0
0
Fork 0
mirror of https://github.com/bitcoin/bitcoin.git synced 2025-03-04 13:55:23 -05:00

Merge bitcoin/bitcoin#28433: Follow-up to BIP324 connection support

64704386b2 doc: fix typos and mistakes in BIP324 code comments (Pieter Wuille)
9bde93df2c net: do not use send buffer to store/cache garbage (Pieter Wuille)
b6934fd03f net: merge V2Transport constructors, move key gen (Pieter Wuille)

Pull request description:

  This addresses a few remaining comments on #28196:

  * Deduplicate the `V2Transport` constructors (https://github.com/bitcoin/bitcoin/pull/28196#discussion_r1318573111)
  * Do not use the send buffer to store garbage (https://github.com/bitcoin/bitcoin/pull/28196#discussion_r1319134141)
  * Fix typo (https://github.com/bitcoin/bitcoin/pull/28196#discussion_r1315179378)

  In addition, also fix an incorrect description in `V2Transport::SendState` (it claimed garbage was sent in the `READY` state, but it's in the `AWAITING_KEY` state).

ACKs for top commit:
  naumenkogs:
    ACK 64704386b2
  theStack:
    Code-review ACK 64704386b2

Tree-SHA512: 4bf6d2fe73c8054502d0b60e9de1722f8b3dd269c2dd6bf67197c3fb6eabcf047b6360cdab3c1fd5504215c2ac4ac2890a022780efc30ff583776242c8112451
This commit is contained in:
fanquake 2023-09-11 09:29:40 +01:00
commit 8f7b9eb871
No known key found for this signature in database
GPG key ID: 2EEB9F5CC09526C1
6 changed files with 75 additions and 50 deletions

View file

@ -22,13 +22,6 @@
#include <iterator>
#include <string>
BIP324Cipher::BIP324Cipher() noexcept
{
m_key.MakeNewKey(true);
uint256 entropy = GetRandHash();
m_our_pubkey = m_key.EllSwiftCreate(MakeByteSpan(entropy));
}
BIP324Cipher::BIP324Cipher(const CKey& key, Span<const std::byte> ent32) noexcept :
m_key(key)
{

View file

@ -41,8 +41,8 @@ private:
std::array<std::byte, GARBAGE_TERMINATOR_LEN> m_recv_garbage_terminator;
public:
/** Initialize a BIP324 cipher with securely generated random keys. */
BIP324Cipher() noexcept;
/** No default constructor; keys must be provided to create a BIP324Cipher. */
BIP324Cipher() = delete;
/** Initialize a BIP324 cipher with specified key and encoding entropy (testing only). */
BIP324Cipher(const CKey& key, Span<const std::byte> ent32) noexcept;

