsets. */
template<typename SetType>
class LinearizationChunking
{
/** The depgraph this linearization is for. */
const DepGraph<SetType>& m_depgraph;
/** The linearization we started from, possibly with removed prefix stripped. */
Span<const ClusterIndex> m_linearization;
/** Chunk sets and their feerates, of what remains of the linearization. */
std::vector<SetInfo<SetType>> m_chunks;
/** How large a prefix of m_chunks corresponds to removed transactions. */
ClusterIndex m_chunks_skip{0};
/** Which transactions remain in the linearization. */
SetType m_todo;
/** Fill the m_chunks variable, and remove the done prefix of m_linearization. */
void BuildChunks() noexcept
{
// Caller must clear m_chunks.
Assume(m_chunks.empty());
// Chop off the initial part of m_linearization that is already done.
while (!m_linearization.empty() && !m_todo[m_linearization.front()]) {
m_linearization = m_linearization.subspan(1);
}
// Iterate over the remaining entries in m_linearization. This is effectively the same
// algorithm as ChunkLinearization, but supports skipping parts of the linearization and
// keeps track of the sets themselves instead of just their feerates.
for (auto idx : m_linearization) {
if (!m_todo[idx]) continue;
// Start with an initial chunk containing just element idx.
SetInfo add(m_depgraph, idx);
// Absorb existing final chunks into add while they have lower feerate.
while (!m_chunks.empty() && add.feerate >> m_chunks.back().feerate) {
add |= m_chunks.back();
m_chunks.pop_back();
}
// Remember new chunk.
m_chunks.push_back(std::move(add));
}
}
public:
/** Initialize a LinearizationSubset object for a given length of linearization. */
explicit LinearizationChunking(const DepGraph<SetType>& depgraph LIFETIMEBOUND, Span<const ClusterIndex> lin LIFETIMEBOUND) noexcept :
m_depgraph(depgraph), m_linearization(lin)
{
// Mark everything in lin as todo still.
for (auto i : m_linearization) m_todo.Set(i);
// Compute the initial chunking.
m_chunks.reserve(depgraph.TxCount());
BuildChunks();
}
/** Determine how many chunks remain in the linearization. */
ClusterIndex NumChunksLeft() const noexcept { return m_chunks.size() - m_chunks_skip; }
/** Access a chunk. Chunk 0 is the highest-feerate prefix of what remains. */
const SetInfo<SetType>& GetChunk(ClusterIndex n) const noexcept
{
Assume(n + m_chunks_skip < m_chunks.size());
return m_chunks[n + m_chunks_skip];
}
/** Remove some subset of transactions from the linearization. */
void MarkDone(SetType subset) noexcept
{
Assume(subset.Any());
Assume(subset.IsSubsetOf(m_todo));
m_todo -= subset;
if (GetChunk(0).transactions == subset) {
// If the newly done transactions exactly match the first chunk of the remainder of
// the linearization, we do not need to rechunk; just remember to skip one
// additional chunk.
++m_chunks_skip;
// With subset marked done, some prefix of m_linearization will be done now. How long
// that prefix is depends on how many done elements were interspersed with subset,
// but at least as many transactions as there are in subset.
m_linearization = m_linearization.subspan(subset.Count());
} else {
// Otherwise rechunk what remains of m_linearization.
m_chunks.clear();
m_chunks_skip = 0;
BuildChunks();
}
}
/** Find the shortest intersection between subset and the prefixes of remaining chunks
* of the linearization that has a feerate not below subset's.
*
* This is a crucial operation in guaranteeing improvements to linearizations. If subset has
* a feerate not below GetChunk(0)'s, then moving IntersectPrefixes(subset) to the front of
* (what remains of) the linearization is guaranteed not to make it worse at any point.
*
* See https://delvingbitcoin.org/t/introduction-to-cluster-linearization/1032 for background.
