mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-03-05 14:06:27 -05:00
coinselection: Add CoinGrinder algorithm
CoinGrinder is a DFS-based coin selection algorithm that deterministically finds the input set with the lowest weight creating a change output.
This commit is contained in:
parent
89d0956643
commit
6cc9a46cd0
4 changed files with 314 additions and 4 deletions
|
@ -188,6 +188,286 @@ util::Result<SelectionResult> SelectCoinsBnB(std::vector<OutputGroup>& utxo_pool
|
|||
return result;
|
||||
}
|
||||
|
||||
/*
|
||||
* TL;DR: Coin Grinder is a DFS-based algorithm that deterministically searches for the minimum-weight input set to fund
|
||||
* the transaction. The algorithm is similar to the Branch and Bound algorithm, but will produce a transaction _with_ a
|
||||
* change output instead of a changeless transaction.
|
||||
*
|
||||
* Full description: CoinGrinder can be thought of as a graph walking algorithm. It explores a binary tree
|
||||
* representation of the powerset of the UTXO pool. Each node in the tree represents a candidate input set. The tree’s
|
||||
* root is the empty set. Each node in the tree has two children which are formed by either adding or skipping the next
|
||||
* UTXO ("inclusion/omission branch"). Each level in the tree after the root corresponds to a decision about one UTXO in
|
||||
* the UTXO pool.
|
||||
*
|
||||
* Example:
|
||||
* We represent UTXOs as _alias=[effective_value/weight]_ and indicate omitted UTXOs with an underscore. Given a UTXO
|
||||
* pool {A=[10/2], B=[7/1], C=[5/1], D=[4/2]} sorted by descending effective value, our search tree looks as follows:
|
||||
*
|
||||
* _______________________ {} ________________________
|
||||
* / \
|
||||
* A=[10/2] __________ {A} _________ __________ {_} _________
|
||||
* / \ / \
|
||||
* B=[7/1] {AB} _ {A_} _ {_B} _ {__} _
|
||||
* / \ / \ / \ / \
|
||||
* C=[5/1] {ABC} {AB_} {A_C} {A__} {_BC} {_B_} {__C} {___}
|
||||
* / \ / \ / \ / \ / \ / \ / \ / \
|
||||
* D=[4/2] {ABCD} {ABC_} {AB_D} {AB__} {A_CD} {A_C_} {A__D} {A___} {_BCD} {_BC_} {_B_D} {_B__} {__CD} {__C_} {___D} {____}
|
||||
*
|
||||
*
|
||||
* CoinGrinder uses a depth-first search to walk this tree. It first tries inclusion branches, then omission branches. A
|
||||
* naive exploration of a tree with four UTXOs requires visiting all 31 nodes:
|
||||
*
|
||||
* {} {A} {AB} {ABC} {ABCD} {ABC_} {AB_} {AB_D} {AB__} {A_} {A_C} {A_CD} {A_C_} {A__} {A__D} {A___} {_} {_B} {_BC}
|
||||
* {_BCD} {_BC_} {_B_} {_B_D} {_B__} {__} {__C} {__CD} {__C} {___} {___D} {____}
|
||||
*
|
||||
* As powersets grow exponentially with the set size, walking the entire tree would quickly get computationally
|
||||
* infeasible with growing UTXO pools. Thanks to traversing the tree in a deterministic order, we can keep track of the
|
||||
* progress of the search solely on basis of the current selection (and the best selection so far). We visit as few
|
||||
* nodes as possible by recognizing and skipping any branches that can only contain solutions worse than the best
|
||||
* solution so far. This makes CoinGrinder a branch-and-bound algorithm
|
||||
* (https://en.wikipedia.org/wiki/Branch_and_bound).
