mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-02-02 09:46:52 -05:00
1368 lines
56 KiB
C++
1368 lines
56 KiB
C++
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
|
// Copyright (c) 2009-2022 The Bitcoin Core developers
|
|
// Distributed under the MIT software license, see the accompanying
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
#include <txmempool.h>
|
|
|
|
#include <chain.h>
|
|
#include <coins.h>
|
|
#include <common/system.h>
|
|
#include <consensus/consensus.h>
|
|
#include <consensus/tx_verify.h>
|
|
#include <consensus/validation.h>
|
|
#include <logging.h>
|
|
#include <policy/policy.h>
|
|
#include <policy/settings.h>
|
|
#include <random.h>
|
|
#include <reverse_iterator.h>
|
|
#include <util/check.h>
|
|
#include <util/feefrac.h>
|
|
#include <util/moneystr.h>
|
|
#include <util/overflow.h>
|
|
#include <util/result.h>
|
|
#include <util/time.h>
|
|
#include <util/trace.h>
|
|
#include <util/translation.h>
|
|
#include <validationinterface.h>
|
|
|
|
#include <cmath>
|
|
#include <numeric>
|
|
#include <optional>
|
|
#include <string_view>
|
|
#include <utility>
|
|
|
|
bool TestLockPointValidity(CChain& active_chain, const LockPoints& lp)
|
|
{
|
|
AssertLockHeld(cs_main);
|
|
// If there are relative lock times then the maxInputBlock will be set
|
|
// If there are no relative lock times, the LockPoints don't depend on the chain
|
|
if (lp.maxInputBlock) {
|
|
// Check whether active_chain is an extension of the block at which the LockPoints
|
|
// calculation was valid. If not LockPoints are no longer valid
|
|
if (!active_chain.Contains(lp.maxInputBlock)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// LockPoints still valid
|
|
return true;
|
|
}
|
|
|
|
void CTxMemPool::UpdateForDescendants(txiter updateIt, cacheMap& cachedDescendants,
|
|
const std::set<uint256>& setExclude, std::set<uint256>& descendants_to_remove)
|
|
{
|
|
CTxMemPoolEntry::Children stageEntries, descendants;
|
|
stageEntries = updateIt->GetMemPoolChildrenConst();
|
|
|
|
while (!stageEntries.empty()) {
|
|
const CTxMemPoolEntry& descendant = *stageEntries.begin();
|
|
descendants.insert(descendant);
|
|
stageEntries.erase(descendant);
|
|
const CTxMemPoolEntry::Children& children = descendant.GetMemPoolChildrenConst();
|
|
for (const CTxMemPoolEntry& childEntry : children) {
|
|
cacheMap::iterator cacheIt = cachedDescendants.find(mapTx.iterator_to(childEntry));
|
|
if (cacheIt != cachedDescendants.end()) {
|
|
// We've already calculated this one, just add the entries for this set
|
|
// but don't traverse again.
|
|
for (txiter cacheEntry : cacheIt->second) {
|
|
descendants.insert(*cacheEntry);
|
|
}
|
|
} else if (!descendants.count(childEntry)) {
|
|
// Schedule for later processing
|
|
stageEntries.insert(childEntry);
|
|
}
|
|
}
|
|
}
|
|
// descendants now contains all in-mempool descendants of updateIt.
|
|
// Update and add to cached descendant map
|
|
int32_t modifySize = 0;
|
|
CAmount modifyFee = 0;
|
|
int64_t modifyCount = 0;
|
|
for (const CTxMemPoolEntry& descendant : descendants) {
|
|
if (!setExclude.count(descendant.GetTx().GetHash())) {
|
|
modifySize += descendant.GetTxSize();
|
|
modifyFee += descendant.GetModifiedFee();
|
|
modifyCount++;
|
|
cachedDescendants[updateIt].insert(mapTx.iterator_to(descendant));
|
|
// Update ancestor state for each descendant
|
|
mapTx.modify(mapTx.iterator_to(descendant), [=](CTxMemPoolEntry& e) {
|
|
e.UpdateAncestorState(updateIt->GetTxSize(), updateIt->GetModifiedFee(), 1, updateIt->GetSigOpCost());
|
|
});
|
|
// Don't directly remove the transaction here -- doing so would
|
|
// invalidate iterators in cachedDescendants. Mark it for removal
|
|
// by inserting into descendants_to_remove.
|
|
if (descendant.GetCountWithAncestors() > uint64_t(m_limits.ancestor_count) || descendant.GetSizeWithAncestors() > m_limits.ancestor_size_vbytes) {
|
|
descendants_to_remove.insert(descendant.GetTx().GetHash());
|
|
}
|
|
}
|
|
}
|
|
mapTx.modify(updateIt, [=](CTxMemPoolEntry& e) { e.UpdateDescendantState(modifySize, modifyFee, modifyCount); });
|
|
}
|
|
|
|
void CTxMemPool::UpdateTransactionsFromBlock(const std::vector<uint256>& vHashesToUpdate)
|
|
{
|
|
AssertLockHeld(cs);
|
|
// For each entry in vHashesToUpdate, store the set of in-mempool, but not
|
|
// in-vHashesToUpdate transactions, so that we don't have to recalculate
|
|
// descendants when we come across a previously seen entry.
|
|
cacheMap mapMemPoolDescendantsToUpdate;
|
|
|
|
// Use a set for lookups into vHashesToUpdate (these entries are already
|
|
// accounted for in the state of their ancestors)
|
|
std::set<uint256> setAlreadyIncluded(vHashesToUpdate.begin(), vHashesToUpdate.end());
|
|
|
|
std::set<uint256> descendants_to_remove;
|
|
|
|
// Iterate in reverse, so that whenever we are looking at a transaction
|
|
// we are sure that all in-mempool descendants have already been processed.
|
|
// This maximizes the benefit of the descendant cache and guarantees that
|
|
// CTxMemPoolEntry::m_children will be updated, an assumption made in
|
|
// UpdateForDescendants.
|
|
for (const uint256 &hash : reverse_iterate(vHashesToUpdate)) {
|
|
// calculate children from mapNextTx
|
|
txiter it = mapTx.find(hash);
|
|
if (it == mapTx.end()) {
|
|
continue;
|
|
}
|
|
auto iter = mapNextTx.lower_bound(COutPoint(Txid::FromUint256(hash), 0));
|
|
// First calculate the children, and update CTxMemPoolEntry::m_children to
|
|
// include them, and update their CTxMemPoolEntry::m_parents to include this tx.
|
|
// we cache the in-mempool children to avoid duplicate updates
|
|
{
|
|
WITH_FRESH_EPOCH(m_epoch);
|
|
for (; iter != mapNextTx.end() && iter->first->hash == hash; ++iter) {
|
|
const uint256 &childHash = iter->second->GetHash();
|
|
txiter childIter = mapTx.find(childHash);
|
|
assert(childIter != mapTx.end());
|
|
// We can skip updating entries we've encountered before or that
|
|
// are in the block (which are already accounted for).
|
|
if (!visited(childIter) && !setAlreadyIncluded.count(childHash)) {
|
|
UpdateChild(it, childIter, true);
|
|
UpdateParent(childIter, it, true);
|
|
}
|
|
}
|
|
} // release epoch guard for UpdateForDescendants
|
|
UpdateForDescendants(it, mapMemPoolDescendantsToUpdate, setAlreadyIncluded, descendants_to_remove);
|
|
}
|
|
|
|
for (const auto& txid : descendants_to_remove) {
|
|
// This txid may have been removed already in a prior call to removeRecursive.
|
|
// Therefore we ensure it is not yet removed already.
|
|
if (const std::optional<txiter> txiter = GetIter(txid)) {
|
|
removeRecursive((*txiter)->GetTx(), MemPoolRemovalReason::SIZELIMIT);
|
|
}
|
|
}
|
|
}
|
|
|
|
util::Result<CTxMemPool::setEntries> CTxMemPool::CalculateAncestorsAndCheckLimits(
|
|
int64_t entry_size,
|
|
size_t entry_count,
|
|
CTxMemPoolEntry::Parents& staged_ancestors,
|
|
const Limits& limits) const
|
|
{
|
|
int64_t totalSizeWithAncestors = entry_size;
|
|
setEntries ancestors;
|
|
|
|
while (!staged_ancestors.empty()) {
|
|
const CTxMemPoolEntry& stage = staged_ancestors.begin()->get();
|
|
txiter stageit = mapTx.iterator_to(stage);
|
|
|
|
ancestors.insert(stageit);
|
|
staged_ancestors.erase(stage);
|
|
totalSizeWithAncestors += stageit->GetTxSize();
|
|
|
|
if (stageit->GetSizeWithDescendants() + entry_size > limits.descendant_size_vbytes) {
|
|
return util::Error{Untranslated(strprintf("exceeds descendant size limit for tx %s [limit: %u]", stageit->GetTx().GetHash().ToString(), limits.descendant_size_vbytes))};
|
|
} else if (stageit->GetCountWithDescendants() + entry_count > static_cast<uint64_t>(limits.descendant_count)) {
|
|
return util::Error{Untranslated(strprintf("too many descendants for tx %s [limit: %u]", stageit->GetTx().GetHash().ToString(), limits.descendant_count))};
|
|
} else if (totalSizeWithAncestors > limits.ancestor_size_vbytes) {
|
|
return util::Error{Untranslated(strprintf("exceeds ancestor size limit [limit: %u]", limits.ancestor_size_vbytes))};
|
|
}
|
|
|
|
const CTxMemPoolEntry::Parents& parents = stageit->GetMemPoolParentsConst();
|
|
for (const CTxMemPoolEntry& parent : parents) {
|
|
txiter parent_it = mapTx.iterator_to(parent);
|
|
|
|
// If this is a new ancestor, add it.