*/
SetInfo<SetType> IntersectPrefixes(const SetInfo<SetType>& subset) const noexcept
{
Assume(subset.transactions.IsSubsetOf(m_todo));
SetInfo<SetType> accumulator;
// Iterate over all chunks of the remaining linearization.
for (ClusterIndex i = 0; i < NumChunksLeft(); ++i) {
// Find what (if any) intersection the chunk has with subset.
const SetType to_add = GetChunk(i).transactions & subset.transactions;
if (to_add.Any()) {
// If adding that to accumulator makes us hit all of subset, we are done as no
// shorter intersection with higher/equal feerate exists.
accumulator.transactions |= to_add;
if (accumulator.transactions == subset.transactions) break;
// Otherwise update the accumulator feerate.
accumulator.feerate += m_depgraph.FeeRate(to_add);
// If that does result in something better, or something with the same feerate but
// smaller, return that. Even if a longer, higher-feerate intersection exists, it
// does not hurt to return the shorter one (the remainder of the longer intersection
// will generally be found in the next call to Intersect, but even if not, it is not
// required for the improvement guarantee this function makes).
if (!(accumulator.feerate << subset.feerate)) return accumulator;
}
}
return subset;
}
};
/** Class encapsulating the state needed to find the best remaining ancestor set.
*
* It is initialized for an entire DepGraph, and parts of the graph can be dropped by calling
* MarkDone.
*
* As long as any part of the graph remains, FindCandidateSet() can be called which will return a
* SetInfo with the highest-feerate ancestor set that remains (an ancestor set is a single
* transaction together with all its remaining ancestors).
*/
template<typename SetType>
class AncestorCandidateFinder
{
/** Internal dependency graph. */
const DepGraph<SetType>& m_depgraph;
/** Which transaction are left to include. */
SetType m_todo;
/** Precomputed ancestor-set feerates (only kept up-to-date for indices in m_todo). */
std::vector<FeeFrac> m_ancestor_set_feerates;
public:
/** Construct an AncestorCandidateFinder for a given cluster.
*
* Complexity: O(N^2) where N=depgraph.TxCount().
*/
AncestorCandidateFinder(const DepGraph<SetType>& depgraph LIFETIMEBOUND) noexcept :
m_depgraph(depgraph),
m_todo{SetType::Fill(depgraph.TxCount())},
m_ancestor_set_feerates(depgraph.TxCount())
{
// Precompute ancestor-set feerates.
for (ClusterIndex i = 0; i < depgraph.TxCount(); ++i) {
/** The remaining ancestors for transaction i. */
SetType anc_to_add = m_depgraph.Ancestors(i);
FeeFrac anc_feerate;
// Reuse accumulated feerate from first ancestor, if usable.
Assume(anc_to_add.Any());
ClusterIndex first = anc_to_add.First();
if (first < i) {
anc_feerate = m_ancestor_set_feerates[first];
Assume(!anc_feerate.IsEmpty());
anc_to_add -= m_depgraph.Ancestors(first);
}
// Add in other ancestors (which necessarily include i itself).
Assume(anc_to_add[i]);
anc_feerate += m_depgraph.FeeRate(anc_to_add);
// Store the result.
m_ancestor_set_feerates[i] = anc_feerate;
}
}
/** Remove a set of transactions from the set of to-be-linearized ones.
*
* The same transaction may not be MarkDone()'d twice.
*
* Complexity: O(N*M) where N=depgraph.TxCount(), M=select.Count().
*/
void MarkDone(SetType select) noexcept
{
Assume(select.Any());
Assume(select.IsSubsetOf(m_todo));
m_todo -= select;
for (auto i : select) {
auto feerate = m_depgraph.FeeRate(i);
for (auto j : m_depgraph.Descendants(i) & m_todo) {
m_ancestor_set_feerates[j] -= feerate;
}
}
}
/** Check whether any unlinearized transactions remain. */
bool AllDone() const noexcept
{
return m_todo.None();
}
/** Find the best (highest-feerate, smallest among those in case of a tie) ancestor set
* among the remaining transactions. Requires !AllDone().
*
* Complexity: O(N) where N=depgraph.TxCount();
*/
SetInfo<SetType> FindCandidateSet() const noexcept
{
Assume(!AllDone());
std::optional<ClusterIndex> best;
for (auto i : m_todo) {
if (best.has_value()) {
Assume(!m_ancestor_set_feerates[i].IsEmpty());
if (!(m_ancestor_set_feerates[i] > m_ancestor_set_feerates[*best])) continue;
}
best = i;
}
Assume(best.has_value());
return {m_depgraph.Ancestors(*best) & m_todo, m_ancestor_set_feerates[*best]};
}
};
/** Class encapsulating the state needed to perform search for good candidate sets.