|
||||
* CoinGrinder is searching for the input set with lowest weight that can fund a transaction, so for example we can only
|
||||
* ever find a _better_ candidate input set in a node that adds a UTXO, but never in a node that skips a UTXO. After
|
||||
* visiting {A} and exploring the inclusion branch {AB} and its descendants, the candidate input set in the omission
|
||||
* branch {A_} is equivalent to the parent {A} in effective value and weight. While CoinGrinder does need to visit the
|
||||
* descendants of the omission branch {A_}, it is unnecessary to evaluate the candidate input set in the omission branch
|
||||
* itself. By skipping evaluation of all nodes on an omission branch we reduce the visited nodes to 15:
|
||||
*
|
||||
* {A} {AB} {ABC} {ABCD} {AB_D} {A_C} {A_CD} {A__D} {_B} {_BC} {_BCD} {_B_D} {__C} {__CD} {___D}
|
||||
*
|
||||
* _______________________ {} ________________________
|
||||
* / \
|
||||
* A=[10/2] __________ {A} _________ ___________\____________
|
||||
* / \ / \
|
||||
* B=[7/1] {AB} __ __\_____ {_B} __ __\_____
|
||||
* / \ / \ / \ / \
|
||||
* C=[5/1] {ABC} \ {A_C} \ {_BC} \ {__C} \
|
||||
* / / / / / / / /
|
||||
* D=[4/2] {ABCD} {AB_D} {A_CD} {A__D} {_BCD} {_B_D} {__CD} {___D}
|
||||
*
|
||||
*
|
||||
* We refer to the move from the inclusion branch {AB} via the omission branch {A_} to its inclusion-branch child {A_C}
|
||||
* as _shifting to the omission branch_ or just _SHIFT_. (The index of the ultimate element in the candidate input set
|
||||
* shifts right by one: {AB} ⇒ {A_C}.)
|
||||
* When we reach a leaf node in the last level of the tree, shifting to the omission branch is not possible. Instead we
|
||||
* go to the omission branch of the node’s last ancestor on an inclusion branch: from {ABCD}, we go to {AB_D}. From
|
||||
* {AB_D}, we go to {A_C}. We refer to this operation as a _CUT_. (The ultimate element in
|
||||
* the input set is deselected, and the penultimate element is shifted right by one: {AB_D} ⇒ {A_C}.)
|
||||
* If a candidate input set in a node has not selected sufficient funds to build the transaction, we continue directly
|
||||
* along the next inclusion branch. We call this operation _EXPLORE_. (We go from one inclusion branch to the next
|
||||
* inclusion branch: {_B} ⇒ {_BC}.)
|
||||
* Further, any prefix that already has selected sufficient effective value to fund the transaction cannot be improved
|
||||
* by adding more UTXOs. If for example the candidate input set in {AB} is a valid solution, all potential descendant
|
||||
* solutions {ABC}, {ABCD}, and {AB_D} must have a higher weight, thus instead of exploring the descendants of {AB}, we
|
||||
* can SHIFT from {AB} to {A_C}.
|
||||
*
|
||||
* Given the above UTXO set, using a target of 11, and following these initial observations, the basic implementation of
|
||||
* CoinGrinder visits the following 10 nodes:
|
||||
*
|
||||
* Node [eff_val/weight] Evaluation
|
||||
* ---------------------------------------------------------------
|
||||
* {A} [10/2] Insufficient funds: EXPLORE
|
||||
* {AB} [17/3] Solution: SHIFT to omission branch
|
||||
* {A_C} [15/3] Better solution: SHIFT to omission branch
|
||||
* {A__D} [14/4] Worse solution, shift impossible due to leaf node: CUT to omission branch of {A__D},
|
||||
* i.e. SHIFT to omission branch of {A}
|
||||
* {_B} [7/1] Insufficient funds: EXPLORE
|
||||
* {_BC} [12/2] Better solution: SHIFT to omission branch
|
||||
* {_B_D} [11/3] Worse solution, shift impossible due to leaf node: CUT to omission branch of {_B_D},
|
||||
* i.e. SHIFT to omission branch of {_B}
|
||||
* {__C} [5/1] Insufficient funds: EXPLORE
|
||||
* {__CD} [9/3] Insufficient funds, leaf node: CUT
|
||||
* {___D} [4/2] Insufficient funds, leaf node, cannot CUT since only one UTXO selected: done.