|
|
if (ancestors.count(parent_it) == 0) {
|
|
staged_ancestors.insert(parent);
|
|
}
|
|
if (staged_ancestors.size() + ancestors.size() + entry_count > static_cast<uint64_t>(limits.ancestor_count)) {
|
|
return util::Error{Untranslated(strprintf("too many unconfirmed ancestors [limit: %u]", limits.ancestor_count))};
|
|
}
|
|
}
|
|
}
|
|
|
|
return ancestors;
|
|
}
|
|
|
|
util::Result<void> CTxMemPool::CheckPackageLimits(const Package& package,
|
|
const int64_t total_vsize) const
|
|
{
|
|
size_t pack_count = package.size();
|
|
|
|
// Package itself is busting mempool limits; should be rejected even if no staged_ancestors exist
|
|
if (pack_count > static_cast<uint64_t>(m_limits.ancestor_count)) {
|
|
return util::Error{Untranslated(strprintf("package count %u exceeds ancestor count limit [limit: %u]", pack_count, m_limits.ancestor_count))};
|
|
} else if (pack_count > static_cast<uint64_t>(m_limits.descendant_count)) {
|
|
return util::Error{Untranslated(strprintf("package count %u exceeds descendant count limit [limit: %u]", pack_count, m_limits.descendant_count))};
|
|
} else if (total_vsize > m_limits.ancestor_size_vbytes) {
|
|
return util::Error{Untranslated(strprintf("package size %u exceeds ancestor size limit [limit: %u]", total_vsize, m_limits.ancestor_size_vbytes))};
|
|
} else if (total_vsize > m_limits.descendant_size_vbytes) {
|
|
return util::Error{Untranslated(strprintf("package size %u exceeds descendant size limit [limit: %u]", total_vsize, m_limits.descendant_size_vbytes))};
|
|
}
|
|
|
|
CTxMemPoolEntry::Parents staged_ancestors;
|
|
for (const auto& tx : package) {
|
|
for (const auto& input : tx->vin) {
|
|
std::optional<txiter> piter = GetIter(input.prevout.hash);
|
|
if (piter) {
|
|
staged_ancestors.insert(**piter);
|
|
if (staged_ancestors.size() + package.size() > static_cast<uint64_t>(m_limits.ancestor_count)) {
|
|
return util::Error{Untranslated(strprintf("too many unconfirmed parents [limit: %u]", m_limits.ancestor_count))};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// When multiple transactions are passed in, the ancestors and descendants of all transactions
|
|
// considered together must be within limits even if they are not interdependent. This may be
|
|
// stricter than the limits for each individual transaction.
|
|
const auto ancestors{CalculateAncestorsAndCheckLimits(total_vsize, package.size(),
|
|
staged_ancestors, m_limits)};
|
|
// It's possible to overestimate the ancestor/descendant totals.
|
|
if (!ancestors.has_value()) return util::Error{Untranslated("possibly " + util::ErrorString(ancestors).original)};
|
|
return {};
|
|
}
|
|
|
|
util::Result<CTxMemPool::setEntries> CTxMemPool::CalculateMemPoolAncestors(
|
|
const CTxMemPoolEntry &entry,
|
|
const Limits& limits,
|
|
bool fSearchForParents /* = true */) const
|
|
{
|
|
CTxMemPoolEntry::Parents staged_ancestors;
|
|
const CTransaction &tx = entry.GetTx();
|
|
|
|
if (fSearchForParents) {
|
|
// Get parents of this transaction that are in the mempool
|
|
// GetMemPoolParents() is only valid for entries in the mempool, so we
|
|
// iterate mapTx to find parents.
|
|
for (unsigned int i = 0; i < tx.vin.size(); i++) {
|
|
std::optional<txiter> piter = GetIter(tx.vin[i].prevout.hash);
|
|
if (piter) {
|
|
staged_ancestors.insert(**piter);
|
|
if (staged_ancestors.size() + 1 > static_cast<uint64_t>(limits.ancestor_count)) {
|
|
return util::Error{Untranslated(strprintf("too many unconfirmed parents [limit: %u]", limits.ancestor_count))};
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
// If we're not searching for parents, we require this to already be an
|
|
// entry in the mempool and use the entry's cached parents.
|
|
txiter it = mapTx.iterator_to(entry);
|
|
staged_ancestors = it->GetMemPoolParentsConst();
|
|
}
|
|
|
|
return CalculateAncestorsAndCheckLimits(entry.GetTxSize(), /*entry_count=*/1, staged_ancestors,
|
|
limits);
|
|
}
|
|
|
|
CTxMemPool::setEntries CTxMemPool::AssumeCalculateMemPoolAncestors(
|
|
std::string_view calling_fn_name,
|
|
const CTxMemPoolEntry &entry,
|
|
const Limits& limits,
|
|
bool fSearchForParents /* = true */) const
|
|
{
|
|
auto result{CalculateMemPoolAncestors(entry, limits, fSearchForParents)};
|
|
if (!Assume(result)) {
|
|
LogPrintLevel(BCLog::MEMPOOL, BCLog::Level::Error, "%s: CalculateMemPoolAncestors failed unexpectedly, continuing with empty ancestor set (%s)\n",
|
|
calling_fn_name, util::ErrorString(result).original);
|
|
}
|
|
return std::move(result).value_or(CTxMemPool::setEntries{});
|
|
}
|
|
|
|
void CTxMemPool::UpdateAncestorsOf(bool add, txiter it, setEntries &setAncestors)
|
|
{
|
|
const CTxMemPoolEntry::Parents& parents = it->GetMemPoolParentsConst();
|
|
// add or remove this tx as a child of each parent
|
|
for (const CTxMemPoolEntry& parent : parents) {
|
|
UpdateChild(mapTx.iterator_to(parent), it, add);
|
|
}
|
|
const int32_t updateCount = (add ? 1 : -1);
|
|
const int32_t updateSize{updateCount * it->GetTxSize()};
|
|
const CAmount updateFee = updateCount * it->GetModifiedFee();
|
|
for (txiter ancestorIt : setAncestors) {
|
|
mapTx.modify(ancestorIt, [=](CTxMemPoolEntry& e) { e.UpdateDescendantState(updateSize, updateFee, updateCount); });
|
|
}
|
|
}
|
|
|
|
void CTxMemPool::UpdateEntryForAncestors(txiter it, const setEntries &setAncestors)
|
|
{
|
|
int64_t updateCount = setAncestors.size();
|
|
int64_t updateSize = 0;
|
|
CAmount updateFee = 0;
|
|
int64_t updateSigOpsCost = 0;
|
|
for (txiter ancestorIt : setAncestors) {
|
|
updateSize += ancestorIt->GetTxSize();
|
|
updateFee += ancestorIt->GetModifiedFee();
|
|
updateSigOpsCost += ancestorIt->GetSigOpCost();
|
|
}
|
|
mapTx.modify(it, [=](CTxMemPoolEntry& e){ e.UpdateAncestorState(updateSize, updateFee, updateCount, updateSigOpsCost); });
|
|
}
|
|
|
|
void CTxMemPool::UpdateChildrenForRemoval(txiter it)
|
|
{
|
|
const CTxMemPoolEntry::Children& children = it->GetMemPoolChildrenConst();
|
|
for (const CTxMemPoolEntry& updateIt : children) {
|
|
UpdateParent(mapTx.iterator_to(updateIt), it, false);
|
|
}
|
|
}
|
|
|
|
void CTxMemPool::UpdateForRemoveFromMempool(const setEntries &entriesToRemove, bool updateDescendants)
|
|
{
|
|
// For each entry, walk back all ancestors and decrement size associated with this
|
|
// transaction
|
|
if (updateDescendants) {
|
|
// updateDescendants should be true whenever we're not recursively
|
|
// removing a tx and all its descendants, eg when a transaction is
|
|
// confirmed in a block.
|
|
// Here we only update statistics and not data in CTxMemPool::Parents
|
|
// and CTxMemPoolEntry::Children (which we need to preserve until we're
|
|
// finished with all operations that need to traverse the mempool).
|
|
for (txiter removeIt : entriesToRemove) {
|
|
setEntries setDescendants;
|
|
CalculateDescendants(removeIt, setDescendants);
|
|
setDescendants.erase(removeIt); // don't update state for self
|
|
int32_t modifySize = -removeIt->GetTxSize();
|
|
CAmount modifyFee = -removeIt->GetModifiedFee();
|
|
int modifySigOps = -removeIt->GetSigOpCost();
|
|
for (txiter dit : setDescendants) {
|
|
mapTx.modify(dit, [=](CTxMemPoolEntry& e){ e.UpdateAncestorState(modifySize, modifyFee, -1, modifySigOps); });
|
|
}
|
|
}
|
|
}
|
|
for (txiter removeIt : entriesToRemove) {
|
|
const CTxMemPoolEntry &entry = *removeIt;
|
|
// Since this is a tx that is already in the mempool, we can call CMPA
|
|
// with fSearchForParents = false. If the mempool is in a consistent
|
|
// state, then using true or false should both be correct, though false
|
|
// should be a bit faster.
|
|
// However, if we happen to be in the middle of processing a reorg, then
|
|
// the mempool can be in an inconsistent state. In this case, the set
|
|
// of ancestors reachable via GetMemPoolParents()/GetMemPoolChildren()
|
|
// will be the same as the set of ancestors whose packages include this
|
|
// transaction, because when we add a new transaction to the mempool in
|
|
// addUnchecked(), we assume it has no children, and in the case of a
|
|
// reorg where that assumption is false, the in-mempool children aren't
|
|
// linked to the in-block tx's until UpdateTransactionsFromBlock() is
|
|
// called.
|
|
// So if we're being called during a reorg, ie before
|
|
// UpdateTransactionsFromBlock() has been called, then
|
|
// GetMemPoolParents()/GetMemPoolChildren() will differ from the set of
|
|
// mempool parents we'd calculate by searching, and it's important that
|
|
// we use the cached notion of ancestor transactions as the set of
|
|
// things to update for removal.
|
|
auto ancestors{AssumeCalculateMemPoolAncestors(__func__, entry, Limits::NoLimits(), /*fSearchForParents=*/false)};
|
|
// Note that UpdateAncestorsOf severs the child links that point to
|
|
// removeIt in the entries for the parents of removeIt.
|
|
UpdateAncestorsOf(false, removeIt, ancestors);
|
|
}
|
|
// After updating all the ancestor sizes, we can now sever the link between each
|
|
// transaction being removed and any mempool children (ie, update CTxMemPoolEntry::m_parents
|
|
// for each direct child of a transaction being removed).
|
|
for (txiter removeIt : entriesToRemove) {
|
|
UpdateChildrenForRemoval(removeIt);
|
|
}
|
|
}
|
|
|
|
void CTxMemPoolEntry::UpdateDescendantState(int32_t modifySize, CAmount modifyFee, int64_t modifyCount)
|
|
{
|
|
nSizeWithDescendants += modifySize;
|
|
assert(nSizeWithDescendants > 0);
|
|
nModFeesWithDescendants = SaturatingAdd(nModFeesWithDescendants, modifyFee);
|
|
m_count_with_descendants += modifyCount;
|
|
assert(m_count_with_descendants > 0);
|
|
}
|
|
|
|
void CTxMemPoolEntry::UpdateAncestorState(int32_t modifySize, CAmount modifyFee, int64_t modifyCount, int64_t modifySigOps)
|
|
{
|
|
nSizeWithAncestors += modifySize;
|
|
assert(nSizeWithAncestors > 0);
|
|
nModFeesWithAncestors = SaturatingAdd(nModFeesWithAncestors, modifyFee);
|
|
m_count_with_ancestors += modifyCount;
|
|
assert(m_count_with_ancestors > 0);
|
|
nSigOpCostWithAncestors += modifySigOps;
|
|
assert(int(nSigOpCostWithAncestors) >= 0);
|
|
}
|
|
|
|
CTxMemPool::CTxMemPool(const Options& opts)
|
|
: m_check_ratio{opts.check_ratio},
|
|
m_max_size_bytes{opts.max_size_bytes},
|
|
m_expiry{opts.expiry},
|
|
m_incremental_relay_feerate{opts.incremental_relay_feerate},
|
|
m_min_relay_feerate{opts.min_relay_feerate},
|
|
m_dust_relay_feerate{opts.dust_relay_feerate},
|
|
m_permit_bare_multisig{opts.permit_bare_multisig},
|
|
m_max_datacarrier_bytes{opts.max_datacarrier_bytes},
|
|
m_require_standard{opts.require_standard},
|
|
m_full_rbf{opts.full_rbf},
|
|
m_persist_v1_dat{opts.persist_v1_dat},
|
|
m_limits{opts.limits},
|
|
m_signals{opts.signals}
|
|
{
|
|
}
|
|
|
|
bool CTxMemPool::isSpent(const COutPoint& outpoint) const
|
|
{
|
|
LOCK(cs);
|
|
return mapNextTx.count(outpoint);
|
|
}
|
|
|
|
unsigned int CTxMemPool::GetTransactionsUpdated() const
|
|
{
|
|
return nTransactionsUpdated;
|
|
}
|
|
|
|
void CTxMemPool::AddTransactionsUpdated(unsigned int n)
|
|
{
|
|
nTransactionsUpdated += n;
|
|
}
|
|
|
|
void CTxMemPool::addUnchecked(const CTxMemPoolEntry &entry, setEntries &setAncestors)
|
|
{
|
|
// Add to memory pool without checking anything.
|
|
// Used by AcceptToMemoryPool(), which DOES do
|
|
// all the appropriate checks.
|
|
indexed_transaction_set::iterator newit = mapTx.emplace(CTxMemPoolEntry::ExplicitCopy, entry).first;
|
|
|
|
// Update transaction for any feeDelta created by PrioritiseTransaction
|
|
CAmount delta{0};
|
|
ApplyDelta(entry.GetTx().GetHash(), delta);
|
|
// The following call to UpdateModifiedFee assumes no previous fee modifications
|
|
Assume(entry.GetFee() == entry.GetModifiedFee());
|
|
if (delta) {
|
|
mapTx.modify(newit, [&delta](CTxMemPoolEntry& e) { e.UpdateModifiedFee(delta); });
|
|
}
|
|
|
|
// Update cachedInnerUsage to include contained transaction's usage.
|
|
// (When we update the entry for in-mempool parents, memory usage will be
|
|
// further updated.)
|
|
cachedInnerUsage += entry.DynamicMemoryUsage();
|
|
|
|
const CTransaction& tx = newit->GetTx();
|
|
std::set<Txid> setParentTransactions;
|
|
for (unsigned int i = 0; i < tx.vin.size(); i++) {
|
|
mapNextTx.insert(std::make_pair(&tx.vin[i].prevout, &tx));
|
|
setParentTransactions.insert(tx.vin[i].prevout.hash);
|
|
}
|
|
// Don't bother worrying about child transactions of this one.
|
|
// Normal case of a new transaction arriving is that there can't be any
|
|
// children, because such children would be orphans.
|
|
// An exception to that is if a transaction enters that used to be in a block.
|
|
// In that case, our disconnect block logic will call UpdateTransactionsFromBlock
|
|
// to clean up the mess we're leaving here.
|
|
|
|
// Update ancestors with information about this tx
|
|
for (const auto& pit : GetIterSet(setParentTransactions)) {
|
|
UpdateParent(newit, pit, true);
|
|
}
|
|
UpdateAncestorsOf(true, newit, setAncestors);
|
|
UpdateEntryForAncestors(newit, setAncestors);
|
|
|
|
nTransactionsUpdated++;
|
|
totalTxSize += entry.GetTxSize();
|
|
m_total_fee += entry.GetFee();
|
|
|
|
txns_randomized.emplace_back(newit->GetSharedTx());
|
|
newit->idx_randomized = txns_randomized.size() - 1;
|
|
|
|
TRACE3(mempool, added,
|
|
entry.GetTx().GetHash().data(),
|
|
entry.GetTxSize(),
|
|
entry.GetFee()
|
|
);
|
|
}
|
|
|
|
void CTxMemPool::removeUnchecked(txiter it, MemPoolRemovalReason reason)
|
|
{
|
|
// We increment mempool sequence value no matter removal reason
|
|
// even if not directly reported below.
