mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-02-24 12:41:41 -05:00

This method was introduced as a pre-requirement for the v2 transport
protocol back then (see PR #14047, commit 463921bb
), when it was still
BIP151. With the replacement BIP324, this is not needed anymore, and
it's also unlikely that any other proposal would need to negate private
keys at this abstraction level.
(If there is really demand, it's trivial to reintroduce the method.)
370 lines
13 KiB
C++
370 lines
13 KiB
C++
// Copyright (c) 2020-2022 The Bitcoin Core developers
|
|
// Distributed under the MIT software license, see the accompanying
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
#include <chainparams.h>
|
|
#include <key.h>
|
|
#include <key_io.h>
|
|
#include <outputtype.h>
|
|
#include <policy/policy.h>
|
|
#include <pubkey.h>
|
|
#include <rpc/util.h>
|
|
#include <script/keyorigin.h>
|
|
#include <script/script.h>
|
|
#include <script/sign.h>
|
|
#include <script/signingprovider.h>
|
|
#include <script/solver.h>
|
|
#include <streams.h>
|
|
#include <test/fuzz/FuzzedDataProvider.h>
|
|
#include <test/fuzz/fuzz.h>
|
|
#include <test/fuzz/util.h>
|
|
#include <util/chaintype.h>
|
|
#include <util/strencodings.h>
|
|
|
|
#include <array>
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <numeric>
|
|
#include <optional>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
void initialize_key()
|
|
{
|
|
static ECC_Context ecc_context{};
|
|
SelectParams(ChainType::REGTEST);
|
|
}
|
|
|
|
FUZZ_TARGET(key, .init = initialize_key)
|
|
{
|
|
const CKey key = [&] {
|
|
CKey k;
|
|
k.Set(buffer.begin(), buffer.end(), true);
|
|
return k;
|
|
}();
|
|
if (!key.IsValid()) {
|
|
return;
|
|
}
|
|
|
|
{
|
|
assert(key.begin() + key.size() == key.end());
|
|
assert(key.IsCompressed());
|
|
assert(key.size() == 32);
|
|
assert(DecodeSecret(EncodeSecret(key)) == key);
|
|
}
|
|
|
|
{
|
|
CKey invalid_key;
|
|
assert(!(invalid_key == key));
|
|
assert(!invalid_key.IsCompressed());
|
|
assert(!invalid_key.IsValid());
|
|
assert(invalid_key.size() == 0);
|
|
}
|
|
|
|
{
|
|
CKey uncompressed_key;
|
|
uncompressed_key.Set(buffer.begin(), buffer.end(), false);
|
|
assert(!(uncompressed_key == key));
|
|
assert(!uncompressed_key.IsCompressed());
|
|
assert(key.size() == 32);
|
|
assert(uncompressed_key.begin() + uncompressed_key.size() == uncompressed_key.end());
|
|
assert(uncompressed_key.IsValid());
|
|
}
|
|
|
|
{
|
|
CKey copied_key;
|
|
copied_key.Set(key.begin(), key.end(), key.IsCompressed());
|
|
assert(copied_key == key);
|
|
}
|
|
|
|
const uint256 random_uint256 = Hash(buffer);
|
|
|
|
{
|
|
CKey child_key;
|
|
ChainCode child_chaincode;
|
|
const bool ok = key.Derive(child_key, child_chaincode, 0, random_uint256);
|
|
assert(ok);
|
|
assert(child_key.IsValid());
|
|
assert(!(child_key == key));
|
|
assert(child_chaincode != random_uint256);
|
|
}
|
|
|
|
const CPubKey pubkey = key.GetPubKey();
|
|
|
|
{
|
|
assert(pubkey.size() == 33);
|
|
assert(key.VerifyPubKey(pubkey));
|
|
assert(pubkey.GetHash() != random_uint256);
|
|
assert(pubkey.begin() + pubkey.size() == pubkey.end());
|
|
assert(pubkey.data() == pubkey.begin());
|
|
assert(pubkey.IsCompressed());
|
|
assert(pubkey.IsValid());
|
|
assert(pubkey.IsFullyValid());
|
|
assert(HexToPubKey(HexStr(pubkey)) == pubkey);
|
|
assert(GetAllDestinationsForKey(pubkey).size() == 3);