View file

@ -979,36 +979,56 @@ public:
const V2MessageMap V2_MESSAGE_MAP;
} // namespace
V2Transport::V2Transport(NodeId nodeid, bool initiating, int type_in, int version_in) noexcept :
m_cipher{}, m_initiating{initiating}, m_nodeid{nodeid},
m_v1_fallback{nodeid, type_in, version_in}, m_recv_type{type_in}, m_recv_version{version_in},
m_recv_state{initiating ? RecvState::KEY : RecvState::KEY_MAYBE_V1},
m_send_state{initiating ? SendState::AWAITING_KEY : SendState::MAYBE_V1}
CKey GenerateRandomKey() noexcept
{
// Construct garbage (including its length) using a FastRandomContext.
FastRandomContext rng;
size_t garbage_len = rng.randrange(MAX_GARBAGE_LEN + 1);
// Initialize the send buffer with ellswift pubkey + garbage.
m_send_buffer.resize(EllSwiftPubKey::size() + garbage_len);
std::copy(std::begin(m_cipher.GetOurPubKey()), std::end(m_cipher.GetOurPubKey()), MakeWritableByteSpan(m_send_buffer).begin());
rng.fillrand(MakeWritableByteSpan(m_send_buffer).subspan(EllSwiftPubKey::size()));
CKey key;
key.MakeNewKey(/*fCompressed=*/true);
return key;
}
V2Transport::V2Transport(NodeId nodeid, bool initiating, int type_in, int version_in, const CKey& key, Span<const std::byte> ent32, Span<const uint8_t> garbage) noexcept :
std::vector<uint8_t> GenerateRandomGarbage() noexcept
{
std::vector<uint8_t> ret;
FastRandomContext rng;
ret.resize(rng.randrange(V2Transport::MAX_GARBAGE_LEN + 1));
rng.fillrand(MakeWritableByteSpan(ret));
return ret;
}
} // namespace
void V2Transport::StartSendingHandshake() noexcept
{
AssertLockHeld(m_send_mutex);
Assume(m_send_state == SendState::AWAITING_KEY);
Assume(m_send_buffer.empty());
// Initialize the send buffer with ellswift pubkey + provided garbage.
m_send_buffer.resize(EllSwiftPubKey::size() + m_send_garbage.size());
std::copy(std::begin(m_cipher.GetOurPubKey()), std::end(m_cipher.GetOurPubKey()), MakeWritableByteSpan(m_send_buffer).begin());
std::copy(m_send_garbage.begin(), m_send_garbage.end(), m_send_buffer.begin() + EllSwiftPubKey::size());
// We cannot wipe m_send_garbage as it will still be used to construct the garbage
// authentication packet.
}
V2Transport::V2Transport(NodeId nodeid, bool initiating, int type_in, int version_in, const CKey& key, Span<const std::byte> ent32, std::vector<uint8_t> garbage) noexcept :
m_cipher{key, ent32}, m_initiating{initiating}, m_nodeid{nodeid},
m_v1_fallback{nodeid, type_in, version_in}, m_recv_type{type_in}, m_recv_version{version_in},
m_recv_state{initiating ? RecvState::KEY : RecvState::KEY_MAYBE_V1},
m_send_garbage{std::move(garbage)},
m_send_state{initiating ? SendState::AWAITING_KEY : SendState::MAYBE_V1}
{
assert(garbage.size() <= MAX_GARBAGE_LEN);
// Initialize the send buffer with ellswift pubkey + provided garbage.
m_send_buffer.resize(EllSwiftPubKey::size() + garbage.size());
std::copy(std::begin(m_cipher.GetOurPubKey()), std::end(m_cipher.GetOurPubKey()), MakeWritableByteSpan(m_send_buffer).begin());
std::copy(garbage.begin(), garbage.end(), m_send_buffer.begin() + EllSwiftPubKey::size());
Assume(m_send_garbage.size() <= MAX_GARBAGE_LEN);
// Start sending immediately if we're the initiator of the connection.
if (initiating) {
LOCK(m_send_mutex);
