mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-02-18 11:57:37 -05:00
182 lines
7.4 KiB
C++
182 lines
7.4 KiB
C++
// Copyright (c) 2009-2021 The Bitcoin Core developers
|
|
// Distributed under the MIT software license, see the accompanying
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
#include <chainparams.h>
|
|
#include <key_io.h>
|
|
#include <pubkey.h>
|
|
#include <script/descriptor.h>
|
|
#include <test/fuzz/fuzz.h>
|
|
#include <util/chaintype.h>
|
|
#include <util/strencodings.h>
|
|
|
|
//! Types are raw (un)compressed pubkeys, raw xonly pubkeys, raw privkeys (WIF), xpubs, xprvs.
|
|
static constexpr uint8_t KEY_TYPES_COUNT{6};
|
|
//! How many keys we'll generate in total.
|
|
static constexpr size_t TOTAL_KEYS_GENERATED{std::numeric_limits<uint8_t>::max() + 1};
|
|
|
|
/**
|
|
* Converts a mocked descriptor string to a valid one. Every key in a mocked descriptor key is
|
|
* represented by 2 hex characters preceded by the '%' character. We parse the two hex characters
|
|
* as an index in a list of pre-generated keys. This list contains keys of the various types
|
|
* accepted in descriptor keys expressions.
|
|
*/
|
|
class MockedDescriptorConverter {
|
|
//! 256 keys of various types.
|
|
std::array<std::string, TOTAL_KEYS_GENERATED> keys_str;
|
|
|
|
public:
|
|
// We derive the type of key to generate from the 1-byte id parsed from hex.
|
|
bool IdIsCompPubKey(uint8_t idx) const { return idx % KEY_TYPES_COUNT == 0; }
|
|
bool IdIsUnCompPubKey(uint8_t idx) const { return idx % KEY_TYPES_COUNT == 1; }
|
|
bool IdIsXOnlyPubKey(uint8_t idx) const { return idx % KEY_TYPES_COUNT == 2; }
|
|
bool IdIsConstPrivKey(uint8_t idx) const { return idx % KEY_TYPES_COUNT == 3; }
|
|
bool IdIsXpub(uint8_t idx) const { return idx % KEY_TYPES_COUNT == 4; }
|
|
bool IdIsXprv(uint8_t idx) const { return idx % KEY_TYPES_COUNT == 5; }
|
|
|
|
//! When initializing the target, populate the list of keys.
|
|
void Init() {
|
|
// The data to use as a private key or a seed for an xprv.
|
|
std::array<std::byte, 32> key_data{std::byte{1}};
|
|
// Generate keys of all kinds and store them in the keys array.
|
|
for (size_t i{0}; i < TOTAL_KEYS_GENERATED; i++) {
|
|
key_data[31] = std::byte(i);
|
|
|
|
// If this is a "raw" key, generate a normal privkey. Otherwise generate
|
|
// an extended one.
|
|
if (IdIsCompPubKey(i) || IdIsUnCompPubKey(i) || IdIsXOnlyPubKey(i) || IdIsConstPrivKey(i)) {
|
|
CKey privkey;
|
|
privkey.Set(UCharCast(key_data.begin()), UCharCast(key_data.end()), !IdIsUnCompPubKey(i));
|
|
if (IdIsCompPubKey(i) || IdIsUnCompPubKey(i)) {
|
|
CPubKey pubkey{privkey.GetPubKey()};
|
|
keys_str[i] = HexStr(pubkey);
|
|
} else if (IdIsXOnlyPubKey(i)) {
|
|
const XOnlyPubKey pubkey{privkey.GetPubKey()};
|
|
keys_str[i] = HexStr(pubkey);
|
|
} else {
|
|
keys_str[i] = EncodeSecret(privkey);
|
|
}
|
|
} else {
|
|
CExtKey ext_privkey;
|
|
ext_privkey.SetSeed(key_data);
|
|
if (IdIsXprv(i)) {
|
|
keys_str[i] = EncodeExtKey(ext_privkey);
|
|
} else {
|
|
const CExtPubKey ext_pubkey{ext_privkey.Neuter()};
|
|
keys_str[i] = EncodeExtPubKey(ext_pubkey);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//! Parse an id in the keys vectors from a 2-characters hex string.
|
|
std::optional<uint8_t> IdxFromHex(std::string_view hex_characters) const {
|
|
if (hex_characters.size() != 2) return {};
|
|
auto idx = ParseHex(hex_characters);
|
|
if (idx.size() != 1) return {};
|
|
return idx[0];
|
|
}
|
|
|
|
//! Get an actual descriptor string from a descriptor string whose keys were mocked.
|
|
std::optional<std::string> GetDescriptor(std::string_view mocked_desc) const {
|
|
// The smallest fragment would be "pk(%00)"
|
|
if (mocked_desc.size() < 7) return {};
|
|
|
|
// The actual descriptor string to be returned.
|
|
std::string desc;
|
|
desc.reserve(mocked_desc.size());
|
|
|
|
// Replace all occurrences of '%' followed by two hex characters with the corresponding key.
|
|
for (size_t i = 0; i < mocked_desc.size();) {
|
|
if (mocked_desc[i] == '%') {
|
|
if (i + 3 >= mocked_desc.size()) return {};
|
|
if (const auto idx = IdxFromHex(mocked_desc.substr(i + 1, 2))) {
|
|
desc += keys_str[*idx];
|
|
i += 3;
|
|
} else {
|
|
return {};
|
|
}
|
|
} else {
|
|
desc += mocked_desc[i++];
|
|
}
|
|
}
|
|
|
|
return desc;
|
|
}
|
|
};
|
|
|
|
//! The converter of mocked descriptors, needs to be initialized when the target is.
|
|
MockedDescriptorConverter MOCKED_DESC_CONVERTER;
|
|
|
|
/** Test a successfully parsed descriptor. */
|
|
static void TestDescriptor(const Descriptor& desc, FlatSigningProvider& sig_provider, std::string& dummy)
|
|
{
|
|
// Trivial helpers.
|
|
(void)desc.IsRange();
|
|
const bool is_solvable{desc.IsSolvable()};
|
|
(void)desc.IsSingleType();
|
|
(void)desc.GetOutputType();
|
|
|
|
// Serialization to string representation.
|
|
(void)desc.ToString();
|
|
(void)desc.ToPrivateString(sig_provider, dummy);
|
|
(void)desc.ToNormalizedString(sig_provider, dummy);
|
|
|
|
// Serialization to Script.
|
|
DescriptorCache cache;
|
|
std::vector<CScript> out_scripts;
|
|
(void)desc.Expand(0, sig_provider, out_scripts, sig_provider, &cache);
|
|
(void)desc.ExpandPrivate(0, sig_provider, sig_provider);
|
|
(void)desc.ExpandFromCache(0, cache, out_scripts, sig_provider);
|
|
|
|
// If we could serialize to script we must be able to infer using the same provider.
|
|
if (!out_scripts.empty()) {
|
|
assert(InferDescriptor(out_scripts.back(), sig_provider));
|
|
|
|
// The ScriptSize() must match the size of the serialized Script. (ScriptSize() is set for all descs but 'combo()'.)
|
|
const bool is_combo{!desc.IsSingleType()};
|
|
assert(is_combo || desc.ScriptSize() == out_scripts.back().size());
|
|
}
|
|
|
|
const auto max_sat_maxsig{desc.MaxSatisfactionWeight(true)};
|
|
const auto max_sat_nonmaxsig{desc.MaxSatisfactionWeight(true)};
|
|
const auto max_elems{desc.MaxSatisfactionElems()};
|
|
// We must be able to estimate the max satisfaction size for any solvable descriptor (but combo).
|
|
const bool is_nontop_or_nonsolvable{!is_solvable || !desc.GetOutputType()};
|
|
const bool is_input_size_info_set{max_sat_maxsig && max_sat_nonmaxsig && max_elems};
|
|
assert(is_input_size_info_set || is_nontop_or_nonsolvable);
|
|
}
|
|
|
|
void initialize_descriptor_parse()
|
|
{
|
|
ECC_Start();
|
|
SelectParams(ChainType::MAIN);
|
|
}
|
|
|
|
void initialize_mocked_descriptor_parse()
|
|
{
|
|
initialize_descriptor_parse();
|
|
MOCKED_DESC_CONVERTER.Init();
|
|
}
|
|
|
|
FUZZ_TARGET(mocked_descriptor_parse, .init = initialize_mocked_descriptor_parse)
|
|
{
|
|
const std::string mocked_descriptor{buffer.begin(), buffer.end()};
|
|
if (const auto descriptor = MOCKED_DESC_CONVERTER.GetDescriptor(mocked_descriptor)) {
|
|
FlatSigningProvider signing_provider;
|
|
std::string error;
|
|
const auto desc = Parse(*descriptor, signing_provider, error);
|
|
if (desc) TestDescriptor(*desc, signing_provider, error);
|
|
}
|
|
}
|
|
|
|
FUZZ_TARGET(descriptor_parse, .init = initialize_descriptor_parse)
|
|
{
|
|
const std::string descriptor(buffer.begin(), buffer.end());
|
|
FlatSigningProvider signing_provider;
|
|
std::string error;
|
|
for (const bool require_checksum : {true, false}) {
|
|
const auto desc = Parse(descriptor, signing_provider, error, require_checksum);
|
|
if (desc) TestDescriptor(*desc, signing_provider, error);
|
|
}
|
|
}
|