*
* It is initialized for an entire DepGraph, and parts of the graph can be dropped by calling
* MarkDone().
*
* As long as any part of the graph remains, FindCandidateSet() can be called to perform a search
* over the set of topologically-valid subsets of that remainder, with a limit on how many
* combinations are tried.
*/
template<typename SetType>
class SearchCandidateFinder
{
/** Internal RNG. */
InsecureRandomContext m_rng;
/** Internal dependency graph for the cluster. */
const DepGraph<SetType>& m_depgraph;
/** Which transactions are left to do (sorted indices). */
SetType m_todo;
public:
/** Construct a candidate finder for a graph.
*
* @param[in] depgraph Dependency graph for the to-be-linearized cluster.
* @param[in] rng_seed A random seed to control the search order.
*
* Complexity: O(1).
*/
SearchCandidateFinder(const DepGraph<SetType>& depgraph LIFETIMEBOUND, uint64_t rng_seed) noexcept :
m_rng(rng_seed),
m_depgraph(depgraph),
m_todo(SetType::Fill(depgraph.TxCount())) {}
/** Check whether any unlinearized transactions remain. */
bool AllDone() const noexcept
{
return m_todo.None();
}
/** Find a high-feerate topologically-valid subset of what remains of the cluster.
* Requires !AllDone().
*
* @param[in] max_iterations The maximum number of optimization steps that will be performed.
* @param[in] best A set/feerate pair with an already-known good candidate. This may
* be empty.
* @return A pair of:
* - The best (highest feerate, smallest size as tiebreaker)
* topologically valid subset (and its feerate) that was
* encountered during search. It will be at least as good as the
* best passed in (if not empty).
* - The number of optimization steps that were performed. This will
* be <= max_iterations. If strictly < max_iterations, the
* returned subset is optimal.
*
* Complexity: O(N * min(max_iterations, 2^N)) where N=depgraph.TxCount().
*/
std::pair<SetInfo<SetType>, uint64_t> FindCandidateSet(uint64_t max_iterations, SetInfo<SetType> best) noexcept
{
Assume(!AllDone());
/** Type for work queue items. */
struct WorkItem
{
/** Set of transactions definitely included (and its feerate). This must be a subset
* of m_todo, and be topologically valid (includes all in-m_todo ancestors of
* itself). */
SetInfo<SetType> inc;
/** Set of undecided transactions. This must be a subset of m_todo, and have no overlap
* with inc. The set (inc | und) must be topologically valid. */
SetType und;
/** Construct a new work item. */
WorkItem(SetInfo<SetType>&& i, SetType&& u) noexcept :
inc(std::move(i)), und(std::move(u)) {}
/** Swap two WorkItems. */
void Swap(WorkItem& other) noexcept
{
swap(inc, other.inc);
swap(und, other.und);
}
};
/** The queue of work items. */
VecDeque<WorkItem> queue;
queue.reserve(std::max<size_t>(256, 2 * m_todo.Count()));
// Create an initial entry with m_todo as undecided. Also use it as best if not provided,
// so that during the work processing loop below, and during the add_fn/split_fn calls, we
// do not need to deal with the best=empty case.
if (best.feerate.IsEmpty()) best = SetInfo(m_depgraph, m_todo);
queue.emplace_back(SetInfo<SetType>{}, SetType{m_todo});
/** Local copy of the iteration limit. */
uint64_t iterations_left = max_iterations;
/** Internal function to add an item to the queue of elements to explore if there are any
* transactions left to split on, and to update best.
*
* - inc: the "inc" value for the new work item (must be topological).
* - und: the "und" value for the new work item ((inc | und) must be topological).
*/
auto add_fn = [&](SetInfo<SetType> inc, SetType und) noexcept {
if (!inc.feerate.IsEmpty()) {
// If inc's feerate is better than best's, remember it as our new best.
if (inc.feerate > best.feerate) {
best = inc;
}
} else {
Assume(inc.transactions.None());
}
// Make sure there are undecided transactions left to split on.
if (und.None()) return;
// Actually construct a new work item on the queue. Due to the switch to DFS when queue
// space runs out (see below), we know that no reallocation of the queue should ever
// occur.
Assume(queue.size() < queue.capacity());
queue.emplace_back(std::move(inc), std::move(und));
};
/** Internal process function. It takes an existing work item, and splits it in two: one
* with a particular transaction (and its ancestors) included, and one with that
* transaction (and its descendants) excluded. */
auto split_fn = [&](WorkItem&& elem) noexcept {
// Any queue element must have undecided transactions left, otherwise there is nothing
// to explore anymore.
Assume(elem.und.Any());
// The included and undecided set are all subsets of m_todo.
Assume(elem.inc.transactions.IsSubsetOf(m_todo) && elem.und.IsSubsetOf(m_todo));
// Included transactions cannot be undecided.
Assume(!elem.inc.transactions.Overlaps(elem.und));
// Pick the first undecided transaction as the one to split on.
const ClusterIndex split = elem.und.First();
// Add a work item corresponding to exclusion of the split transaction.
const auto& desc = m_depgraph.Descendants(split);
add_fn(/*inc=*/elem.inc,
/*und=*/elem.und - desc);
// Add a work item corresponding to inclusion of the split transaction.
const auto anc = m_depgraph.Ancestors(split) & m_todo;
add_fn(/*inc=*/elem.inc.Add(m_depgraph, anc),
/*und=*/elem.und - anc);
// Account for the performed split.
--iterations_left;
};
// Work processing loop.
//
// New work items are always added at the back of the queue, but items to process use a
// hybrid approach where they can be taken from the front or the back.
//
// Depth-first search (DFS) corresponds to always taking from the back of the queue. This
// is very memory-efficient (linear in the number of transactions). Breadth-first search
// (BFS) corresponds to always taking from the front, which potentially uses more memory
// (up to exponential in the transaction count), but seems to work better in practice.
//
// The approach here combines the two: use BFS (plus random swapping) until the queue grows
// too large, at which point we temporarily switch to DFS until the size shrinks again.
while (!queue.empty()) {
// Randomly swap the first two items to randomize the search order.
if (queue.size() > 1 && m_rng.randbool()) {
queue[0].Swap(queue[1]);
}
// Processing the first queue item, and then using DFS for everything it gives rise to,
// may increase the queue size by the number of undecided elements in there, minus 1
// for the first queue item being removed. Thus, only when that pushes the queue over
// its capacity can we not process from the front (BFS), and should we use DFS.
while (queue.size() - 1 + queue.front().und.Count() > queue.capacity()) {
if (!iterations_left) break;
auto elem = queue.back();
queue.pop_back();
split_fn(std::move(elem));
}
// Process one entry from the front of the queue (BFS exploration)
if (!iterations_left) break;
auto elem = queue.front();
queue.pop_front();
split_fn(std::move(elem));
}
// Return the found best set and the number of iterations performed.
return {std::move(best), max_iterations - iterations_left};
}
/** Remove a subset of transactions from the cluster being linearized.
*
* Complexity: O(N) where N=done.Count().
*/
void MarkDone(const SetType& done) noexcept
{
Assume(done.Any());
Assume(done.IsSubsetOf(m_todo));
m_todo -= done;
}
};
/** Find or improve a linearization for a cluster.
*
* @param[in] depgraph Dependency graph of the cluster to be linearized.
* @param[in] max_iterations Upper bound on the number of optimization steps that will be done.
* @param[in] rng_seed A random number seed to control search order. This prevents peers
* from predicting exactly which clusters would be hard for us to
* linearize.
* @param[in] old_linearization An existing linearization for the cluster (which must be
* topologically valid), or empty.
* @return A pair of:
* - The resulting linearization. It is guaranteed to be at least as
* good (in the feerate diagram sense) as old_linearization.
* - A boolean indicating whether the result is guaranteed to be
* optimal.
*
* Complexity: O(N * min(max_iterations + N, 2^N)) where N=depgraph.TxCount().
*/
template<typename SetType>
std::pair<std::vector<ClusterIndex>, bool> Linearize(const DepGraph<SetType>& depgraph, uint64_t max_iterations, uint64_t rng_seed, Span<const ClusterIndex> old_linearization = {}) noexcept
{
Assume(old_linearization.empty() || old_linearization.size() == depgraph.TxCount());
if (depgraph.TxCount() == 0) return {{}, true};
uint64_t iterations_left = max_iterations;
std::vector<ClusterIndex> linearization;
AncestorCandidateFinder anc_finder(depgraph);
SearchCandidateFinder src_finder(depgraph, rng_seed);
linearization.reserve(depgraph.TxCount());
bool optimal = true;
/** Chunking of what remains of the old linearization. */
LinearizationChunking old_chunking(depgraph, old_linearization);
while (true) {
// Find the highest-feerate prefix of the remainder of old_linearization.
