0
0
Fork 0
mirror of https://github.com/bitcoin/bitcoin.git synced 2025-02-12 11:19:08 -05:00
bitcoin-bitcoin-core/sage/group_prover.sage
fanquake afb7a6fe06 Squashed 'src/secp256k1/' changes from 0559fc6e41..8746600eec
8746600eec Merge bitcoin-core/secp256k1#1093: hash: Make code agnostic of endianness
37d36927df tests: Add tests for _read_be32 and _write_be32
912b7ccc44 Merge bitcoin-core/secp256k1#1094: doc: Clarify configure flags for optional modules
55512d30b7 doc: clean up module help text in configure.ac
d9d94a9969 doc: mention optional modules in README
616b43dd3b util: Remove endianness detection
8d89b9e6e5 hash: Make code agnostic of endianness
d0ad5814a5 Merge bitcoin-core/secp256k1#995: build: stop treating schnorrsig, extrakeys modules as experimental
1ac7e31c5b Merge bitcoin-core/secp256k1#1089: Schnorrsig API improvements
587239dbe3 Merge bitcoin-core/secp256k1#731: Change SHA256 byte counter from size_t to uint64_t
f8d9174357 Add SHA256 bit counter tests
7f09d0f311 README: mention that ARM assembly is experimental
b8f8b99f0f docs: Fix return value for functions that don't have invalid inputs
f813bb0df3 schnorrsig: Adapt example to new API
99e6568fc6 schnorrsig: Rename schnorrsig_sign to schnorsig_sign32 and deprecate
fc94a2da44 Use SECP256K1_DEPRECATED for existing deprecated API functions
3db0560606 Add SECP256K1_DEPRECATED attribute for marking API parts as deprecated
80cf4eea5f build: stop treating schnorrsig, extrakeys modules as experimental
e0508ee9db Merge bitcoin-core/secp256k1#1090: configure: Remove redundant pkg-config code
21b2ebaf74 configure: Remove redundant pkg-config code
0e5cbd01b3 Merge bitcoin-core/secp256k1#1088: configure: Use modern way to set AR
0d253d52e8 configure: Use modern way to set AR
9b514ce1d2 Add test vector for very long SHA256 messages
8e3dde1137 Simplify struct initializer for SHA256 padding
eb28464a8b Change SHA256 byte counter from size_t to uint64_t
ac83be33d0 Merge bitcoin-core/secp256k1#1079: configure: Add hidden --enable-dev-mode to enable all the stuff
e0838d663d configure: Add hidden --enable-dev-mode to enable all the stuff
fabd579dfa configure: Remove redundant code that sets _enable variables
0d4226c051 configure: Use canonical variable prefix _enable consistently
64b34979ed Merge bitcoin-core/secp256k1#748: Add usage examples
7c9502cece Add a copy of the CC0 license to the examples
42e03432e6 Add usage examples to the readme
517644eab1 Optionally compile the examples in autotools, compile+run in travis
422a7cc86a Add a ecdh shared secret example
b0cfbcc143 Add a Schnorr signing and verifying example
fee7d4bf9e Add an ECDSA signing and verifying example
1253a27756 Merge bitcoin-core/secp256k1#1033: Add _fe_half and use in _gej_add_ge and _gej_double