|
||||
*
|
||||
* _______________________ {} ________________________
|
||||
* / \
|
||||
* A=[10/2] __________ {A} _________ ___________\____________
|
||||
* / \ / \
|
||||
* B=[7/1] {AB} __\_____ {_B} __ __\_____
|
||||
* / \ / \ / \
|
||||
* C=[5/1] {A_C} \ {_BC} \ {__C} \
|
||||
* / / / /
|
||||
* D=[4/2] {A__D} {_B_D} {__CD} {___D}
|
||||
*
|
||||
*
|
||||
* We implement this tree walk in the following algorithm:
|
||||
* 1. Add `next_utxo`
|
||||
* 2. Evaluate candidate input set
|
||||
* 3. Determine `next_utxo` by deciding whether to
|
||||
* a) EXPLORE: Add next inclusion branch, e.g. {_B} ⇒ {_B} + `next_uxto`: C
|
||||
* b) SHIFT: Replace last selected UTXO by next higher index, e.g. {A_C} ⇒ {A__} + `next_utxo`: D
|
||||
* c) CUT: deselect last selected UTXO and shift to omission branch of penultimate UTXO, e.g. {AB_D} ⇒ {A_} + `next_utxo: C
|
||||
*
|
||||
* The implementation then adds further optimizations by discovering further situations in which either the inclusion
|
||||
* branch can be skipped, or both the inclusion and omission branch can be skipped after evaluating the candidate input
|
||||
* set in the node.
|
||||
*
|
||||
* @param std::vector<OutputGroup>& utxo_pool The UTXOs that we are choosing from. These UTXOs will be sorted in
|
||||
* descending order by effective value, with lower waste preferred as a tie-breaker. (We can think of an output
|
||||
* group with multiple as a heavier UTXO with the combined amount here.)
|
||||
* @param const CAmount& selection_target This is the minimum amount that we need for the transaction without considering change.
|
||||
* @param const CAmount& change_target The minimum budget for creating a change output, by which we increase the selection_target.
|
||||
* @param int max_weight The maximum permitted weight for the input set.
|
||||
* @returns The result of this coin selection algorithm, or std::nullopt
|
||||
*/
|
||||
util::Result<SelectionResult> CoinGrinder(std::vector<OutputGroup>& utxo_pool, const CAmount& selection_target, CAmount change_target, int max_weight)
|
||||
{
|
||||
std::sort(utxo_pool.begin(), utxo_pool.end(), descending);
|
||||
|
||||
// Check that there are sufficient funds
|
||||
CAmount total_available = 0;
|
||||
for (const OutputGroup& utxo : utxo_pool) {
|
||||
// Assert UTXOs with non-positive effective value have been filtered
|
||||
Assume(utxo.GetSelectionAmount() > 0);
|
||||
total_available += utxo.GetSelectionAmount();
|
||||
}
|
||||
|
||||
const CAmount total_target = selection_target + change_target;
|
||||
if (total_available < total_target) {
|
||||
// Insufficient funds
|
||||
return util::Error();
|
||||
}
|
||||
|
||||
// The current selection and the best input set found so far, stored as the utxo_pool indices of the UTXOs forming them
|
||||
std::vector<size_t> curr_selection;
|
||||
std::vector<size_t> best_selection;
|
||||
|
||||
// The currently selected effective amount, and the effective amount of the best selection so far
|
||||
CAmount curr_amount = 0;
|
||||
CAmount best_selection_amount = MAX_MONEY;
|
||||
|
||||
// The weight of the currently selected input set, and the weight of the best selection
|
||||
int curr_weight = 0;
|
||||
int best_selection_weight = std::numeric_limits<int>::max();
|
||||
|
||||
// Whether the input sets generated during this search have exceeded the maximum transaction weight at any point
|
||||
bool max_tx_weight_exceeded = false;
|
||||
|
||||
// Index of the next UTXO to consider in utxo_pool
|
||||
size_t next_utxo = 0;
|
||||
|
||||
/*
|
||||
* You can think of the current selection as a vector of booleans that has decided inclusion or exclusion of all
|
||||
* UTXOs before `next_utxo`. When we consider the next UTXO, we extend this hypothetical boolean vector either with
|
||||
* a true value if the UTXO is included or a false value if it is omitted. The equivalent state is stored more
|
||||
* compactly as the list of indices of the included UTXOs and the `next_utxo` index.