|
|
}
|
|
|
|
{
|
|
DataStream data_stream{};
|
|
pubkey.Serialize(data_stream);
|
|
|
|
CPubKey pubkey_deserialized;
|
|
pubkey_deserialized.Unserialize(data_stream);
|
|
assert(pubkey_deserialized == pubkey);
|
|
}
|
|
|
|
{
|
|
const CScript tx_pubkey_script = GetScriptForRawPubKey(pubkey);
|
|
assert(!tx_pubkey_script.IsPayToScriptHash());
|
|
assert(!tx_pubkey_script.IsPayToWitnessScriptHash());
|
|
assert(!tx_pubkey_script.IsPushOnly());
|
|
assert(!tx_pubkey_script.IsUnspendable());
|
|
assert(tx_pubkey_script.HasValidOps());
|
|
assert(tx_pubkey_script.size() == 35);
|
|
|
|
const CScript tx_multisig_script = GetScriptForMultisig(1, {pubkey});
|
|
assert(!tx_multisig_script.IsPayToScriptHash());
|
|
assert(!tx_multisig_script.IsPayToWitnessScriptHash());
|
|
assert(!tx_multisig_script.IsPushOnly());
|
|
assert(!tx_multisig_script.IsUnspendable());
|
|
assert(tx_multisig_script.HasValidOps());
|
|
assert(tx_multisig_script.size() == 37);
|
|
|
|
FillableSigningProvider fillable_signing_provider;
|
|
assert(!IsSegWitOutput(fillable_signing_provider, tx_pubkey_script));
|
|
assert(!IsSegWitOutput(fillable_signing_provider, tx_multisig_script));
|
|
assert(fillable_signing_provider.GetKeys().size() == 0);
|
|
assert(!fillable_signing_provider.HaveKey(pubkey.GetID()));
|
|
|
|
const bool ok_add_key = fillable_signing_provider.AddKey(key);
|
|
assert(ok_add_key);
|
|
assert(fillable_signing_provider.HaveKey(pubkey.GetID()));
|
|
|
|
FillableSigningProvider fillable_signing_provider_pub;
|
|
assert(!fillable_signing_provider_pub.HaveKey(pubkey.GetID()));
|
|
|
|
const bool ok_add_key_pubkey = fillable_signing_provider_pub.AddKeyPubKey(key, pubkey);
|
|
assert(ok_add_key_pubkey);
|
|
assert(fillable_signing_provider_pub.HaveKey(pubkey.GetID()));
|
|
|
|
TxoutType which_type_tx_pubkey;
|
|
const bool is_standard_tx_pubkey = IsStandard(tx_pubkey_script, std::nullopt, which_type_tx_pubkey);
|
|
assert(is_standard_tx_pubkey);
|
|
assert(which_type_tx_pubkey == TxoutType::PUBKEY);
|
|
|
|
TxoutType which_type_tx_multisig;
|
|
const bool is_standard_tx_multisig = IsStandard(tx_multisig_script, std::nullopt, which_type_tx_multisig);
|
|
assert(is_standard_tx_multisig);
|
|
assert(which_type_tx_multisig == TxoutType::MULTISIG);
|
|
|
|
std::vector<std::vector<unsigned char>> v_solutions_ret_tx_pubkey;
|
|
const TxoutType outtype_tx_pubkey = Solver(tx_pubkey_script, v_solutions_ret_tx_pubkey);
|
|
assert(outtype_tx_pubkey == TxoutType::PUBKEY);
|
|
assert(v_solutions_ret_tx_pubkey.size() == 1);
|
|
assert(v_solutions_ret_tx_pubkey[0].size() == 33);
|
|
|
|
std::vector<std::vector<unsigned char>> v_solutions_ret_tx_multisig;
|
|
const TxoutType outtype_tx_multisig = Solver(tx_multisig_script, v_solutions_ret_tx_multisig);
|
|
assert(outtype_tx_multisig == TxoutType::MULTISIG);
|
|
assert(v_solutions_ret_tx_multisig.size() == 3);
|
|
assert(v_solutions_ret_tx_multisig[0].size() == 1);
|
|
assert(v_solutions_ret_tx_multisig[1].size() == 33);
|
|
assert(v_solutions_ret_tx_multisig[2].size() == 1);
|
|
|
|
OutputType output_type{};
|
|
const CTxDestination tx_destination = GetDestinationForKey(pubkey, output_type);
|
|
assert(output_type == OutputType::LEGACY);
|
|
assert(IsValidDestination(tx_destination));
|
|
assert(PKHash{pubkey} == *std::get_if<PKHash>(&tx_destination));
|
|
|
|