StartSendingHandshake();
}
}
V2Transport::V2Transport(NodeId nodeid, bool initiating, int type_in, int version_in) noexcept :
V2Transport{nodeid, initiating, type_in, version_in, GenerateRandomKey(),
MakeByteSpan(GetRandHash()), GenerateRandomGarbage()} { }
void V2Transport::SetReceiveState(RecvState recv_state) noexcept
{
AssertLockHeld(m_recv_mutex);
@ -1087,9 +1107,10 @@ void V2Transport::ProcessReceivedMaybeV1Bytes() noexcept
if (!std::equal(m_recv_buffer.begin(), m_recv_buffer.end(), v1_prefix.begin())) {
// Mismatch with v1 prefix, so we can assume a v2 connection.
SetReceiveState(RecvState::KEY); // Convert to KEY state, leaving received bytes around.
// Transition the sender to AWAITING_KEY state (if not already).
// Transition the sender to AWAITING_KEY state and start sending.
LOCK(m_send_mutex);
SetSendState(SendState::AWAITING_KEY);
StartSendingHandshake();
} else if (m_recv_buffer.size() == v1_prefix.size()) {
// Full match with the v1 prefix, so fall back to v1 behavior.
LOCK(m_send_mutex);
@ -1149,7 +1170,6 @@ bool V2Transport::ProcessReceivedKeyBytes() noexcept
SetSendState(SendState::READY);
// Append the garbage terminator to the send buffer.
size_t garbage_len = m_send_buffer.size() - EllSwiftPubKey::size();
m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
std::copy(m_cipher.GetSendGarbageTerminator().begin(),
m_cipher.GetSendGarbageTerminator().end(),
@ -1160,9 +1180,12 @@ bool V2Transport::ProcessReceivedKeyBytes() noexcept
m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::EXPANSION);
m_cipher.Encrypt(
/*contents=*/{},
/*aad=*/MakeByteSpan(m_send_buffer).subspan(EllSwiftPubKey::size(), garbage_len),
/*aad=*/MakeByteSpan(m_send_garbage),
/*ignore=*/false,
/*output=*/MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::EXPANSION));
// We no longer need the garbage.
m_send_garbage.clear();
m_send_garbage.shrink_to_fit();
// Construct version packet in the send buffer.
m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::EXPANSION + VERSION_CONTENTS.size());
@ -1532,9 +1555,7 @@ Transport::BytesToSend V2Transport::GetBytesToSend(bool have_next_message) const
LOCK(m_send_mutex);
if (m_send_state == SendState::V1) return m_v1_fallback.GetBytesToSend(have_next_message);
// We do not send anything in MAYBE_V1 state (as we don't know if the peer is v1 or v2),
// despite there being data in the send buffer in that state.
if (m_send_state == SendState::MAYBE_V1) return {{}, false, m_send_type};
if (m_send_state == SendState::MAYBE_V1) Assume(m_send_buffer.empty());
Assume(m_send_pos <= m_send_buffer.size());
return {
Span{m_send_buffer}.subspan(m_send_pos),
@ -1553,10 +1574,8 @@ void V2Transport::MarkBytesSent(size_t bytes_sent) noexcept
m_send_pos += bytes_sent;
Assume(m_send_pos <= m_send_buffer.size());
// Only wipe the buffer when everything is sent in the READY state. In the AWAITING_KEY state
// we still need the garbage that's in the send buffer to construct the garbage authentication
// packet.
if (m_send_state == SendState::READY && m_send_pos == m_send_buffer.size()) {
// Wipe the buffer when everything is sent.
if (m_send_pos == m_send_buffer.size()) {
m_send_pos = 0;
m_send_buffer = {};
}