|
|
uint64_t mempool_sequence = GetAndIncrementSequence();
|
|
|
|
if (reason != MemPoolRemovalReason::BLOCK && m_signals) {
|
|
// Notify clients that a transaction has been removed from the mempool
|
|
// for any reason except being included in a block. Clients interested
|
|
// in transactions included in blocks can subscribe to the BlockConnected
|
|
// notification.
|
|
m_signals->TransactionRemovedFromMempool(it->GetSharedTx(), reason, mempool_sequence);
|
|
}
|
|
TRACE5(mempool, removed,
|
|
it->GetTx().GetHash().data(),
|
|
RemovalReasonToString(reason).c_str(),
|
|
it->GetTxSize(),
|
|
it->GetFee(),
|
|
std::chrono::duration_cast<std::chrono::duration<std::uint64_t>>(it->GetTime()).count()
|
|
);
|
|
|
|
for (const CTxIn& txin : it->GetTx().vin)
|
|
mapNextTx.erase(txin.prevout);
|
|
|
|
RemoveUnbroadcastTx(it->GetTx().GetHash(), true /* add logging because unchecked */);
|
|
|
|
if (txns_randomized.size() > 1) {
|
|
// Update idx_randomized of the to-be-moved entry.
|
|
Assert(GetEntry(txns_randomized.back()->GetHash()))->idx_randomized = it->idx_randomized;
|
|
// Remove entry from txns_randomized by replacing it with the back and deleting the back.
|
|
txns_randomized[it->idx_randomized] = std::move(txns_randomized.back());
|
|
txns_randomized.pop_back();
|
|
if (txns_randomized.size() * 2 < txns_randomized.capacity())
|
|
txns_randomized.shrink_to_fit();
|
|
} else
|
|
txns_randomized.clear();
|
|
|
|
totalTxSize -= it->GetTxSize();
|
|
m_total_fee -= it->GetFee();
|
|
cachedInnerUsage -= it->DynamicMemoryUsage();
|
|
cachedInnerUsage -= memusage::DynamicUsage(it->GetMemPoolParentsConst()) + memusage::DynamicUsage(it->GetMemPoolChildrenConst());
|
|
mapTx.erase(it);
|
|
nTransactionsUpdated++;
|
|
}
|
|
|
|
// Calculates descendants of entry that are not already in setDescendants, and adds to
|
|
// setDescendants. Assumes entryit is already a tx in the mempool and CTxMemPoolEntry::m_children
|
|
// is correct for tx and all descendants.
|
|
// Also assumes that if an entry is in setDescendants already, then all
|
|
// in-mempool descendants of it are already in setDescendants as well, so that we
|
|
// can save time by not iterating over those entries.
|
|
void CTxMemPool::CalculateDescendants(txiter entryit, setEntries& setDescendants) const
|
|
{
|
|
setEntries stage;
|
|
if (setDescendants.count(entryit) == 0) {
|
|
stage.insert(entryit);
|
|
}
|
|
// Traverse down the children of entry, only adding children that are not
|
|
// accounted for in setDescendants already (because those children have either
|
|
// already been walked, or will be walked in this iteration).
|
|
while (!stage.empty()) {
|
|
txiter it = *stage.begin();
|
|
setDescendants.insert(it);
|
|
stage.erase(it);
|
|
|
|
const CTxMemPoolEntry::Children& children = it->GetMemPoolChildrenConst();
|
|
for (const CTxMemPoolEntry& child : children) {
|
|
txiter childiter = mapTx.iterator_to(child);
|
|
if (!setDescendants.count(childiter)) {
|
|
stage.insert(childiter);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void CTxMemPool::removeRecursive(const CTransaction &origTx, MemPoolRemovalReason reason)
|
|
{
|
|
// Remove transaction from memory pool
|
|
AssertLockHeld(cs);
|
|
setEntries txToRemove;
|
|
txiter origit = mapTx.find(origTx.GetHash());
|
|
if (origit != mapTx.end()) {
|
|
txToRemove.insert(origit);
|
|
} else {
|
|
// When recursively removing but origTx isn't in the mempool
|
|
// be sure to remove any children that are in the pool. This can
|
|
// happen during chain re-orgs if origTx isn't re-accepted into
|
|
// the mempool for any reason.
|
|
for (unsigned int i = 0; i < origTx.vout.size(); i++) {
|
|
auto it = mapNextTx.find(COutPoint(origTx.GetHash(), i));
|
|
if (it == mapNextTx.end())
|
|
continue;
|
|
txiter nextit = mapTx.find(it->second->GetHash());
|
|
assert(nextit != mapTx.end());
|
|
txToRemove.insert(nextit);
|
|
}
|
|
}
|
|
setEntries setAllRemoves;
|
|
for (txiter it : txToRemove) {
|
|
CalculateDescendants(it, setAllRemoves);
|
|
}
|
|
|
|
RemoveStaged(setAllRemoves, false, reason);
|
|
}
|
|
|
|
void CTxMemPool::removeForReorg(CChain& chain, std::function<bool(txiter)> check_final_and_mature)
|
|
{
|
|
// Remove transactions spending a coinbase which are now immature and no-longer-final transactions
|
|
AssertLockHeld(cs);
|
|
AssertLockHeld(::cs_main);
|
|
|
|
setEntries txToRemove;
|
|
for (indexed_transaction_set::const_iterator it = mapTx.begin(); it != mapTx.end(); it++) {
|
|
if (check_final_and_mature(it)) txToRemove.insert(it);
|
|
}
|
|
setEntries setAllRemoves;
|
|
for (txiter it : txToRemove) {
|
|
CalculateDescendants(it, setAllRemoves);
|
|
}
|
|
RemoveStaged(setAllRemoves, false, MemPoolRemovalReason::REORG);
|
|
for (indexed_transaction_set::const_iterator it = mapTx.begin(); it != mapTx.end(); it++) {
|
|
assert(TestLockPointValidity(chain, it->GetLockPoints()));
|
|
}
|
|
}
|
|
|
|
void CTxMemPool::removeConflicts(const CTransaction &tx)
|
|
{
|
|
// Remove transactions which depend on inputs of tx, recursively
|
|
AssertLockHeld(cs);
|
|
for (const CTxIn &txin : tx.vin) {
|
|
auto it = mapNextTx.find(txin.prevout);
|
|
if (it != mapNextTx.end()) {
|
|
const CTransaction &txConflict = *it->second;
|
|
if (txConflict != tx)
|
|
{
|
|
ClearPrioritisation(txConflict.GetHash());
|
|
removeRecursive(txConflict, MemPoolRemovalReason::CONFLICT);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Called when a block is connected. Removes from mempool.
|
|
*/
|
|
void CTxMemPool::removeForBlock(const std::vector<CTransactionRef>& vtx, unsigned int nBlockHeight)
|
|
{
|
|
AssertLockHeld(cs);
|
|
std::vector<RemovedMempoolTransactionInfo> txs_removed_for_block;
|
|
txs_removed_for_block.reserve(vtx.size());
|
|
for (const auto& tx : vtx)
|
|
{
|
|
txiter it = mapTx.find(tx->GetHash());
|
|
if (it != mapTx.end()) {
|
|
setEntries stage;
|
|
stage.insert(it);
|
|
txs_removed_for_block.emplace_back(*it);
|
|
RemoveStaged(stage, true, MemPoolRemovalReason::BLOCK);
|
|
}
|
|
removeConflicts(*tx);
|
|
ClearPrioritisation(tx->GetHash());
|
|
}
|
|
if (m_signals) {
|
|
m_signals->MempoolTransactionsRemovedForBlock(txs_removed_for_block, nBlockHeight);
|
|
}
|
|
lastRollingFeeUpdate = GetTime();
|
|
blockSinceLastRollingFeeBump = true;
|
|
}
|
|
|
|
void CTxMemPool::check(const CCoinsViewCache& active_coins_tip, int64_t spendheight) const
|
|
{
|
|
if (m_check_ratio == 0) return;
|
|
|
|
if (GetRand(m_check_ratio) >= 1) return;
|
|
|
|
AssertLockHeld(::cs_main);
|
|
LOCK(cs);
|
|
LogPrint(BCLog::MEMPOOL, "Checking mempool with %u transactions and %u inputs\n", (unsigned int)mapTx.size(), (unsigned int)mapNextTx.size());
|
|
|
|
uint64_t checkTotal = 0;
|
|
CAmount check_total_fee{0};
|
|
uint64_t innerUsage = 0;
|
|
uint64_t prev_ancestor_count{0};
|
|
|
|
CCoinsViewCache mempoolDuplicate(const_cast<CCoinsViewCache*>(&active_coins_tip));
|
|
|
|
for (const auto& it : GetSortedDepthAndScore()) {
|
|
checkTotal += it->GetTxSize();
|
|
check_total_fee += it->GetFee();
|
|
innerUsage += it->DynamicMemoryUsage();
|
|
const CTransaction& tx = it->GetTx();
|
|
innerUsage += memusage::DynamicUsage(it->GetMemPoolParentsConst()) + memusage::DynamicUsage(it->GetMemPoolChildrenConst());
|
|
CTxMemPoolEntry::Parents setParentCheck;
|
|
for (const CTxIn &txin : tx.vin) {
|
|
// Check that every mempool transaction's inputs refer to available coins, or other mempool tx's.
|
|
indexed_transaction_set::const_iterator it2 = mapTx.find(txin.prevout.hash);
|
|
if (it2 != mapTx.end()) {
|
|
const CTransaction& tx2 = it2->GetTx();
|
|
assert(tx2.vout.size() > txin.prevout.n && !tx2.vout[txin.prevout.n].IsNull());
|
|
setParentCheck.insert(*it2);
|
|
}
|
|
// We are iterating through the mempool entries sorted in order by ancestor count.
|
|
// All parents must have been checked before their children and their coins added to
|
|
// the mempoolDuplicate coins cache.
|
|
assert(mempoolDuplicate.HaveCoin(txin.prevout));
|
|
// Check whether its inputs are marked in mapNextTx.
|
|
auto it3 = mapNextTx.find(txin.prevout);
|
|
assert(it3 != mapNextTx.end());
|
|
assert(it3->first == &txin.prevout);
|
|
assert(it3->second == &tx);
|
|
}
|
|
auto comp = [](const CTxMemPoolEntry& a, const CTxMemPoolEntry& b) -> bool {
|
|
return a.GetTx().GetHash() == b.GetTx().GetHash();
|
|
};
|
|
assert(setParentCheck.size() == it->GetMemPoolParentsConst().size());
|
|
assert(std::equal(setParentCheck.begin(), setParentCheck.end(), it->GetMemPoolParentsConst().begin(), comp));
|
|
// Verify ancestor state is correct.
|
|
auto ancestors{AssumeCalculateMemPoolAncestors(__func__, *it, Limits::NoLimits())};
|
|
uint64_t nCountCheck = ancestors.size() + 1;
|
|
int32_t nSizeCheck = it->GetTxSize();
|
|
CAmount nFeesCheck = it->GetModifiedFee();
|
|
int64_t nSigOpCheck = it->GetSigOpCost();
|
|
|
|
for (txiter ancestorIt : ancestors) {
|
|
nSizeCheck += ancestorIt->GetTxSize();
|
|
nFeesCheck += ancestorIt->GetModifiedFee();
|
|
nSigOpCheck += ancestorIt->GetSigOpCost();
|
|
}
|
|
|
|
assert(it->GetCountWithAncestors() == nCountCheck);
|
|
assert(it->GetSizeWithAncestors() == nSizeCheck);
|
|
assert(it->GetSigOpCostWithAncestors() == nSigOpCheck);
|
|
assert(it->GetModFeesWithAncestors() == nFeesCheck);
|
|
// Sanity check: we are walking in ascending ancestor count order.
|
|
assert(prev_ancestor_count <= it->GetCountWithAncestors());
|
|
prev_ancestor_count = it->GetCountWithAncestors();
|
|
|
|
// Check children against mapNextTx
|
|
CTxMemPoolEntry::Children setChildrenCheck;
|
|
auto iter = mapNextTx.lower_bound(COutPoint(it->GetTx().GetHash(), 0));
|
|
int32_t child_sizes{0};
|
|
for (; iter != mapNextTx.end() && iter->first->hash == it->GetTx().GetHash(); ++iter) {
|
|
txiter childit = mapTx.find(iter->second->GetHash());
|
|
assert(childit != mapTx.end()); // mapNextTx points to in-mempool transactions
|
|
if (setChildrenCheck.insert(*childit).second) {
|
|
child_sizes += childit->GetTxSize();
|
|
}
|
|
}
|
|
assert(setChildrenCheck.size() == it->GetMemPoolChildrenConst().size());
|
|
assert(std::equal(setChildrenCheck.begin(), setChildrenCheck.end(), it->GetMemPoolChildrenConst().begin(), comp));
|
|
// Also check to make sure size is greater than sum with immediate children.
|
|
// just a sanity check, not definitive that this calc is correct...
|
|
assert(it->GetSizeWithDescendants() >= child_sizes + it->GetTxSize());
|
|
|
|
TxValidationState dummy_state; // Not used. CheckTxInputs() should always pass
|
|
CAmount txfee = 0;
|
|
assert(!tx.IsCoinBase());
|
|
assert(Consensus::CheckTxInputs(tx, dummy_state, mempoolDuplicate, spendheight, txfee));
|
|
for (const auto& input: tx.vin) mempoolDuplicate.SpendCoin(input.prevout);
|
|
AddCoins(mempoolDuplicate, tx, std::numeric_limits<int>::max());
|
|
}
|
|
for (auto it = mapNextTx.cbegin(); it != mapNextTx.cend(); it++) {
|
|
uint256 hash = it->second->GetHash();
|
|
indexed_transaction_set::const_iterator it2 = mapTx.find(hash);
|
|
const CTransaction& tx = it2->GetTx();
|
|
assert(it2 != mapTx.end());
|
|
assert(&tx == it->second);
|
|
}
|
|
|
|
assert(totalTxSize == checkTotal);
|
|
assert(m_total_fee == check_total_fee);
|
|
assert(innerUsage == cachedInnerUsage);
|
|
}
|
|
|
|
bool CTxMemPool::CompareDepthAndScore(const uint256& hasha, const uint256& hashb, bool wtxid)
|
|
{
|
|
/* Return `true` if hasha should be considered sooner than hashb. Namely when:
|
|
* a is not in the mempool, but b is
|
|
* both are in the mempool and a has fewer ancestors than b
|
|
* both are in the mempool and a has a higher score than b
|
|
*/
|
|
LOCK(cs);
|
|
indexed_transaction_set::const_iterator j = wtxid ? get_iter_from_wtxid(hashb) : mapTx.find(hashb);
|
|
if (j == mapTx.end()) return false;
|
|
indexed_transaction_set::const_iterator i = wtxid ? get_iter_from_wtxid(hasha) : mapTx.find(hasha);
|
|
if (i == mapTx.end()) return true;
|
|
uint64_t counta = i->GetCountWithAncestors();
|
|
uint64_t countb = j->GetCountWithAncestors();
|
|
if (counta == countb) {
|
|
return CompareTxMemPoolEntryByScore()(*i, *j);
|
|
}
|
|
return counta < countb;
|
|
}
|
|
|
|
namespace {
|
|
class DepthAndScoreComparator
|
|
{
|
|
public:
|
|
bool operator()(const CTxMemPool::indexed_transaction_set::const_iterator& a, const CTxMemPool::indexed_transaction_set::const_iterator& b)
|
|
{
|
|
uint64_t counta = a->GetCountWithAncestors();
|
|
uint64_t countb = b->GetCountWithAncestors();
|
|
if (counta == countb) {
|
|
return CompareTxMemPoolEntryByScore()(*a, *b);
|
|
}
|
|
return counta < countb;
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
std::vector<CTxMemPool::indexed_transaction_set::const_iterator> CTxMemPool::GetSortedDepthAndScore() const
|
|
{
|
|
std::vector<indexed_transaction_set::const_iterator> iters;
|
|
AssertLockHeld(cs);
|
|
|
|
iters.reserve(mapTx.size());
|
|
|
|
for (indexed_transaction_set::iterator mi = mapTx.begin(); mi != mapTx.end(); ++mi) {
|
|
iters.push_back(mi);
|
|
}
|
|
std::sort(iters.begin(), iters.end(), DepthAndScoreComparator());
|
|
return iters;
|
|
}
|
|
|
|
static TxMempoolInfo GetInfo(CTxMemPool::indexed_transaction_set::const_iterator it) {
|
|
return TxMempoolInfo{it->GetSharedTx(), it->GetTime(), it->GetFee(), it->GetTxSize(), it->GetModifiedFee() - it->GetFee()};
|
|
}
|
|
|
|
std::vector<CTxMemPoolEntryRef> CTxMemPool::entryAll() const
|
|
{
|
|
AssertLockHeld(cs);
|
|
|
|
std::vector<CTxMemPoolEntryRef> ret;
|
|
ret.reserve(mapTx.size());
|
|
for (const auto& it : GetSortedDepthAndScore()) {
|
|
ret.emplace_back(*it);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
std::vector<TxMempoolInfo> CTxMemPool::infoAll() const
|
|
{
|
|
LOCK(cs);
|
|
auto iters = GetSortedDepthAndScore();
|
|
|
|
std::vector<TxMempoolInfo> ret;
|
|
ret.reserve(mapTx.size());
|
|
for (auto it : iters) {
|
|
ret.push_back(GetInfo(it));
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
const CTxMemPoolEntry* CTxMemPool::GetEntry(const Txid& txid) const
|
|
{
|
|
AssertLockHeld(cs);
|
|
const auto i = mapTx.find(txid);
|
|
return i == mapTx.end() ? nullptr : &(*i);
|
|
}
|
|
|
|
CTransactionRef CTxMemPool::get(const uint256& hash) const
|
|
{
|
|
LOCK(cs);
|
|
indexed_transaction_set::const_iterator i = mapTx.find(hash);
|
|
if (i == mapTx.end())
|
|
return nullptr;
|
|
return i->GetSharedTx();
|
|
}
|
|
|
|
TxMempoolInfo CTxMemPool::info(const GenTxid& gtxid) const
|
|
{
|
|
LOCK(cs);
|
|
indexed_transaction_set::const_iterator i = (gtxid.IsWtxid() ? get_iter_from_wtxid(gtxid.GetHash()) : mapTx.find(gtxid.GetHash()));
|
|
if (i == mapTx.end())
|
|
return TxMempoolInfo();
|
|
return GetInfo(i);
|
|
}
|
|
|
|
TxMempoolInfo CTxMemPool::info_for_relay(const GenTxid& gtxid, uint64_t last_sequence) const
|
|
{
|
|
LOCK(cs);
|
|
indexed_transaction_set::const_iterator i = (gtxid.IsWtxid() ? get_iter_from_wtxid(gtxid.GetHash()) : mapTx.find(gtxid.GetHash()));
|
|
if (i != mapTx.end() && i->GetSequence() < last_sequence) {
|
|
return GetInfo(i);
|
|
} else {
|
|
return TxMempoolInfo();
|
|
}
|
|
}
|
|
|
|
void CTxMemPool::PrioritiseTransaction(const uint256& hash, const CAmount& nFeeDelta)
|
|
{
|
|
{
|
|
LOCK(cs);
|
|
CAmount &delta = mapDeltas[hash];
|
|
delta = SaturatingAdd(delta, nFeeDelta);
|
|
txiter it = mapTx.find(hash);
|
|
if (it != mapTx.end()) {
|
|
mapTx.modify(it, [&nFeeDelta](CTxMemPoolEntry& e) { e.UpdateModifiedFee(nFeeDelta); });
|
|
// Now update all ancestors' modified fees with descendants
|
|
auto ancestors{AssumeCalculateMemPoolAncestors(__func__, *it, Limits::NoLimits(), /*fSearchForParents=*/false)};
|
|
for (txiter ancestorIt : ancestors) {
|
|
mapTx.modify(ancestorIt, [=](CTxMemPoolEntry& e){ e.UpdateDescendantState(0, nFeeDelta, 0);});
|
|
}
|
|
// Now update all descendants' modified fees with ancestors
|
|
setEntries setDescendants;
|
|
CalculateDescendants(it, setDescendants);
|
|
setDescendants.erase(it);
|
|
for (txiter descendantIt : setDescendants) {
|
|
mapTx.modify(descendantIt, [=](CTxMemPoolEntry& e){ e.UpdateAncestorState(0, nFeeDelta, 0, 0); });
|
|
}
|
|
++nTransactionsUpdated;
|
|
}
|
|
if (delta == 0) {
|
|
mapDeltas.erase(hash);
|
|
LogPrintf("PrioritiseTransaction: %s (%sin mempool) delta cleared\n", hash.ToString(), it == mapTx.end() ? "not " : "");
|
|
} else {
|
|
LogPrintf("PrioritiseTransaction: %s (%sin mempool) fee += %s, new delta=%s\n",
|
|
hash.ToString(),
|
|
it == mapTx.end() ? "not " : "",
|
|
FormatMoney(nFeeDelta),
|
|
FormatMoney(delta));
|
|
}
|
|
}
|
|
}
|
|
|
|
void CTxMemPool::ApplyDelta(const uint256& hash, CAmount &nFeeDelta) const
|
|
{
|
|
AssertLockHeld(cs);
|
|
std::map<uint256, CAmount>::const_iterator pos = mapDeltas.find(hash);
|
|
if (pos == mapDeltas.end())
|
|
return;
|
|
const CAmount &delta = pos->second;
|
|
nFeeDelta += delta;
|
|
}
|
|
|
|
void CTxMemPool::ClearPrioritisation(const uint256& hash)
|
|
{
|
|
AssertLockHeld(cs);
|
|
mapDeltas.erase(hash);
|
|
}
|
|
|
|
std::vector<CTxMemPool::delta_info> CTxMemPool::GetPrioritisedTransactions() const
|
|
{
|
|
AssertLockNotHeld(cs);
|
|
LOCK(cs);
|
|
std::vector<delta_info> result;
|
|
result.reserve(mapDeltas.size());
|
|
for (const auto& [txid, delta] : mapDeltas) {
|
|
const auto iter{mapTx.find(txid)};
|
|
const bool in_mempool{iter != mapTx.end()};
|
|
std::optional<CAmount> modified_fee;
|
|
if (in_mempool) modified_fee = iter->GetModifiedFee();
|
|
result.emplace_back(delta_info{in_mempool, delta, modified_fee, txid});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
const CTransaction* CTxMemPool::GetConflictTx(const COutPoint& prevout) const
|
|
{
|
|
const auto it = mapNextTx.find(prevout);
|
|
return it == mapNextTx.end() ? nullptr : it->second;
|
|
}
|
|
|
|
std::optional<CTxMemPool::txiter> CTxMemPool::GetIter(const uint256& txid) const
|
|
{
|
|
auto it = mapTx.find(txid);
|
|
if (it != mapTx.end()) return it;
|
|
return std::nullopt;
|
|
}
|
|
|
|
CTxMemPool::setEntries CTxMemPool::GetIterSet(const std::set<Txid>& hashes) const
|
|
{
|
|
CTxMemPool::setEntries ret;
|
|
for (const auto& h : hashes) {
|
|
const auto mi = GetIter(h);
|
|
if (mi) ret.insert(*mi);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
std::vector<CTxMemPool::txiter> CTxMemPool::GetIterVec(const std::vector<uint256>& txids) const
|
|
{
|
|
AssertLockHeld(cs);
|
|
std::vector<txiter> ret;
|
|
ret.reserve(txids.size());
|
|
for (const auto& txid : txids) {
|
|
const auto it{GetIter(txid)};
|
|
if (!it) return {};
|
|
ret.push_back(*it);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
bool CTxMemPool::HasNoInputsOf(const CTransaction &tx) const
|
|
{
|
|
for (unsigned int i = 0; i < tx.vin.size(); i++)
|
|
if (exists(GenTxid::Txid(tx.vin[i].prevout.hash)))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
CCoinsViewMemPool::CCoinsViewMemPool(CCoinsView* baseIn, const CTxMemPool& mempoolIn) : CCoinsViewBacked(baseIn), mempool(mempoolIn) { }
|
|
|
|
bool CCoinsViewMemPool::GetCoin(const COutPoint &outpoint, Coin &coin) const {
|
|
// Check to see if the inputs are made available by another tx in the package.
|
|
// These Coins would not be available in the underlying CoinsView.
|
|
if (auto it = m_temp_added.find(outpoint); it != m_temp_added.end()) {
|
|
coin = it->second;
|
|
return true;
|
|
}
|
|
|
|
// If an entry in the mempool exists, always return that one, as it's guaranteed to never
|
|
// conflict with the underlying cache, and it cannot have pruned entries (as it contains full)
|
|
// transactions. First checking the underlying cache risks returning a pruned entry instead.
|
|
CTransactionRef ptx = mempool.get(outpoint.hash);
|
|
if (ptx) {
|
|
if (outpoint.n < ptx->vout.size()) {
|
|
coin = Coin(ptx->vout[outpoint.n], MEMPOOL_HEIGHT, false);
|
|
m_non_base_coins.emplace(outpoint);
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
return base->GetCoin(outpoint, coin);
|
|
}
|
|
|
|
void CCoinsViewMemPool::PackageAddTransaction(const CTransactionRef& tx)
|
|
{
|
|
for (unsigned int n = 0; n < tx->vout.size(); ++n) {
|
|
m_temp_added.emplace(COutPoint(tx->GetHash(), n), Coin(tx->vout[n], MEMPOOL_HEIGHT, false));
|
|
m_non_base_coins.emplace(tx->GetHash(), n);
|
|
}
|
|
}
|
|
void CCoinsViewMemPool::Reset()
|
|
{
|
|
m_temp_added.clear();
|
|
m_non_base_coins.clear();
|
|
}
|
|
|
|
size_t CTxMemPool::DynamicMemoryUsage() const {
|
|
LOCK(cs);
|
|
// Estimate the overhead of mapTx to be 15 pointers + an allocation, as no exact formula for boost::multi_index_contained is implemented.
|
|
return memusage::MallocUsage(sizeof(CTxMemPoolEntry) + 15 * sizeof(void*)) * mapTx.size() + memusage::DynamicUsage(mapNextTx) + memusage::DynamicUsage(mapDeltas) + memusage::DynamicUsage(txns_randomized) + cachedInnerUsage;
|
|
}
|
|
|
|
void CTxMemPool::RemoveUnbroadcastTx(const uint256& txid, const bool unchecked) {
|
|
LOCK(cs);
|
|
|
|
if (m_unbroadcast_txids.erase(txid))
|
|
{
|
|
LogPrint(BCLog::MEMPOOL, "Removed %i from set of unbroadcast txns%s\n", txid.GetHex(), (unchecked ? " before confirmation that txn was sent out" : ""));
|
|
}
|
|
}
|
|
|
|
void CTxMemPool::RemoveStaged(setEntries &stage, bool updateDescendants, MemPoolRemovalReason reason) {
|
|
AssertLockHeld(cs);
|
|
UpdateForRemoveFromMempool(stage, updateDescendants);
|
|
for (txiter it : stage) {
|
|
removeUnchecked(it, reason);
|
|
}
|
|
}
|
|
|
|
int CTxMemPool::Expire(std::chrono::seconds time)
|
|
{
|
|
AssertLockHeld(cs);
|
|
indexed_transaction_set::index<entry_time>::type::iterator it = mapTx.get<entry_time>().begin();
|
|
setEntries toremove;
|
|
while (it != mapTx.get<entry_time>().end() && it->GetTime() < time) {
|
|
toremove.insert(mapTx.project<0>(it));
|
|
it++;
|
|
}
|
|
setEntries stage;
|
|
for (txiter removeit : toremove) {
|
|
CalculateDescendants(removeit, stage);
|
|
}
|
|
RemoveStaged(stage, false, MemPoolRemovalReason::EXPIRY);
|
|
return stage.size();
|
|
}
|
|
|
|
void CTxMemPool::addUnchecked(const CTxMemPoolEntry &entry)
|
|
{
|
|
auto ancestors{AssumeCalculateMemPoolAncestors(__func__, entry, Limits::NoLimits())};
|
|
return addUnchecked(entry, ancestors);
|
|
}
|
|
|
|
void CTxMemPool::UpdateChild(txiter entry, txiter child, bool add)
|
|
{
|
|
AssertLockHeld(cs);
|
|
CTxMemPoolEntry::Children s;
|
|
if (add && entry->GetMemPoolChildren().insert(*child).second) {
|
|
cachedInnerUsage += memusage::IncrementalDynamicUsage(s);
|
|
} else if (!add && entry->GetMemPoolChildren().erase(*child)) {
|
|
cachedInnerUsage -= memusage::IncrementalDynamicUsage(s);
|
|
}
|
|
}
|
|
|
|
void CTxMemPool::UpdateParent(txiter entry, txiter parent, bool add)
|
|
{
|
|
AssertLockHeld(cs);
|
|
CTxMemPoolEntry::Parents s;
|
|
if (add && entry->GetMemPoolParents().insert(*parent).second) {
|
|
cachedInnerUsage += memusage::IncrementalDynamicUsage(s);
|
|
} else if (!add && entry->GetMemPoolParents().erase(*parent)) {
|
|
cachedInnerUsage -= memusage::IncrementalDynamicUsage(s);
|
|
}
|
|
}
|
|
|
|
CFeeRate CTxMemPool::GetMinFee(size_t sizelimit) const {
|
|
LOCK(cs);
|
|
if (!blockSinceLastRollingFeeBump || rollingMinimumFeeRate == 0)
|
|
return CFeeRate(llround(rollingMinimumFeeRate));
|
|
|
|
int64_t time = GetTime();
|
|
if (time > lastRollingFeeUpdate + 10) {
|
|
double halflife = ROLLING_FEE_HALFLIFE;
|
|
if (DynamicMemoryUsage() < sizelimit / 4)
|
|
halflife /= 4;
|
|
else if (DynamicMemoryUsage() < sizelimit / 2)
|
|
halflife /= 2;
|
|
|
|
rollingMinimumFeeRate = rollingMinimumFeeRate / pow(2.0, (time - lastRollingFeeUpdate) / halflife);
|
|
lastRollingFeeUpdate = time;
|
|
|
|
if (rollingMinimumFeeRate < (double)m_incremental_relay_feerate.GetFeePerK() / 2) {
|
|
rollingMinimumFeeRate = 0;
|
|
return CFeeRate(0);
|
|
}
|
|
}
|
|
return std::max(CFeeRate(llround(rollingMinimumFeeRate)), m_incremental_relay_feerate);
|
|
}
|
|
|
|
void CTxMemPool::trackPackageRemoved(const CFeeRate& rate) {
|
|
AssertLockHeld(cs);
|
|
if (rate.GetFeePerK() > rollingMinimumFeeRate) {
|
|
rollingMinimumFeeRate = rate.GetFeePerK();
|
|
blockSinceLastRollingFeeBump = false;
|
|
}
|
|
}
|
|
|
|
void CTxMemPool::TrimToSize(size_t sizelimit, std::vector<COutPoint>* pvNoSpendsRemaining) {
|
|
AssertLockHeld(cs);
|
|
|
|
unsigned nTxnRemoved = 0;
|
|
CFeeRate maxFeeRateRemoved(0);
|
|
while (!mapTx.empty() && DynamicMemoryUsage() > sizelimit) {
|
|
indexed_transaction_set::index<descendant_score>::type::iterator it = mapTx.get<descendant_score>().begin();
|
|
|
|
// We set the new mempool min fee to the feerate of the removed set, plus the
|
|
// "minimum reasonable fee rate" (ie some value under which we consider txn
|
|
// to have 0 fee). This way, we don't allow txn to enter mempool with feerate
|
|
// equal to txn which were removed with no block in between.
|
|
CFeeRate removed(it->GetModFeesWithDescendants(), it->GetSizeWithDescendants());
|
|
removed += m_incremental_relay_feerate;
|
|
trackPackageRemoved(removed);
|
|
maxFeeRateRemoved = std::max(maxFeeRateRemoved, removed);
|
|
|
|
setEntries stage;
|
|
CalculateDescendants(mapTx.project<0>(it), stage);
|
|
nTxnRemoved += stage.size();
|
|
|
|
std::vector<CTransaction> txn;
|
|
if (pvNoSpendsRemaining) {
|
|
txn.reserve(stage.size());
|
|
for (txiter iter : stage)
|
|
txn.push_back(iter->GetTx());
|
|
}
|
|
RemoveStaged(stage, false, MemPoolRemovalReason::SIZELIMIT);
|
|
if (pvNoSpendsRemaining) {
|
|
for (const CTransaction& tx : txn) {
|
|
for (const CTxIn& txin : tx.vin) {
|
|
if (exists(GenTxid::Txid(txin.prevout.hash))) continue;
|
|
pvNoSpendsRemaining->push_back(txin.prevout);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (maxFeeRateRemoved > CFeeRate(0)) {
|
|
LogPrint(BCLog::MEMPOOL, "Removed %u txn, rolling minimum fee bumped to %s\n", nTxnRemoved, maxFeeRateRemoved.ToString());
|
|
}
|
|
}
|
|
|
|
uint64_t CTxMemPool::CalculateDescendantMaximum(txiter entry) const {
|
|
// find parent with highest descendant count
|
|
std::vector<txiter> candidates;
|
|
setEntries counted;
|
|
candidates.push_back(entry);
|
|
uint64_t maximum = 0;
|
|
while (candidates.size()) {
|
|
txiter candidate = candidates.back();
|
|
candidates.pop_back();
|
|
if (!counted.insert(candidate).second) continue;
|
|
const CTxMemPoolEntry::Parents& parents = candidate->GetMemPoolParentsConst();
|
|
if (parents.size() == 0) {
|
|
maximum = std::max(maximum, candidate->GetCountWithDescendants());
|
|
} else {
|
|
for (const CTxMemPoolEntry& i : parents) {
|
|
candidates.push_back(mapTx.iterator_to(i));
|
|
}
|
|
}
|
|
}
|
|
return maximum;
|
|
}
|
|
|
|
void CTxMemPool::GetTransactionAncestry(const uint256& txid, size_t& ancestors, size_t& descendants, size_t* const ancestorsize, CAmount* const ancestorfees) const {
|
|
LOCK(cs);
|
|
auto it = mapTx.find(txid);
|
|
ancestors = descendants = 0;
|
|
if (it != mapTx.end()) {
|
|
ancestors = it->GetCountWithAncestors();
|
|
if (ancestorsize) *ancestorsize = it->GetSizeWithAncestors();
|
|
if (ancestorfees) *ancestorfees = it->GetModFeesWithAncestors();
|
|
descendants = CalculateDescendantMaximum(it);
|
|
}
|
|
}
|
|
|
|
bool CTxMemPool::GetLoadTried() const
|
|
{
|
|
LOCK(cs);
|
|
return m_load_tried;
|
|
}
|
|
|
|
void CTxMemPool::SetLoadTried(bool load_tried)
|
|
{
|
|
LOCK(cs);
|
|
m_load_tried = load_tried;
|
|
}
|
|
|
|
std::vector<CTxMemPool::txiter> CTxMemPool::GatherClusters(const std::vector<uint256>& txids) const
|
|
{
|
|
AssertLockHeld(cs);
|
|
std::vector<txiter> clustered_txs{GetIterVec(txids)};
|
|
// Use epoch: visiting an entry means we have added it to the clustered_txs vector. It does not
|
|
// necessarily mean the entry has been processed.
|
|
WITH_FRESH_EPOCH(m_epoch);
|
|
for (const auto& it : clustered_txs) {
|
|
visited(it);
|
|
}
|
|
// i = index of where the list of entries to process starts
|
|
for (size_t i{0}; i < clustered_txs.size(); ++i) {
|
|
// DoS protection: if there are 500 or more entries to process, just quit.
|
|
if (clustered_txs.size() > 500) return {};
|
|
const txiter& tx_iter = clustered_txs.at(i);
|
|
for (const auto& entries : {tx_iter->GetMemPoolParentsConst(), tx_iter->GetMemPoolChildrenConst()}) {
|
|
for (const CTxMemPoolEntry& entry : entries) {
|
|
const auto entry_it = mapTx.iterator_to(entry);
|
|
if (!visited(entry_it)) {
|
|
clustered_txs.push_back(entry_it);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return clustered_txs;
|
|
}
|
|
|
|
std::optional<std::string> CTxMemPool::CheckConflictTopology(const setEntries& direct_conflicts)
|
|
{
|
|
for (const auto& direct_conflict : direct_conflicts) {
|
|
// Ancestor and descendant counts are inclusive of the tx itself.
|
|
const auto ancestor_count{direct_conflict->GetCountWithAncestors()};
|
|
const auto descendant_count{direct_conflict->GetCountWithDescendants()};
|
|
const bool has_ancestor{ancestor_count > 1};
|
|
const bool has_descendant{descendant_count > 1};
|
|
const auto& txid_string{direct_conflict->GetSharedTx()->GetHash().ToString()};
|
|
// The only allowed configurations are:
|
|
// 1 ancestor and 0 descendant
|
|
// 0 ancestor and 1 descendant
|
|
// 0 ancestor and 0 descendant
|
|
if (ancestor_count > 2) {
|
|
return strprintf("%s has %u ancestors, max 1 allowed", txid_string, ancestor_count - 1);
|
|
} else if (descendant_count > 2) {
|
|
return strprintf("%s has %u descendants, max 1 allowed", txid_string, descendant_count - 1);
|
|
} else if (has_ancestor && has_descendant) {
|
|
return strprintf("%s has both ancestor and descendant, exceeding cluster limit of 2", txid_string);
|
|
}
|
|
// Additionally enforce that:
|
|
// If we have a child, we are its only parent.
|
|
// If we have a parent, we are its only child.
|
|
if (has_descendant) {
|
|
const auto& our_child = direct_conflict->GetMemPoolChildrenConst().begin();
|
|
if (our_child->get().GetCountWithAncestors() > 2) {
|
|
return strprintf("%s is not the only parent of child %s",
|
|
txid_string, our_child->get().GetSharedTx()->GetHash().ToString());
|
|
}
|
|
} else if (has_ancestor) {
|
|
const auto& our_parent = direct_conflict->GetMemPoolParentsConst().begin();
|
|
if (our_parent->get().GetCountWithDescendants() > 2) {
|
|
return strprintf("%s is not the only child of parent %s",
|
|
txid_string, our_parent->get().GetSharedTx()->GetHash().ToString());
|
|
}
|
|
}
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
util::Result<std::pair<std::vector<FeeFrac>, std::vector<FeeFrac>>> CTxMemPool::CalculateChunksForRBF(CAmount replacement_fees, int64_t replacement_vsize, const setEntries& direct_conflicts, const setEntries& all_conflicts)
|
|
{
|
|
Assume(replacement_vsize > 0);
|
|
|
|
auto err_string{CheckConflictTopology(direct_conflicts)};
|
|
if (err_string.has_value()) {
|
|
// Unsupported topology for calculating a feerate diagram
|
|
return util::Error{Untranslated(err_string.value())};
|
|
}
|
|
|
|
// new diagram will have chunks that consist of each ancestor of
|
|
// direct_conflicts that is at its own fee/size, along with the replacement
|
|
// tx/package at its own fee/size
|
|
|
|
// old diagram will consist of the ancestors and descendants of each element of
|
|
// all_conflicts. every such transaction will either be at its own feerate (followed
|
|
// by any descendant at its own feerate), or as a single chunk at the descendant's
|
|
// ancestor feerate.
|
|
|
|
std::vector<FeeFrac> old_chunks;
|
|
// Step 1: build the old diagram.
|
|
|
|
// The above clusters are all trivially linearized;
|
|
// they have a strict topology of 1 or two connected transactions.
|
|
|
|
// OLD: Compute existing chunks from all affected clusters
|
|
for (auto txiter : all_conflicts) {
|
|
// Does this transaction have descendants?
|
|
if (txiter->GetCountWithDescendants() > 1) {
|
|
// Consider this tx when we consider the descendant.
|
|
continue;
|
|
}
|
|
// Does this transaction have ancestors?
|
|
FeeFrac individual{txiter->GetModifiedFee(), txiter->GetTxSize()};
|
|
if (txiter->GetCountWithAncestors() > 1) {
|
|
// We'll add chunks for either the ancestor by itself and this tx
|
|
// by itself, or for a combined package.
|
|
FeeFrac package{txiter->GetModFeesWithAncestors(), static_cast<int32_t>(txiter->GetSizeWithAncestors())};
|
|
if (individual >> package) {
|
|
// The individual feerate is higher than the package, and
|
|
// therefore higher than the parent's fee. Chunk these
|
|
// together.
|
|
old_chunks.emplace_back(package);
|
|
} else {
|
|
// Add two points, one for the parent and one for this child.
|
|
old_chunks.emplace_back(package - individual);
|
|
old_chunks.emplace_back(individual);
|
|
}
|
|
} else {
|
|
old_chunks.emplace_back(individual);
|
|
}
|
|
}
|
|
|
|
// No topology restrictions post-chunking; sort
|
|
std::sort(old_chunks.begin(), old_chunks.end(), std::greater());
|
|
|
|
std::vector<FeeFrac> new_chunks;
|
|
|
|
/* Step 2: build the NEW diagram
|
|
* CON = Conflicts of proposed chunk
|
|
* CNK = Proposed chunk
|
|
* NEW = OLD - CON + CNK: New diagram includes all chunks in OLD, minus
|
|
* the conflicts, plus the proposed chunk
|
|
*/
|
|
|
|
// OLD - CON: Add any parents of direct conflicts that are not conflicted themselves
|
|
for (auto direct_conflict : direct_conflicts) {
|
|
// If a direct conflict has an ancestor that is not in all_conflicts,
|
|
// it can be affected by the replacement of the child.
|
|
if (direct_conflict->GetMemPoolParentsConst().size() > 0) {
|
|
// Grab the parent.
|
|
const CTxMemPoolEntry& parent = direct_conflict->GetMemPoolParentsConst().begin()->get();
|
|
if (!all_conflicts.count(mapTx.iterator_to(parent))) {
|
|
// This transaction would be left over, so add to the NEW
|
|
// diagram.
|
|
new_chunks.emplace_back(parent.GetModifiedFee(), parent.GetTxSize());
|
|
}
|
|
}
|
|
}
|
|
// + CNK: Add the proposed chunk itself
|
|
new_chunks.emplace_back(replacement_fees, int32_t(replacement_vsize));
|
|
|
|
// No topology restrictions post-chunking; sort
|
|
std::sort(new_chunks.begin(), new_chunks.end(), std::greater());
|
|
return std::make_pair(old_chunks, new_chunks);
|
|
}
|