3ef94aa5ba Merge bitcoin-core/secp256k1#1026: ecdh: Add test computing shared_secret=basepoint with random inputs
3531a43b5b ecdh: Make generator_basepoint test depend on global iteration count
c881dd49bd ecdh: Add test computing shared_secret=basepoint with random inputs
077528317d Merge bitcoin-core/secp256k1#1074: ci: Retry brew update a few times to avoid random failures
e51ad3b737 ci: Retry `brew update` a few times to avoid random failures
b1cb969e8a ci: Revert "Attempt to make macOS builds more reliable"
5dcc6f8dbd Merge bitcoin-core/secp256k1#1069: build: Replace use of deprecated autoconf macro AC_PROG_CC_C89
59547943d6 Merge bitcoin-core/secp256k1#1072: ci: Attempt to make macOS builds more reliable
85b00a1c65 Merge bitcoin-core/secp256k1#1068: sage: Fix incompatibility with sage 9.4
ebb1beea78 sage: Ensure that constraints are always fastfracs
d8d54859ed ci: Run sage prover on CI
77cfa98dbc sage: Normalize sign of polynomial factors in prover
eae75869cf sage: Exit with non-zero status in case of failures
d9396a56da ci: Attempt to make macOS builds more reliable
e0db3f8a25 build: Replace use of deprecated autoconf macro AC_PROG_CC_C89
e848c3799c Update sage files for new formulae
d64bb5d4f3 Add fe_half tests for worst-case inputs
b54d843eac sage: Fix printing of errors
4eb8b932ff Further improve doubling formula using fe_half
557b31fac3 Doubling formula using fe_half
2cbb4b1a42 Run more iterations of run_field_misc
9cc5c257ed Add test for secp256k1_fe_half
925f78d55e Add _fe_half and use in _gej_add_ge
e108d0039c sage: Fix incompatibility with sage 9.4
d8a2463246 Merge bitcoin-core/secp256k1#899: Reduce stratch space needed by ecmult_strauss_wnaf.
0a40a4861a Merge bitcoin-core/secp256k1#1049: Faster fixed-input ecmult tests
070e772211 Faster fixed-input ecmult tests
c8aa516b57 Merge bitcoin-core/secp256k1#1064: Modulo-reduce msg32 inside RFC6979 nonce fn to match spec. Fixes #1063
b797a500ec Create a SECP256K1_ECMULT_TABLE_VERIFY macro.
a731200cc3 Replace ECMULT_TABLE_GET_GE_STORAGE macro with a function.
fe34d9f341 Eliminate input_pos state field from ecmult_strauss_wnaf.
0397d00ba0 Eliminate na_1 and na_lam state fields from ecmult_strauss_wnaf.
7ba3ffcca0 Remove the unused pre_a_lam allocations.
b3b57ad6ee Eliminate the pre_a_lam array from ecmult_strauss_wnaf.
ae7ba0f922 Remove the unused prej allocations.
e5c18892db Eliminate the prej array from ecmult_strauss_wnaf.
c9da1baad1 Move secp256k1_fe_one to field.h
45f37b6506 Modulo-reduce msg32 inside RFC6979 nonce fn to match spec. Fixes #1063.
a1102b1219 Merge bitcoin-core/secp256k1#1029: Simpler and faster ecdh skew fixup
e82144edfb Fixup skew before global Z fixup
40b624c90b Add tests for _gej_cmov
8c13a9bfe1 ECDH skews by 0 or 1
1515099433 Simpler and faster ecdh skew fixup