View file

@ -540,25 +540,25 @@ private:
enum class SendState : uint8_t {
/** (Responder only) Not sending until v1 or v2 is detected.
*
* This is the initial state for responders. The send buffer contains the public key to
* send, but nothing is sent in this state yet. When the receiver determines whether this
* This is the initial state for responders. The send buffer is empty.
* When the receiver determines whether this
* is a V1 or V2 connection, the sender state becomes AWAITING_KEY (for v2) or V1 (for v1).
*/
MAYBE_V1,
/** Waiting for the other side's public key.
*
* This is the initial state for initiators. The public key is sent out. When the receiver
* receives the other side's public key and transitions to GARB_GARBTERM, the sender state
* becomes READY. */
* This is the initial state for initiators. The public key and garbage is sent out. When
* the receiver receives the other side's public key and transitions to GARB_GARBTERM, the
* sender state becomes READY. */
AWAITING_KEY,
/** Normal sending state.
*
* In this state, the ciphers are initialized, so packets can be sent. When this state is
* entered, the garbage, garbage terminator, garbage authentication packet, and version
* packet are appended to the send buffer (in addition to the key which may still be
* there). In this state a message can be provided if the send buffer is empty. */
* entered, the garbage terminator, garbage authentication packet, and version
* packet are appended to the send buffer (in addition to the key and garbage which may
* still be there). In this state a message can be provided if the send buffer is empty. */
READY,
/** This transport is using v1 fallback.
@ -601,6 +601,8 @@ private:
std::vector<uint8_t> m_send_buffer GUARDED_BY(m_send_mutex);
/** How many bytes from the send buffer have been sent so far. */
uint32_t m_send_pos GUARDED_BY(m_send_mutex) {0};
/** The garbage sent, or to be sent (MAYBE_V1 and AWAITING_KEY state only). */
std::vector<uint8_t> m_send_garbage GUARDED_BY(m_send_mutex);
/** Type of the message being sent. */
std::string m_send_type GUARDED_BY(m_send_mutex);
/** Current sender state. */
@ -614,6 +616,8 @@ private:
static std::optional<std::string> GetMessageType(Span<const uint8_t>& contents) noexcept;
/** Determine how many received bytes can be processed in one go (not allowed in V1 state). */
size_t GetMaxBytesToProcess() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex);
/** Put our public key + garbage in the send buffer. */
void StartSendingHandshake() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_send_mutex);
/** Process bytes in m_recv_buffer, while in KEY_MAYBE_V1 state. */
void ProcessReceivedMaybeV1Bytes() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex, !m_send_mutex);
/** Process bytes in m_recv_buffer, while in KEY state. */
@ -636,7 +640,7 @@ public:
V2Transport(NodeId nodeid, bool initiating, int type_in, int version_in) noexcept;
/** Construct a V2 transport with specified keys and garbage (test use only). */
V2Transport(NodeId nodeid, bool initiating, int type_in, int version_in, const CKey& key, Span<const std::byte> ent32, Span<const uint8_t> garbage) noexcept;
V2Transport(NodeId nodeid, bool initiating, int type_in, int version_in, const CKey& key, Span<const std::byte> ent32, std::vector<uint8_t> garbage) noexcept;
// Receive side functions.
bool ReceivedMessageComplete() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex);

View file

@ -366,7 +366,7 @@ std::unique_ptr<Transport> MakeV2Transport(NodeId nodeid, bool initiator, RNG& r
.Write(garb.data(), garb.size())
.Finalize(UCharCast(ent.data()));
return std::make_unique<V2Transport>(nodeid, initiator, SER_NETWORK, INIT_PROTO_VERSION, key, ent, garb);
return std::make_unique<V2Transport>(nodeid, initiator, SER_NETWORK, INIT_PROTO_VERSION, key, ent, std::move(garb));
}
} // namespace

View file

@ -1008,12 +1008,20 @@ BOOST_AUTO_TEST_CASE(advertise_local_address)
namespace {
CKey GenerateRandomTestKey() noexcept
{
CKey key;
uint256 key_data = InsecureRand256();
key.Set(key_data.begin(), key_data.end(), true);
return key;
}
/** A class for scenario-based tests of V2Transport
*
* Each V2TransportTester encapsulates a V2Transport (the one being tested), and can be told to
* interact with it. To do so, it also encapsulates a BIP324Cipher to act as the other side. A
* second V2Transport is not used, as doing so would not permit scenarios that involve sending
* invalid data, or ones scenarios using BIP324 features that are not implemented on the sending
* invalid data, or ones using BIP324 features that are not implemented on the sending
* side (like decoy packets).
*/
class V2TransportTester
@ -1031,6 +1039,7 @@ public:
/** Construct a tester object. test_initiator: whether the tested transport is initiator. */
V2TransportTester(bool test_initiator) :
m_transport(0, test_initiator, SER_NETWORK, INIT_PROTO_VERSION),
m_cipher{GenerateRandomTestKey(), MakeByteSpan(InsecureRand256())},
m_test_initiator(test_initiator) {}
/** Data type returned by Interact: