0
0
Fork 0
mirror of https://github.com/bitcoin/bitcoin.git synced 2025-02-22 12:23:34 -05:00
bitcoin-bitcoin-core/src/ecmult_impl.h
Pieter Wuille c259a7cbc0 Set precomputation table late and unset early.
Set the global pointer to the precomputation table only after initializing
it completely, and unset it before doing any uninitialization.

This causes fail-fast behavior in case of race conditions between
initialization and operations using it.
2014-09-13 17:19:30 +02:00

343 lines
13 KiB
C

// Copyright (c) 2013 Pieter Wuille
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef _SECP256K1_ECMULT_IMPL_H_
#define _SECP256K1_ECMULT_IMPL_H_
#include <assert.h>
#include "num.h"
#include "group.h"
#include "ecmult.h"
// optimal for 128-bit and 256-bit exponents.
#define WINDOW_A 5
// larger numbers may result in slightly better performance, at the cost of
// exponentially larger precomputed tables. WINDOW_G == 14 results in 640 KiB.
#define WINDOW_G 14
/** Fill a table 'pre' with precomputed odd multiples of a. W determines the size of the table.
* pre will contains the values [1*a,3*a,5*a,...,(2^(w-1)-1)*a], so it needs place for
* 2^(w-2) entries.
*
* There are two versions of this function:
* - secp256k1_ecmult_precomp_wnaf_gej, which operates on group elements in jacobian notation,
* fast to precompute, but slower to use in later additions.
* - secp256k1_ecmult_precomp_wnaf_ge, which operates on group elements in affine notations,
* (much) slower to precompute, but a bit faster to use in later additions.
* To compute a*P + b*G, we use the jacobian version for P, and the affine version for G, as
* G is constant, so it only needs to be done once in advance.
*/
void static secp256k1_ecmult_table_precomp_gej(secp256k1_gej_t *pre, const secp256k1_gej_t *a, int w) {
pre[0] = *a;
secp256k1_gej_t d; secp256k1_gej_double(&d, &pre[0]);
for (int i=1; i<(1 << (w-2)); i++)
secp256k1_gej_add(&pre[i], &d, &pre[i-1]);
}
void static secp256k1_ecmult_table_precomp_ge(secp256k1_ge_t *pre, const secp256k1_gej_t *a, int w) {
const int table_size = 1 << (w-2);
secp256k1_gej_t prej[table_size];
prej[0] = *a;
secp256k1_gej_t d; secp256k1_gej_double(&d, a);
for (int i=1; i<table_size; i++) {
secp256k1_gej_add(&prej[i], &d, &prej[i-1]);
}
secp256k1_ge_set_all_gej(table_size, pre, prej);
}
/** The number of entries a table with precomputed multiples needs to have. */
#define ECMULT_TABLE_SIZE(w) (1 << ((w)-2))
/** The following two macro retrieves a particular odd multiple from a table
* of precomputed multiples. */
#define ECMULT_TABLE_GET(r,pre,n,w,neg) do { \
VERIFY_CHECK(((n) & 1) == 1); \
VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \
VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \
if ((n) > 0) \
*(r) = (pre)[((n)-1)/2]; \
else \
(neg)((r), &(pre)[(-(n)-1)/2]); \
} while(0)
#define ECMULT_TABLE_GET_GEJ(r,pre,n,w) ECMULT_TABLE_GET((r),(pre),(n),(w),secp256k1_gej_neg)
#define ECMULT_TABLE_GET_GE(r,pre,n,w) ECMULT_TABLE_GET((r),(pre),(n),(w),secp256k1_ge_neg)
typedef struct {
// For accelerating the computation of a*P + b*G:
secp256k1_ge_t pre_g[ECMULT_TABLE_SIZE(WINDOW_G)]; // odd multiples of the generator
secp256k1_ge_t pre_g_128[ECMULT_TABLE_SIZE(WINDOW_G)]; // odd multiples of 2^128*generator
} secp256k1_ecmult_consts_t;
typedef struct {
// For accelerating the computation of a*G:
// To harden against timing attacks, use the following mechanism:
// * Break up the multiplicand into groups of 4 bits, called n_0, n_1, n_2, ..., n_63.