|
||||
*
|
||||
* We can never find a new solution by deselecting a UTXO, because we then revisit a previously evaluated
|
||||
* selection. Therefore, we only need to check whether we found a new solution _after adding_ a new UTXO.
|
||||
*
|
||||
* Each iteration of CoinGrinder starts by selecting the `next_utxo` and evaluating the current selection. We
|
||||
* use three state transitions to progress from the current selection to the next promising selection:
|
||||
*
|
||||
* - EXPLORE inclusion branch: We do not have sufficient funds, yet. Add `next_utxo` to the current selection, then
|
||||
* nominate the direct successor of the just selected UTXO as our `next_utxo` for the
|
||||
* following iteration.
|
||||
*
|
||||
* Example:
|
||||
* Current Selection: {0, 5, 7}
|
||||
* Evaluation: EXPLORE, next_utxo: 8
|
||||
* Next Selection: {0, 5, 7, 8}
|
||||
*
|
||||
* - SHIFT to omission branch: Adding more UTXOs to the current selection cannot produce a solution that is better
|
||||
* than the current best, e.g. the current selection weight exceeds the max weight or
|
||||
* the current selection amount is equal to or greater than the target.
|
||||
* We designate our `next_utxo` the one after the tail of our current selection, then
|
||||
* deselect the tail of our current selection.
|
||||
*
|
||||
* Example:
|
||||
* Current Selection: {0, 5, 7}
|
||||
* Evaluation: SHIFT, next_utxo: 8, omit last selected: {0, 5}
|
||||
* Next Selection: {0, 5, 8}
|
||||
*
|
||||
* - CUT entire subtree: We have exhausted the inclusion branch for the penultimately selected UTXO, both the
|
||||
* inclusion and the omission branch of the current prefix are barren. E.g. we have
|
||||
* reached the end of the UTXO pool, so neither further EXPLORING nor SHIFTING can find
|
||||
* any solutions. We designate our `next_utxo` the one after our penultimate selected,
|
||||
* then deselect both the last and penultimate selected.
|
||||
*
|
||||
* Example:
|
||||
* Current Selection: {0, 5, 7}
|
||||
* Evaluation: CUT, next_utxo: 6, omit two last selected: {0}
|
||||
* Next Selection: {0, 6}
|
||||
*/
|
||||
auto deselect_last = [&]() {
|
||||
OutputGroup& utxo = utxo_pool[curr_selection.back()];
|
||||
curr_amount -= utxo.GetSelectionAmount();
|
||||
curr_weight -= utxo.m_weight;
|
||||
curr_selection.pop_back();
|
||||
};
|
||||
|
||||
SelectionResult result(selection_target, SelectionAlgorithm::CG);
|
||||
size_t curr_try = 0;
|
||||
while (true) {
|
||||
bool should_shift{false}, should_cut{false};
|
||||
// Select `next_utxo`
|
||||
OutputGroup& utxo = utxo_pool[next_utxo];
|
||||
curr_amount += utxo.GetSelectionAmount();
|
||||
curr_weight += utxo.m_weight;
|
||||
curr_selection.push_back(next_utxo);
|
||||
++next_utxo;
|
||||
++curr_try;
|
||||
|
||||
// EVALUATE current selection: check for solutions and see whether we can CUT or SHIFT before EXPLORING further
|
||||
if (curr_weight > max_weight) {
|
||||
// max_weight exceeded: SHIFT
|
||||
max_tx_weight_exceeded = true;
|
||||
should_shift = true;
|
||||
} else if (curr_amount >= total_target) {
|
||||
// Success, adding more weight cannot be better: SHIFT
|
||||
should_shift = true;
|
||||
if (curr_weight < best_selection_weight || (curr_weight == best_selection_weight && curr_amount < best_selection_amount)) {
|
||||
// New lowest weight, or same weight with fewer funds tied up
|
||||
best_selection = curr_selection;
|
||||
best_selection_weight = curr_weight;
|
||||
best_selection_amount = curr_amount;
|
||||
}
|
||||
}
|
||||
|
||||
if (curr_try >= TOTAL_TRIES) {
|
||||
// Solution is not guaranteed to be optimal if `curr_try` hit TOTAL_TRIES
|
||||
break;
|
||||
}
|
||||
|
||||
if (next_utxo == utxo_pool.size()) {
|
||||
// Last added UTXO was end of UTXO pool, nothing left to add on inclusion or omission branch: CUT
|
||||
should_cut = true;
|
||||
}
|
||||
|
||||
if (should_cut) {
|
||||
// Neither adding to the current selection nor exploring the omission branch of the last selected UTXO can
|
||||
// find any solutions. Redirect to exploring the Omission branch of the penultimate selected UTXO (i.e.
|
||||
// set `next_utxo` to one after the penultimate selected, then deselect the last two selected UTXOs)
|
||||
should_cut = false;
|
||||
deselect_last();
|
||||
should_shift = true;
|
||||
}
|
||||
|
||||
if (should_shift) {
|
||||
// Set `next_utxo` to one after last selected, then deselect last selected UTXO
|
||||
if (curr_selection.empty()) {
|
||||
// Exhausted search space before running into attempt limit
|
||||
break;
|
||||
}
|
||||
next_utxo = curr_selection.back() + 1;
|
||||
deselect_last();
|
||||
should_shift = false;
|
||||
}
|
||||
}
|
||||
|
||||
result.SetSelectionsEvaluated(curr_try);
|
||||
|
||||
if (best_selection.empty()) {
|
||||
return max_tx_weight_exceeded ? ErrorMaxWeightExceeded() : util::Error();
|
||||
}
|
||||
|
||||
for (const size_t& i : best_selection) {
|
||||
result.AddInput(utxo_pool[i]);
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
class MinOutputGroupComparator
|
||||
{
|
||||
public:
|
||||
|
@ -514,6 +794,16 @@ void SelectionResult::ComputeAndSetWaste(const CAmount min_viable_change, const
|
|||
}
|
||||
}
|
||||
|
||||
void SelectionResult::SetSelectionsEvaluated(size_t attempts)
|
||||
{
|
||||
m_selections_evaluated = attempts;
|
||||
}
|
||||
|
||||
size_t SelectionResult::GetSelectionsEvaluated() const
|
||||
{
|
||||
return m_selections_evaluated;
|
||||
}
|
||||
|
||||
CAmount SelectionResult::GetWaste() const
|
||||
{
|
||||
return *Assert(m_waste);
|
||||
|
@ -607,6 +897,7 @@ std::string GetAlgorithmName(const SelectionAlgorithm algo)
|
|||
case SelectionAlgorithm::BNB: return "bnb";
|
||||
case SelectionAlgorithm::KNAPSACK: return "knapsack";
|
||||
case SelectionAlgorithm::SRD: return "srd";
|
||||
case SelectionAlgorithm::CG: return "cg";
|
||||
case SelectionAlgorithm::MANUAL: return "manual";
|
||||
// No default case to allow for compiler to warn
|
||||
}
|
||||
|
|
|
@ -142,8 +142,8 @@ struct CoinSelectionParams {
|
|||
size_t change_output_size = 0;
|
||||
/** Size of the input to spend a change output in virtual bytes. */
|
||||
size_t change_spend_size = 0;
|
||||
/** Mininmum change to target in Knapsack solver: select coins to cover the payment and
|
||||
* at least this value of change. */
|
||||
/** Mininmum change to target in Knapsack solver and CoinGrinder:
|
||||
* select coins to cover the payment and at least this value of change. */
|
||||
CAmount m_min_change_target{0};
|
||||
/** Minimum amount for creating a change output.
|
||||
* If change budget is smaller than min_change then we forgo creation of change output.
|
||||
|
@ -311,7 +311,8 @@ enum class SelectionAlgorithm : uint8_t
|
|||
BNB = 0,
|
||||
KNAPSACK = 1,
|
||||
SRD = 2,
|
||||
MANUAL = 3,
|
||||
CG = 3,
|
||||
MANUAL = 4,
|
||||
};
|
||||
|
||||
std::string GetAlgorithmName(const SelectionAlgorithm algo);
|
||||
|
@ -329,6 +330,8 @@ private:
|
|||
bool m_use_effective{false};
|
||||
/** The computed waste */
|
||||
std::optional<CAmount> m_waste;
|
||||
/** The count of selections that were evaluated by this coin selection attempt */
|
||||
size_t m_selections_evaluated;
|
||||
/** Total weight of the selected inputs */
|
||||
int m_weight{0};
|
||||
/** How much individual inputs overestimated the bump fees for the shared ancestry */
|
||||
|
@ -386,6 +389,12 @@ public:
|
|||
void ComputeAndSetWaste(const CAmount min_viable_change, const CAmount change_cost, const CAmount change_fee);
|
||||
[[nodiscard]] CAmount GetWaste() const;
|
||||
|
||||
/** Record the number of selections that were evaluated */
|
||||
void SetSelectionsEvaluated(size_t attempts);
|
||||
|
||||
/** Get selections_evaluated */
|
||||
size_t GetSelectionsEvaluated() const ;
|
||||
|
||||
/**
|
||||
* Combines the @param[in] other selection result into 'this' selection result.
|
||||
*
|
||||
|
@ -430,6 +439,8 @@ public:
|
|||
util::Result<SelectionResult> SelectCoinsBnB(std::vector<OutputGroup>& utxo_pool, const CAmount& selection_target, const CAmount& cost_of_change,
|
||||
int max_weight);
|
||||
|
||||
util::Result<SelectionResult> CoinGrinder(std::vector<OutputGroup>& utxo_pool, const CAmount& selection_target, CAmount change_target, int max_weight);
|
||||
|
||||
/** Select coins by Single Random Draw. OutputGroups are selected randomly from the eligible
|
||||
* outputs until the target is satisfied
|
||||
*
|
||||
|
|
|
@ -709,6 +709,15 @@ util::Result<SelectionResult> ChooseSelectionResult(interfaces::Chain& chain, co
|
|||
results.push_back(*knapsack_result);
|
||||
} else append_error(knapsack_result);
|
||||
|
||||
if (coin_selection_params.m_effective_feerate > CFeeRate{3 * coin_selection_params.m_long_term_feerate}) { // Minimize input set for feerates of at least 3×LTFRE (default: 30 ṩ/vB+)
|
||||
if (auto cg_result{CoinGrinder(groups.positive_group, nTargetValue, coin_selection_params.m_min_change_target, max_inputs_weight)}) {
|
||||
cg_result->ComputeAndSetWaste(coin_selection_params.min_viable_change, coin_selection_params.m_cost_of_change, coin_selection_params.m_change_fee);
|
||||
results.push_back(*cg_result);
|
||||
} else {
|
||||
append_error(cg_result);
|
||||
}
|
||||
}
|
||||
|
||||
if (auto srd_result{SelectCoinsSRD(groups.positive_group, nTargetValue, coin_selection_params.m_change_fee, coin_selection_params.rng_fast, max_inputs_weight)}) {
|
||||
results.push_back(*srd_result);
|
||||
} else append_error(srd_result);
|
||||
|
|
|
@ -1090,7 +1090,6 @@ BOOST_AUTO_TEST_CASE(effective_value_test)
|
|||
BOOST_CHECK_EQUAL(output5.GetEffectiveValue(), nValue); // The effective value should be equal to the absolute value if input_bytes is -1
|
||||
}
|
||||
|
||||
|
||||
static util::Result<SelectionResult> SelectCoinsSRD(const CAmount& target,
|
||||
const CoinSelectionParams& cs_params,
|
||||
const node::NodeContext& m_node,
|
||||
|
|
Loading…
Add table
Reference in a new issue