SetInfo<SetType> best_prefix;
if (old_chunking.NumChunksLeft()) best_prefix = old_chunking.GetChunk(0);
// Then initialize best to be either the best remaining ancestor set, or the first chunk.
auto best = anc_finder.FindCandidateSet();
if (!best_prefix.feerate.IsEmpty() && best_prefix.feerate >= best.feerate) best = best_prefix;
// Invoke bounded search to update best, with up to half of our remaining iterations as
// limit.
uint64_t max_iterations_now = (iterations_left + 1) / 2;
uint64_t iterations_done_now = 0;
std::tie(best, iterations_done_now) = src_finder.FindCandidateSet(max_iterations_now, best);
iterations_left -= iterations_done_now;
if (iterations_done_now == max_iterations_now) {
optimal = false;
// If the search result is not (guaranteed to be) optimal, run intersections to make
// sure we don't pick something that makes us unable to reach further diagram points
// of the old linearization.
if (old_chunking.NumChunksLeft() > 0) {
best = old_chunking.IntersectPrefixes(best);
}
}
// Add to output in topological order.
depgraph.AppendTopo(linearization, best.transactions);
// Update state to reflect best is no longer to be linearized.
anc_finder.MarkDone(best.transactions);
if (anc_finder.AllDone()) break;
src_finder.MarkDone(best.transactions);
if (old_chunking.NumChunksLeft() > 0) {
old_chunking.MarkDone(best.transactions);
}
}
return {std::move(linearization), optimal};
}
/** Improve a given linearization.
*
* @param[in] depgraph Dependency graph of the cluster being linearized.
* @param[in,out] linearization On input, an existing linearization for depgraph. On output, a
* potentially better linearization for the same graph.
*
* Postlinearization guarantees:
* - The resulting chunks are connected.
* - If the input has a tree shape (either all transactions have at most one child, or all
* transactions have at most one parent), the result is optimal.
* - Given a linearization L1 and a leaf transaction T in it. Let L2 be L1 with T moved to the end,
* optionally with its fee increased. Let L3 be the postlinearization of L2. L3 will be at least
* as good as L1. This means that replacing transactions with same-size higher-fee transactions
* will not worsen linearizations through a "drop conflicts, append new transactions,
* postlinearize" process.
*/
template<typename SetType>
void PostLinearize(const DepGraph<SetType>& depgraph, Span<ClusterIndex> linearization)
{
// This algorithm performs a number of passes (currently 2); the even ones operate from back to
// front, the odd ones from front to back. Each results in an equal-or-better linearization
// than the one started from.
// - One pass in either direction guarantees that the resulting chunks are connected.
// - Each direction corresponds to one shape of tree being linearized optimally (forward passes
// guarantee this for graphs where each transaction has at most one child; backward passes
// guarantee this for graphs where each transaction has at most one parent).
// - Starting with a backward pass guarantees the moved-tree property.
//
// During an odd (forward) pass, the high-level operation is:
// - Start with an empty list of groups L=[].
// - For every transaction i in the old linearization, from front to back:
// - Append a new group C=[i], containing just i, to the back of L.
// - While L has at least one group before C, and the group immediately before C has feerate
// lower than C:
// - If C depends on P:
// - Merge P into C, making C the concatenation of P+C, continuing with the combined C.
// - Otherwise:
// - Swap P with C, continuing with the now-moved C.
// - The output linearization is the concatenation of the groups in L.
//
// During even (backward) passes, i iterates from the back to the front of the existing
// linearization, and new groups are prepended instead of appended to the list L. To enable
// more code reuse, both passes append groups, but during even passes the meanings of
// parent/child, and of high/low feerate are reversed, and the final concatenation is reversed
// on output.
//
// In the implementation below, the groups are represented by singly-linked lists (pointing
// from the back to the front), which are themselves organized in a singly-linked circular
// list (each group pointing to its predecessor, with a special sentinel group at the front
// that points back to the last group).