// * Compute sum(n_i * 16^i * G + U_i, i=0..63), where:
// * U_i = U * 2^i (for i=0..62)
// * U_i = U * (1-2^63) (for i=63)
// where U is a point with no known corresponding scalar. Note that sum(U_i, i=0..63) = 0.
// For each i, and each of the 16 possible values of n_i, (n_i * 16^i * G + U_i) is
// precomputed (call it prec(i, n_i)). The formula now becomes sum(prec(i, n_i), i=0..63).
// None of the resulting prec group elements have a known scalar, and neither do any of
// the intermediate sums while computing a*G.
// To make memory access uniform, the bytes of prec(i, n_i) are sliced per value of n_i.
unsigned char prec[64][sizeof(secp256k1_ge_t)][16]; // prec[j][k][i] = k'th byte of (16^j * i * G + U_i)
} secp256k1_ecmult_gen_consts_t;
static const secp256k1_ecmult_consts_t *secp256k1_ecmult_consts = NULL;
static const secp256k1_ecmult_gen_consts_t *secp256k1_ecmult_gen_consts = NULL;
static void secp256k1_ecmult_start(void) {
if (secp256k1_ecmult_consts != NULL)
return;
// Allocate the precomputation table.
secp256k1_ecmult_consts_t *ret = (secp256k1_ecmult_consts_t*)malloc(sizeof(secp256k1_ecmult_consts_t));
// get the generator
const secp256k1_ge_t *g = &secp256k1_ge_consts->g;
secp256k1_gej_t gj; secp256k1_gej_set_ge(&gj, g);
// calculate 2^128*generator
secp256k1_gej_t g_128j = gj;
for (int i=0; i<128; i++)
secp256k1_gej_double(&g_128j, &g_128j);
// precompute the tables with odd multiples
secp256k1_ecmult_table_precomp_ge(ret->pre_g, &gj, WINDOW_G);
secp256k1_ecmult_table_precomp_ge(ret->pre_g_128, &g_128j, WINDOW_G);
// Set the global pointer to the precomputation table.
secp256k1_ecmult_consts = ret;
}
static void secp256k1_ecmult_gen_start(void) {
if (secp256k1_ecmult_gen_consts != NULL)
return;
// Allocate the precomputation table.
secp256k1_ecmult_gen_consts_t *ret = (secp256k1_ecmult_gen_consts_t*)malloc(sizeof(secp256k1_ecmult_gen_consts_t));
// get the generator
const secp256k1_ge_t *g = &secp256k1_ge_consts->g;
secp256k1_gej_t gj; secp256k1_gej_set_ge(&gj, g);
// Construct a group element with no known corresponding scalar (nothing up my sleeve).
secp256k1_gej_t nums_gej;
{
static const unsigned char nums_b32[32] = "The scalar for this x is unknown";
secp256k1_fe_t nums_x;
secp256k1_fe_set_b32(&nums_x, nums_b32);
secp256k1_ge_t nums_ge;
VERIFY_CHECK(secp256k1_ge_set_xo(&nums_ge, &nums_x, 0));
secp256k1_gej_set_ge(&nums_gej, &nums_ge);
// Add G to make the bits in x uniformly distributed.
secp256k1_gej_add_ge(&nums_gej, &nums_gej, g);
}
// compute prec.
secp256k1_ge_t prec[1024];
{
secp256k1_gej_t precj[1024]; // Jacobian versions of prec.
int j = 0;
secp256k1_gej_t gbase; gbase = gj; // 16^j * G
secp256k1_gej_t numsbase; numsbase = nums_gej; // 2^j * nums.
for (int j=0; j<64; j++) {
// Set precj[j*16 .. j*16+15] to (numsbase, numsbase + gbase, ..., numsbase + 15*gbase).
precj[j*16] = numsbase;
for (int i=1; i<16; i++) {
secp256k1_gej_add(&precj[j*16 + i], &precj[j*16 + i - 1], &gbase);
}
// Multiply gbase by 16.
for (int i=0; i<4; i++) {
secp256k1_gej_double(&gbase, &gbase);
}
// Multiply numbase by 2.
secp256k1_gej_double(&numsbase, &numsbase);
if (j == 62) {
// In the last iteration, numsbase is (1 - 2^j) * nums instead.
secp256k1_gej_neg(&numsbase, &numsbase);
secp256k1_gej_add(&numsbase, &numsbase, &nums_gej);
}
}
secp256k1_ge_set_all_gej(1024, prec, precj);
}
for (int j=0; j<64; j++) {
for (int i=0; i<16; i++) {
const unsigned char* raw = (const unsigned char*)(&prec[j*16 + i]);
for (int k=0; k<sizeof(secp256k1_ge_t); k++)
ret->prec[j][k][i] = raw[k];
}
}
// Set the global pointer to the precomputation table.
secp256k1_ecmult_gen_consts = ret;
}
static void secp256k1_ecmult_stop(void) {
if (secp256k1_ecmult_consts == NULL)
return;
secp256k1_ecmult_consts_t *c = (secp256k1_ecmult_consts_t*)secp256k1_ecmult_consts;
secp256k1_ecmult_consts = NULL;
free(c);
}
static void secp256k1_ecmult_gen_stop(void) {
if (secp256k1_ecmult_gen_consts == NULL)
return;
secp256k1_ecmult_gen_consts_t *c = (secp256k1_ecmult_gen_consts_t*)secp256k1_ecmult_gen_consts;
secp256k1_ecmult_gen_consts = NULL;
free(c);
}
/** Convert a number to WNAF notation. The number becomes represented by sum(2^i * wnaf[i], i=0..bits),
* with the following guarantees:
* - each wnaf[i] is either 0, or an odd integer between -(1<<(w-1) - 1) and (1<<(w-1) - 1)
* - two non-zero entries in wnaf are separated by at least w-1 zeroes.
* - the index of the highest non-zero entry in wnaf (=return value-1) is at most bits, where
* bits is the number of bits necessary to represent the absolute value of the input.
*/
static int secp256k1_ecmult_wnaf(int *wnaf, const secp256k1_num_t *a, int w) {
int ret = 0;
int zeroes = 0;
secp256k1_num_t x;
secp256k1_num_init(&x);
secp256k1_num_copy(&x, a);
int sign = 1;
if (secp256k1_num_is_neg(&x)) {
sign = -1;
secp256k1_num_negate(&x);
}
while (!secp256k1_num_is_zero(&x)) {
while (!secp256k1_num_is_odd(&x)) {
zeroes++;
secp256k1_num_shift(&x, 1);
}
int word = secp256k1_num_shift(&x, w);
while (zeroes) {
wnaf[ret++] = 0;
zeroes--;
}
if (word & (1 << (w-1))) {
secp256k1_num_inc(&x);
wnaf[ret++] = sign * (word - (1 << w));
} else {
wnaf[ret++] = sign * word;
}
zeroes = w-1;
}
secp256k1_num_free(&x);
return ret;
}
void static secp256k1_ecmult_gen(secp256k1_gej_t *r, const secp256k1_num_t *gn) {
secp256k1_num_t n;
secp256k1_num_init(&n);
secp256k1_num_copy(&n, gn);
const secp256k1_ecmult_gen_consts_t *c = secp256k1_ecmult_gen_consts;
secp256k1_gej_set_infinity(r);
secp256k1_ge_t add;
int bits;
for (int j=0; j<64; j++) {
bits = secp256k1_num_shift(&n, 4);
for (int k=0; k<sizeof(secp256k1_ge_t); k++)
((unsigned char*)(&add))[k] = c->prec[j][k][bits];
secp256k1_gej_add_ge(r, r, &add);
}
bits = 0;
secp256k1_ge_clear(&add);
secp256k1_num_clear(&n);
secp256k1_num_free(&n);
}
void static secp256k1_ecmult(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_num_t *na, const secp256k1_num_t *ng) {
const secp256k1_ecmult_consts_t *c = secp256k1_ecmult_consts;
#ifdef USE_ENDOMORPHISM
secp256k1_num_t na_1, na_lam;
secp256k1_num_init(&na_1);
secp256k1_num_init(&na_lam);
// split na into na_1 and na_lam (where na = na_1 + na_lam*lambda, and na_1 and na_lam are ~128 bit)
secp256k1_gej_split_exp(&na_1, &na_lam, na);
// build wnaf representation for na_1 and na_lam.
int wnaf_na_1[129]; int bits_na_1 = secp256k1_ecmult_wnaf(wnaf_na_1, &na_1, WINDOW_A);
int wnaf_na_lam[129]; int bits_na_lam = secp256k1_ecmult_wnaf(wnaf_na_lam, &na_lam, WINDOW_A);
int bits = bits_na_1;
if (bits_na_lam > bits) bits = bits_na_lam;
#else
// build wnaf representation for na.
int wnaf_na[257]; int bits_na = secp256k1_ecmult_wnaf(wnaf_na, na, WINDOW_A);
int bits = bits_na;
#endif
// calculate odd multiples of a
secp256k1_gej_t pre_a[ECMULT_TABLE_SIZE(WINDOW_A)];
secp256k1_ecmult_table_precomp_gej(pre_a, a, WINDOW_A);
#ifdef USE_ENDOMORPHISM
secp256k1_gej_t pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)];
for (int i=0; i<ECMULT_TABLE_SIZE(WINDOW_A); i++)
secp256k1_gej_mul_lambda(&pre_a_lam[i], &pre_a[i]);
#endif
// Splitted G factors.
secp256k1_num_t ng_1, ng_128;
secp256k1_num_init(&ng_1);
secp256k1_num_init(&ng_128);
// split ng into ng_1 and ng_128 (where gn = gn_1 + gn_128*2^128, and gn_1 and gn_128 are ~128 bit)
secp256k1_num_split(&ng_1, &ng_128, ng, 128);
// Build wnaf representation for ng_1 and ng_128
int wnaf_ng_1[129]; int bits_ng_1 = secp256k1_ecmult_wnaf(wnaf_ng_1, &ng_1, WINDOW_G);
int wnaf_ng_128[129]; int bits_ng_128 = secp256k1_ecmult_wnaf(wnaf_ng_128, &ng_128, WINDOW_G);
if (bits_ng_1 > bits) bits = bits_ng_1;
if (bits_ng_128 > bits) bits = bits_ng_128;
secp256k1_gej_set_infinity(r);
secp256k1_gej_t tmpj;
secp256k1_ge_t tmpa;
for (int i=bits-1; i>=0; i--) {
secp256k1_gej_double(r, r);
int n;
#ifdef USE_ENDOMORPHISM
if (i < bits_na_1 && (n = wnaf_na_1[i])) {
ECMULT_TABLE_GET_GEJ(&tmpj, pre_a, n, WINDOW_A);
secp256k1_gej_add(r, r, &tmpj);
}
if (i < bits_na_lam && (n = wnaf_na_lam[i])) {
ECMULT_TABLE_GET_GEJ(&tmpj, pre_a_lam, n, WINDOW_A);
secp256k1_gej_add(r, r, &tmpj);
}
#else
if (i < bits_na && (n = wnaf_na[i])) {
ECMULT_TABLE_GET_GEJ(&tmpj, pre_a, n, WINDOW_A);
secp256k1_gej_add(r, r, &tmpj);
}
#endif
if (i < bits_ng_1 && (n = wnaf_ng_1[i])) {
ECMULT_TABLE_GET_GE(&tmpa, c->pre_g, n, WINDOW_G);
secp256k1_gej_add_ge(r, r, &tmpa);
}
if (i < bits_ng_128 && (n = wnaf_ng_128[i])) {
ECMULT_TABLE_GET_GE(&tmpa, c->pre_g_128, n, WINDOW_G);
secp256k1_gej_add_ge(r, r, &tmpa);
}
}
#ifdef USE_ENDOMORPHISM
secp256k1_num_free(&na_1);
secp256k1_num_free(&na_lam);
#endif
secp256k1_num_free(&ng_1);
secp256k1_num_free(&ng_128);
}
#endif