const CScript script_for_destination = GetScriptForDestination(tx_destination);
|
|
assert(script_for_destination.size() == 25);
|
|
|
|
const std::string destination_address = EncodeDestination(tx_destination);
|
|
assert(DecodeDestination(destination_address) == tx_destination);
|
|
|
|
const CPubKey pubkey_from_address_string = AddrToPubKey(fillable_signing_provider, destination_address);
|
|
assert(pubkey_from_address_string == pubkey);
|
|
|
|
CKeyID key_id = pubkey.GetID();
|
|
assert(!key_id.IsNull());
|
|
assert(key_id == CKeyID{key_id});
|
|
assert(key_id == GetKeyForDestination(fillable_signing_provider, tx_destination));
|
|
|
|
CPubKey pubkey_out;
|
|
const bool ok_get_pubkey = fillable_signing_provider.GetPubKey(key_id, pubkey_out);
|
|
assert(ok_get_pubkey);
|
|
|
|
CKey key_out;
|
|
const bool ok_get_key = fillable_signing_provider.GetKey(key_id, key_out);
|
|
assert(ok_get_key);
|
|
assert(fillable_signing_provider.GetKeys().size() == 1);
|
|
assert(fillable_signing_provider.HaveKey(key_id));
|
|
|
|
KeyOriginInfo key_origin_info;
|
|
const bool ok_get_key_origin = fillable_signing_provider.GetKeyOrigin(key_id, key_origin_info);
|
|
assert(!ok_get_key_origin);
|
|
}
|
|
|
|
{
|
|
const std::vector<unsigned char> vch_pubkey{pubkey.begin(), pubkey.end()};
|
|
assert(CPubKey::ValidSize(vch_pubkey));
|
|
assert(!CPubKey::ValidSize({pubkey.begin(), pubkey.begin() + pubkey.size() - 1}));
|
|
|
|
const CPubKey pubkey_ctor_1{vch_pubkey};
|
|
assert(pubkey == pubkey_ctor_1);
|
|
|
|
const CPubKey pubkey_ctor_2{vch_pubkey.begin(), vch_pubkey.end()};
|
|
assert(pubkey == pubkey_ctor_2);
|
|
|
|
CPubKey pubkey_set;
|
|
pubkey_set.Set(vch_pubkey.begin(), vch_pubkey.end());
|
|
assert(pubkey == pubkey_set);
|
|
}
|
|
|
|
{
|
|
const CPubKey invalid_pubkey{};
|
|
assert(!invalid_pubkey.IsValid());
|
|
assert(!invalid_pubkey.IsFullyValid());
|
|
assert(!(pubkey == invalid_pubkey));
|
|
assert(pubkey != invalid_pubkey);
|
|
assert(pubkey < invalid_pubkey);
|
|
}
|
|
|
|
{
|
|
// Cover CPubKey's operator[](unsigned int pos)
|
|
unsigned int sum = 0;
|
|
for (size_t i = 0; i < pubkey.size(); ++i) {
|
|
sum += pubkey[i];
|
|
}
|
|
assert(std::accumulate(pubkey.begin(), pubkey.end(), 0U) == sum);
|
|
}
|
|
|
|
{
|
|
CPubKey decompressed_pubkey = pubkey;
|
|
assert(decompressed_pubkey.IsCompressed());
|
|
|
|
const bool ok = decompressed_pubkey.Decompress();
|
|
assert(ok);
|
|
assert(!decompressed_pubkey.IsCompressed());
|
|
assert(decompressed_pubkey.size() == 65);
|
|
}
|
|
|
|
{
|
|
std::vector<unsigned char> vch_sig;
|
|
const bool ok = key.Sign(random_uint256, vch_sig, false);
|
|
assert(ok);
|
|
assert(pubkey.Verify(random_uint256, vch_sig));
|
|
assert(CPubKey::CheckLowS(vch_sig));
|
|
|
|
const std::vector<unsigned char> vch_invalid_sig{vch_sig.begin(), vch_sig.begin() + vch_sig.size() - 1};
|
|
assert(!pubkey.Verify(random_uint256, vch_invalid_sig));
|
|
assert(!CPubKey::CheckLowS(vch_invalid_sig));
|
|
}
|
|
|
|
{
|
|
std::vector<unsigned char> vch_compact_sig;
|
|
const bool ok_sign_compact = key.SignCompact(random_uint256, vch_compact_sig);
|
|
assert(ok_sign_compact);
|
|
|
|
CPubKey recover_pubkey;
|
|
const bool ok_recover_compact = recover_pubkey.RecoverCompact(random_uint256, vch_compact_sig);
|
|
assert(ok_recover_compact);
|
|
assert(recover_pubkey == pubkey);
|
|
}
|
|
|
|
{
|
|
CPubKey child_pubkey;
|
|
ChainCode child_chaincode;