39a36db94a Merge bitcoin-core/secp256k1#1054: tests: Fix test whose result is implementation-defined
a310e79ee5 Merge bitcoin-core/secp256k1#1052: Use xoshiro256++ instead of RFC6979 for tests
423b6d19d3 Merge bitcoin-core/secp256k1#964: Add release-process.md
9281c9f4e1 Merge bitcoin-core/secp256k1#1053: ecmult: move `_ecmult_odd_multiples_table_globalz_windowa`
77a19750b4 Use xoshiro256++ PRNG instead of RFC6979 in tests
5f2efe684e secp256k1_testrand_int(2**N) -> secp256k1_testrand_bits(N)
05e049b73c ecmult: move `_ecmult_odd_multiples_table_globalz_windowa`
3d7cbafb5f tests: Fix test whose result is implementation-defined
3ed0d02bf7 doc: add CHANGELOG template
6f42dc16c8 doc: add release_process.md
0bd3e4243c build: set library version to 0.0.0 explicitly
b4b02fd8c4 build: change libsecp version from 0.1 to 0.1.0-pre
09971a3ffd Merge bitcoin-core/secp256k1#1047: ci: Various improvements
0b83b203e1 Merge bitcoin-core/secp256k1#1030: doc: Fix upper bounds + cleanup in field_5x52_impl.h comment
1287786c7a doc: Add comment to top of field_10x26_impl.h
58da5bd589 doc: Fix upper bounds + cleanup in field_5x52_impl.h comment
b39d431aed Merge bitcoin-core/secp256k1#1044: Add another ecmult_multi test
b4ac1a1d5f ci: Run valgrind/memcheck tasks with 2 CPUs
e70acab601 ci: Use Cirrus "greedy" flag to use idle CPU time when available
d07e30176e ci: Update brew on macOS
22382f0ea0 ci: Test different ecmult window sizes
a69df3ad24 Merge bitcoin-core/secp256k1#816: Improve checks at top of _fe_negate methods
22d25c8e0a Add another ecmult_multi test
515e7953ca Improve checks at top of _fe_negate methods
26a022a3a0 ci: Remove STATICPRECOMPUTATION
10461d8bd3 precompute_ecmult: Always compute all tables up to default WINDOW_G
be6944ade9 Merge bitcoin-core/secp256k1#1042: Follow-ups to making all tables fully static
e05da9e480 Fix c++ build
c45386d994 Cleanup preprocessor indentation in precompute{,d}_ecmult{,_gen}
19d96e15f9 Split off .c file from precomputed_ecmult.h
1a6691adae Split off .c file from precomputed_ecmult_gen.h
bb36331412 Simplify precompute_ecmult_print_*
38cd84a0cb Compute ecmult tables at runtime for tests_exhaustive
e458ec26d6 Move ecmult table computation code to separate file
fc1bf9f15f Split ecmult table computation and printing
31feab053b Rename function secp256k1_ecmult_gen_{create_prec -> compute}_table
725370c3f2 Rename ecmult_gen_prec -> ecmult_gen_compute_table
075252c1b7 Rename ecmult_static_pre_g -> precomputed_ecmult
7cf47f72bc Rename ecmult_gen_static_prec_table -> precomputed_ecmult_gen
f95b8106d0 Rename gen_ecmult_static_pre_g -> precompute_ecmult
bae77685eb Rename gen_ecmult_gen_static_prec_table -> precompute_ecmult_gen

git-subtree-dir: src/secp256k1
git-subtree-split: 8746600eec5e7fcd35dabd480839a3a4bdfee87b
2022-04-06 20:20:30 +01:00

353 lines
13 KiB
Python

# This code supports verifying group implementations which have branches
# or conditional statements (like cmovs), by allowing each execution path
# to independently set assumptions on input or intermediary variables.
#
# The general approach is:
# * A constraint is a tuple of two sets of symbolic expressions:
# the first of which are required to evaluate to zero, the second of which
# are required to evaluate to nonzero.
# - A constraint is said to be conflicting if any of its nonzero expressions
# is in the ideal with basis the zero expressions (in other words: when the
# zero expressions imply that one of the nonzero expressions are zero).
# * There is a list of laws that describe the intended behaviour, including
# laws for addition and doubling. Each law is called with the symbolic point
# coordinates as arguments, and returns:
# - A constraint describing the assumptions under which it is applicable,
# called "assumeLaw"
# - A constraint describing the requirements of the law, called "require"
# * Implementations are transliterated into functions that operate as well on
# algebraic input points, and are called once per combination of branches
# executed. Each execution returns:
# - A constraint describing the assumptions this implementation requires
# (such as Z1=1), called "assumeFormula"
# - A constraint describing the assumptions this specific branch requires,
# but which is by construction guaranteed to cover the entire space by
# merging the results from all branches, called "assumeBranch"
# - The result of the computation
# * All combinations of laws with implementation branches are tried, and:
# - If the combination of assumeLaw, assumeFormula, and assumeBranch results
# in a conflict, it means this law does not apply to this branch, and it is
# skipped.
# - For others, we try to prove the require constraints hold, assuming the
# information in assumeLaw + assumeFormula + assumeBranch, and if this does
# not succeed, we fail.
# + To prove an expression is zero, we check whether it belongs to the
# ideal with the assumed zero expressions as basis. This test is exact.
# + To prove an expression is nonzero, we check whether each of its
# factors is contained in the set of nonzero assumptions' factors.
# This test is not exact, so various combinations of original and
# reduced expressions' factors are tried.
# - If we succeed, we print out the assumptions from assumeFormula that
# weren't implied by assumeLaw already. Those from assumeBranch are skipped,
# as we assume that all constraints in it are complementary with each other.
#
# Based on the sage verification scripts used in the Explicit-Formulas Database
# by Tanja Lange and others, see https://hyperelliptic.org/EFD
class fastfrac:
"""Fractions over rings."""
def __init__(self,R,top,bot=1):
"""Construct a fractional, given a ring, a numerator, and denominator."""
self.R = R
if parent(top) == ZZ or parent(top) == R:
self.top = R(top)
self.bot = R(bot)
elif top.__class__ == fastfrac:
self.top = top.top
self.bot = top.bot * bot
else:
self.top = R(numerator(top))
self.bot = R(denominator(top)) * bot
def iszero(self,I):
"""Return whether this fraction is zero given an ideal."""
return self.top in I and self.bot not in I
def reduce(self,assumeZero):
zero = self.R.ideal(list(map(numerator, assumeZero)))
return fastfrac(self.R, zero.reduce(self.top)) / fastfrac(self.R, zero.reduce(self.bot))
def __add__(self,other):
"""Add two fractions."""
if parent(other) == ZZ:
return fastfrac(self.R,self.top + self.bot * other,self.bot)
if other.__class__ == fastfrac:
return fastfrac(self.R,self.top * other.bot + self.bot * other.top,self.bot * other.bot)
return NotImplemented
def __sub__(self,other):
"""Subtract two fractions."""
if parent(other) == ZZ:
return fastfrac(self.R,self.top - self.bot * other,self.bot)
if other.__class__ == fastfrac:
return fastfrac(self.R,self.top * other.bot - self.bot * other.top,self.bot * other.bot)
return NotImplemented
def __neg__(self):
"""Return the negation of a fraction."""
return fastfrac(self.R,-self.top,self.bot)
def __mul__(self,other):
"""Multiply two fractions."""
if parent(other) == ZZ:
return fastfrac(self.R,self.top * other,self.bot)
if other.__class__ == fastfrac:
return fastfrac(self.R,self.top * other.top,self.bot * other.bot)
return NotImplemented
def __rmul__(self,other):
"""Multiply something else with a fraction."""
return self.__mul__(other)
def __truediv__(self,other):
"""Divide two fractions."""
if parent(other) == ZZ:
return fastfrac(self.R,self.top,self.bot * other)
if other.__class__ == fastfrac:
return fastfrac(self.R,self.top * other.bot,self.bot * other.top)
return NotImplemented
# Compatibility wrapper for Sage versions based on Python 2
def __div__(self,other):
"""Divide two fractions."""
return self.__truediv__(other)
def __pow__(self,other):
"""Compute a power of a fraction."""
if parent(other) == ZZ:
if other < 0:
# Negative powers require flipping top and bottom
return fastfrac(self.R,self.bot ^ (-other),self.top ^ (-other))
else:
return fastfrac(self.R,self.top ^ other,self.bot ^ other)
return NotImplemented
def __str__(self):
return "fastfrac((" + str(self.top) + ") / (" + str(self.bot) + "))"
def __repr__(self):
return "%s" % self
def numerator(self):
return self.top
class constraints:
"""A set of constraints, consisting of zero and nonzero expressions.
Constraints can either be used to express knowledge or a requirement.
Both the fields zero and nonzero are maps from expressions to description
strings. The expressions that are the keys in zero are required to be zero,
and the expressions that are the keys in nonzero are required to be nonzero.
Note that (a != 0) and (b != 0) is the same as (a*b != 0), so all keys in
nonzero could be multiplied into a single key. This is often much less
efficient to work with though, so we keep them separate inside the
constraints. This allows higher-level code to do fast checks on the individual
nonzero elements, or combine them if needed for stronger checks.
We can't multiply the different zero elements, as it would suffice for one of
the factors to be zero, instead of all of them. Instead, the zero elements are
typically combined into an ideal first.
"""
def __init__(self, **kwargs):
if 'zero' in kwargs:
self.zero = dict(kwargs['zero'])
else:
self.zero = dict()
if 'nonzero' in kwargs:
self.nonzero = dict(kwargs['nonzero'])
else:
self.nonzero = dict()
def negate(self):
return constraints(zero=self.nonzero, nonzero=self.zero)
def map(self, fun):
return constraints(zero={fun(k): v for k, v in self.zero.items()}, nonzero={fun(k): v for k, v in self.nonzero.items()})
def __add__(self, other):
zero = self.zero.copy()
zero.update(other.zero)
nonzero = self.nonzero.copy()
nonzero.update(other.nonzero)
return constraints(zero=zero, nonzero=nonzero)
def __str__(self):
return "constraints(zero=%s,nonzero=%s)" % (self.zero, self.nonzero)
def __repr__(self):
return "%s" % self
def normalize_factor(p):
"""Normalizes the sign of primitive polynomials (as returned by factor())
This function ensures that the polynomial has a positive leading coefficient.
This is necessary because recent sage versions (starting with v9.3 or v9.4,
we don't know) are inconsistent about the placement of the minus sign in
polynomial factorizations:
```
sage: R.<ax,bx,ay,by,Az,Bz,Ai,Bi> = PolynomialRing(QQ,8,order='invlex')
sage: R((-2 * (bx - ax)) ^ 1).factor()
(-2) * (bx - ax)
sage: R((-2 * (bx - ax)) ^ 2).factor()
(4) * (-bx + ax)^2
sage: R((-2 * (bx - ax)) ^ 3).factor()
(8) * (-bx + ax)^3
```
"""
# Assert p is not 0 and that its non-zero coeffients are coprime.
# (We could just work with the primitive part p/p.content() but we want to be
# aware if factor() does not return a primitive part in future sage versions.)
assert p.content() == 1
# Ensure that the first non-zero coefficient is positive.
return p if p.lc() > 0 else -p
def conflicts(R, con):
"""Check whether any of the passed non-zero assumptions is implied by the zero assumptions"""
zero = R.ideal(list(map(numerator, con.zero)))
if 1 in zero:
return True
# First a cheap check whether any of the individual nonzero terms conflict on
# their own.
for nonzero in con.nonzero:
if nonzero.iszero(zero):