//
// Information about transaction t is stored in entries[t + 1], while the sentinel is in
// entries[0].
/** Index of the sentinel in the entries array below. */
static constexpr ClusterIndex SENTINEL{0};
/** Indicator that a group has no previous transaction. */
static constexpr ClusterIndex NO_PREV_TX{0};
/** Data structure per transaction entry. */
struct TxEntry
{
/** The index of the previous transaction in this group; NO_PREV_TX if this is the first
* entry of a group. */
ClusterIndex prev_tx;
// The fields below are only used for transactions that are the last one in a group
// (referred to as tail transactions below).
/** Index of the first transaction in this group, possibly itself. */
ClusterIndex first_tx;
/** Index of the last transaction in the previous group. The first group (the sentinel)
* points back to the last group here, making it a singly-linked circular list. */
ClusterIndex prev_group;
/** All transactions in the group. Empty for the sentinel. */
SetType group;
/** All dependencies of the group (descendants in even passes; ancestors in odd ones). */
SetType deps;
/** The combined fee/size of transactions in the group. Fee is negated in even passes. */
FeeFrac feerate;
};
// As an example, consider the state corresponding to the linearization [1,0,3,2], with
// groups [1,0,3] and [2], in an odd pass. The linked lists would be:
//
// +-----+
// 0<-P-- | 0 S | ---\ Legend:
// +-----+ |
// ^ | - digit in box: entries index
// /--------------F---------+ G | (note: one more than tx value)
// v \ | | - S: sentinel group
// +-----+ +-----+ +-----+ | (empty feerate)
// 0<-P-- | 2 | <--P-- | 1 | <--P-- | 4 T | | - T: tail transaction, contains
// +-----+ +-----+ +-----+ | fields beyond prev_tv.
// ^ | - P: prev_tx reference
// G G - F: first_tx reference
// | | - G: prev_group reference
// +-----+ |
// 0<-P-- | 3 T | <--/
// +-----+
// ^ |
// \-F-/
//
// During an even pass, the diagram above would correspond to linearization [2,3,0,1], with
// groups [2] and [3,0,1].
std::vector<TxEntry> entries(linearization.size() + 1);
// Perform two passes over the linearization.
for (int pass = 0; pass < 2; ++pass) {
int rev = !(pass & 1);
// Construct a sentinel group, identifying the start of the list.
entries[SENTINEL].prev_group = SENTINEL;
Assume(entries[SENTINEL].feerate.IsEmpty());
// Iterate over all elements in the existing linearization.
for (ClusterIndex i = 0; i < linearization.size(); ++i) {
// Even passes are from back to front; odd passes from front to back.
ClusterIndex idx = linearization[rev ? linearization.size() - 1 - i : i];
// Construct a new group containing just idx. In even passes, the meaning of
// parent/child and high/low feerate are swapped.
ClusterIndex cur_group = idx + 1;
entries[cur_group].group = SetType::Singleton(idx);
entries[cur_group].deps = rev ? depgraph.Descendants(idx): depgraph.Ancestors(idx);
entries[cur_group].feerate = depgraph.FeeRate(idx);
if (rev) entries[cur_group].feerate.fee = -entries[cur_group].feerate.fee;
entries[cur_group].prev_tx = NO_PREV_TX; // No previous transaction in group.
entries[cur_group].first_tx = cur_group; // Transaction itself is first of group.
// Insert the new group at the back of the groups linked list.
entries[cur_group].prev_group = entries[SENTINEL].prev_group;
entries[SENTINEL].prev_group = cur_group;
// Start merge/swap cycle.
ClusterIndex next_group = SENTINEL; // We inserted at the end, so next group is sentinel.
ClusterIndex prev_group = entries[cur_group].prev_group;
// Continue as long as the current group has higher feerate than the previous one.
while (entries[cur_group].feerate >> entries[prev_group].feerate) {
// prev_group/cur_group/next_group refer to (the last transactions of) 3
// consecutive entries in groups list.
Assume(cur_group == entries[next_group].prev_group);
Assume(prev_group == entries[cur_group].prev_group);
// The sentinel has empty feerate, which is neither higher or lower than other
// feerates. Thus, the while loop we are in here guarantees that cur_group and
// prev_group are not the sentinel.
Assume(cur_group != SENTINEL);
Assume(prev_group != SENTINEL);
if (entries[cur_group].deps.Overlaps(entries[prev_group].group)) {
// There is a dependency between cur_group and prev_group; merge prev_group
// into cur_group. The group/deps/feerate fields of prev_group remain unchanged
// but become unused.
entries[cur_group].group |= entries[prev_group].group;
entries[cur_group].deps |= entries[prev_group].deps;
entries[cur_group].feerate += entries[prev_group].feerate;
// Make the first of the current group point to the tail of the previous group.
entries[entries[cur_group].first_tx].prev_tx = prev_group;
// The first of the previous group becomes the first of the newly-merged group.
entries[cur_group].first_tx = entries[prev_group].first_tx;
// The previous group becomes whatever group was before the former one.
prev_group = entries[prev_group].prev_group;
entries[cur_group].prev_group = prev_group;
} else {
// There is no dependency between cur_group and prev_group; swap them.
ClusterIndex preprev_group = entries[prev_group].prev_group;
// If PP, P, C, N were the old preprev, prev, cur, next groups, then the new
// layout becomes [PP, C, P, N]. Update prev_groups to reflect that order.
entries[next_group].prev_group = prev_group;
entries[prev_group].prev_group = cur_group;
entries[cur_group].prev_group = preprev_group;
// The current group remains the same, but the groups before/after it have
// changed.
next_group = prev_group;
prev_group = preprev_group;
}
}
}
// Convert the entries back to linearization (overwriting the existing one).
ClusterIndex cur_group = entries[0].prev_group;
ClusterIndex done = 0;
while (cur_group != SENTINEL) {
ClusterIndex cur_tx = cur_group;
// Traverse the transactions of cur_group (from back to front), and write them in the
// same order during odd passes, and reversed (front to back) in even passes.
if (rev) {
do {
*(linearization.begin() + (done++)) = cur_tx - 1;
cur_tx = entries[cur_tx].prev_tx;
} while (cur_tx != NO_PREV_TX);
} else {
do {
*(linearization.end() - (++done)) = cur_tx - 1;
cur_tx = entries[cur_tx].prev_tx;
} while (cur_tx != NO_PREV_TX);
}
cur_group = entries[cur_group].prev_group;
}
Assume(done == linearization.size());
}
}
/** Merge two linearizations for the same cluster into one that is as good as both.
*
* Complexity: O(N^2) where N=depgraph.TxCount(); O(N) if both inputs are identical.
*/
template<typename SetType>
std::vector<ClusterIndex> MergeLinearizations(const DepGraph<SetType>& depgraph, Span<const ClusterIndex> lin1, Span<const ClusterIndex> lin2)
{
Assume(lin1.size() == depgraph.TxCount());
Assume(lin2.size() == depgraph.TxCount());
/** Chunkings of what remains of both input linearizations. */
LinearizationChunking chunking1(depgraph, lin1), chunking2(depgraph, lin2);
/** Output linearization. */
std::vector<ClusterIndex> ret;
if (depgraph.TxCount() == 0) return ret;
ret.reserve(depgraph.TxCount());
while (true) {
// As long as we are not done, both linearizations must have chunks left.
Assume(chunking1.NumChunksLeft() > 0);
Assume(chunking2.NumChunksLeft() > 0);
// Find the set to output by taking the best remaining chunk, and then intersecting it with
// prefixes of remaining chunks of the other linearization.
SetInfo<SetType> best;
const auto& lin1_firstchunk = chunking1.GetChunk(0);
const auto& lin2_firstchunk = chunking2.GetChunk(0);
if (lin2_firstchunk.feerate >> lin1_firstchunk.feerate) {
best = chunking1.IntersectPrefixes(lin2_firstchunk);
} else {
best = chunking2.IntersectPrefixes(lin1_firstchunk);
}
// Append the result to the output and mark it as done.
depgraph.AppendTopo(ret, best.transactions);
chunking1.MarkDone(best.transactions);
if (chunking1.NumChunksLeft() == 0) break;
chunking2.MarkDone(best.transactions);
}
Assume(ret.size() == depgraph.TxCount());
return ret;
}
} // namespace cluster_linearize
#endif // BITCOIN_CLUSTER_LINEARIZE_H