|
|
const bool ok = pubkey.Derive(child_pubkey, child_chaincode, 0, random_uint256);
|
|
assert(ok);
|
|
assert(child_pubkey != pubkey);
|
|
assert(child_pubkey.IsCompressed());
|
|
assert(child_pubkey.IsFullyValid());
|
|
assert(child_pubkey.IsValid());
|
|
assert(child_pubkey.size() == 33);
|
|
assert(child_chaincode != random_uint256);
|
|
}
|
|
|
|
const CPrivKey priv_key = key.GetPrivKey();
|
|
|
|
{
|
|
for (const bool skip_check : {true, false}) {
|
|
CKey loaded_key;
|
|
const bool ok = loaded_key.Load(priv_key, pubkey, skip_check);
|
|
assert(ok);
|
|
assert(key == loaded_key);
|
|
}
|
|
}
|
|
}
|
|
|
|
FUZZ_TARGET(ellswift_roundtrip, .init = initialize_key)
|
|
{
|
|
FuzzedDataProvider fdp{buffer.data(), buffer.size()};
|
|
|
|
CKey key = ConsumePrivateKey(fdp, /*compressed=*/true);
|
|
if (!key.IsValid()) return;
|
|
|
|
auto ent32 = fdp.ConsumeBytes<std::byte>(32);
|
|
ent32.resize(32);
|
|
|
|
auto encoded_ellswift = key.EllSwiftCreate(ent32);
|
|
auto decoded_pubkey = encoded_ellswift.Decode();
|
|
|
|
uint256 hash{ConsumeUInt256(fdp)};
|
|
std::vector<unsigned char> sig;
|
|
key.Sign(hash, sig);
|
|
assert(decoded_pubkey.Verify(hash, sig));
|
|
}
|
|
|
|
FUZZ_TARGET(bip324_ecdh, .init = initialize_key)
|
|
{
|
|
FuzzedDataProvider fdp{buffer.data(), buffer.size()};
|
|
|
|
// We generate private key, k1.
|
|
CKey k1 = ConsumePrivateKey(fdp, /*compressed=*/true);
|
|
if (!k1.IsValid()) return;
|
|
|
|
// They generate private key, k2.
|
|
CKey k2 = ConsumePrivateKey(fdp, /*compressed=*/true);
|
|
if (!k2.IsValid()) return;
|
|
|
|
// We construct an ellswift encoding for our key, k1_ellswift.
|
|
auto ent32_1 = fdp.ConsumeBytes<std::byte>(32);
|
|
ent32_1.resize(32);
|
|
auto k1_ellswift = k1.EllSwiftCreate(ent32_1);
|
|
|
|
// They construct an ellswift encoding for their key, k2_ellswift.
|
|
auto ent32_2 = fdp.ConsumeBytes<std::byte>(32);
|
|
ent32_2.resize(32);
|
|
auto k2_ellswift = k2.EllSwiftCreate(ent32_2);
|
|
|
|
// They construct another (possibly distinct) ellswift encoding for their key, k2_ellswift_bad.
|
|
auto ent32_2_bad = fdp.ConsumeBytes<std::byte>(32);
|
|
ent32_2_bad.resize(32);
|
|
auto k2_ellswift_bad = k2.EllSwiftCreate(ent32_2_bad);
|
|
assert((ent32_2_bad == ent32_2) == (k2_ellswift_bad == k2_ellswift));
|
|
|
|
// Determine who is who.
|
|
bool initiating = fdp.ConsumeBool();
|
|
|
|
// We compute our shared secret using our key and their public key.
|
|
auto ecdh_secret_1 = k1.ComputeBIP324ECDHSecret(k2_ellswift, k1_ellswift, initiating);
|
|
// They compute their shared secret using their key and our public key.
|
|
auto ecdh_secret_2 = k2.ComputeBIP324ECDHSecret(k1_ellswift, k2_ellswift, !initiating);
|
|
// Those must match, as everyone is behaving correctly.
|
|
assert(ecdh_secret_1 == ecdh_secret_2);
|
|
|
|
if (k1_ellswift != k2_ellswift) {
|
|
// Unless the two keys are exactly identical, acting as the wrong party breaks things.
|
|
auto ecdh_secret_bad = k1.ComputeBIP324ECDHSecret(k2_ellswift, k1_ellswift, !initiating);
|
|
assert(ecdh_secret_bad != ecdh_secret_1);
|
|
}
|
|
|
|
if (k2_ellswift_bad != k2_ellswift) {
|
|
// Unless both encodings created by them are identical, using the second one breaks things.
|
|
auto ecdh_secret_bad = k1.ComputeBIP324ECDHSecret(k2_ellswift_bad, k1_ellswift, initiating);
|
|
assert(ecdh_secret_bad != ecdh_secret_1);
|
|
}
|
|
}
|