return True
# It can be the case that entries in the nonzero set do not individually
# conflict with the zero set, but their combination does. For example, knowing
# that either x or y is zero is equivalent to having x*y in the zero set.
# Having x or y individually in the nonzero set is not a conflict, but both
# simultaneously is, so that is the right thing to check for.
if reduce(lambda a,b: a * b, con.nonzero, fastfrac(R, 1)).iszero(zero):
return True
return False
def get_nonzero_set(R, assume):
"""Calculate a simple set of nonzero expressions"""
zero = R.ideal(list(map(numerator, assume.zero)))
nonzero = set()
for nz in map(numerator, assume.nonzero):
for (f,n) in nz.factor():
nonzero.add(normalize_factor(f))
rnz = zero.reduce(nz)
for (f,n) in rnz.factor():
nonzero.add(normalize_factor(f))
return nonzero
def prove_nonzero(R, exprs, assume):
"""Check whether an expression is provably nonzero, given assumptions"""
zero = R.ideal(list(map(numerator, assume.zero)))
nonzero = get_nonzero_set(R, assume)
expl = set()
ok = True
for expr in exprs:
if numerator(expr) in zero:
return (False, [exprs[expr]])
allexprs = reduce(lambda a,b: numerator(a)*numerator(b), exprs, 1)
for (f, n) in allexprs.factor():
if normalize_factor(f) not in nonzero:
ok = False
if ok:
return (True, None)
ok = True
for (f, n) in zero.reduce(allexprs).factor():
if normalize_factor(f) not in nonzero:
ok = False
if ok:
return (True, None)
ok = True
for expr in exprs:
for (f,n) in numerator(expr).factor():
if normalize_factor(f) not in nonzero:
ok = False
if ok:
return (True, None)
ok = True
for expr in exprs:
for (f,n) in zero.reduce(numerator(expr)).factor():
if normalize_factor(f) not in nonzero:
expl.add(exprs[expr])
if expl:
return (False, list(expl))
else:
return (True, None)
def prove_zero(R, exprs, assume):
"""Check whether all of the passed expressions are provably zero, given assumptions"""
r, e = prove_nonzero(R, dict(map(lambda x: (fastfrac(R, x.bot, 1), exprs[x]), exprs)), assume)
if not r:
return (False, list(map(lambda x: "Possibly zero denominator: %s" % x, e)))
zero = R.ideal(list(map(numerator, assume.zero)))
nonzero = prod(x for x in assume.nonzero)
expl = []
for expr in exprs:
if not expr.iszero(zero):
expl.append(exprs[expr])
if not expl:
return (True, None)
return (False, expl)
def describe_extra(R, assume, assumeExtra):
"""Describe what assumptions are added, given existing assumptions"""
zerox = assume.zero.copy()
zerox.update(assumeExtra.zero)
zero = R.ideal(list(map(numerator, assume.zero)))
zeroextra = R.ideal(list(map(numerator, zerox)))
nonzero = get_nonzero_set(R, assume)
ret = set()
# Iterate over the extra zero expressions
for base in assumeExtra.zero:
if base not in zero:
add = []
for (f, n) in numerator(base).factor():
if normalize_factor(f) not in nonzero:
add += ["%s" % normalize_factor(f)]
if add:
ret.add((" * ".join(add)) + " = 0 [%s]" % assumeExtra.zero[base])
# Iterate over the extra nonzero expressions
for nz in assumeExtra.nonzero:
nzr = zeroextra.reduce(numerator(nz))
if nzr not in zeroextra:
for (f,n) in nzr.factor():
if normalize_factor(zeroextra.reduce(f)) not in nonzero:
ret.add("%s != 0" % normalize_factor(zeroextra.reduce(f)))
return ", ".join(x for x in ret)
def check_symbolic(R, assumeLaw, assumeAssert, assumeBranch, require):
"""Check a set of zero and nonzero requirements, given a set of zero and nonzero assumptions"""
assume = assumeLaw + assumeAssert + assumeBranch
if conflicts(R, assume):
# This formula does not apply
return (True, None)
describe = describe_extra(R, assumeLaw + assumeBranch, assumeAssert)
if describe != "":
describe = " (assuming " + describe + ")"
ok, msg = prove_zero(R, require.zero, assume)
if not ok:
return (False, "FAIL, %s fails%s" % (str(msg), describe))
res, expl = prove_nonzero(R, require.nonzero, assume)
if not res:
return (False, "FAIL, %s fails%s" % (str(expl), describe))
return (True, "OK%s" % describe)
def concrete_verify(c):
for k in c.zero:
if k != 0:
return (False, c.zero[k])
for k in c.nonzero:
if k == 0:
return (False, c.nonzero[k])
return (True, None)