0
0
Fork 0
mirror of https://github.com/denoland/deno.git synced 2025-03-03 09:31:22 -05:00

Correct tokio_util::block_on() and op_fetch_module_meta_data

op_fetch_module_meta_data is an op that is used by the TypeScript
compiler. TypeScript requires this op to be sync. However the
implementation of the op does things on the event loop (like fetching
HTTP resources).

In certain situations this can lead to deadlocks. The runtime's thread
pool can be filled with ops waiting on the result of
op_fetch_module_meta_data. The runtime has a maximum number of
threads it can use (the number of logical CPUs on the system).

This patch changes tokio_util::block_on to launch a new Tokio runtime
for evaluating the future, thus bipassing the max-thread problem.

This is only an issue in op_fetch_module_meta_data. Other synchronous
ops are truly synchornous, not interacting with the event loop.  TODO
comments are added to direct future development.
This commit is contained in:
Ryan Dahl 2019-05-28 09:32:43 -04:00
parent 3c355c2b32
commit 53b6356ec5
2 changed files with 58 additions and 34 deletions

View file

@ -163,6 +163,14 @@ pub fn dispatch_all_legacy(
);
if base.sync() {
// TODO(ry) This is not correct! If the sync op is not actually synchronous
// (like in the case of op_fetch_module_meta_data) this wait() will block
// a thread in the Tokio runtime. Depending on the size of the runtime's
// thread pool, this may result in a dead lock!
//
// The solution is that ops should return an Op directly. Op::Sync contains
// the result value, so if its returned directly from the OpCreator, we
// know it has actually be evaluated synchronously.
Op::Sync(fut.wait().unwrap())
} else {
Op::Async(fut)
@ -455,30 +463,39 @@ fn op_fetch_module_meta_data(
let use_cache = !state.flags.reload;
let no_fetch = state.flags.no_fetch;
Box::new(futures::future::result(|| -> OpResult {
let builder = &mut FlatBufferBuilder::new();
// TODO(ry) Use fetch_module_meta_data_async.
let out = state
.dir
.fetch_module_meta_data(specifier, referrer, use_cache, no_fetch)?;
let data_off = builder.create_vector(out.source_code.as_slice());
let msg_args = msg::FetchModuleMetaDataResArgs {
module_name: Some(builder.create_string(&out.module_name)),
filename: Some(builder.create_string(&out.filename)),
media_type: out.media_type,
data: Some(data_off),
};
let inner = msg::FetchModuleMetaDataRes::create(builder, &msg_args);
Ok(serialize_response(
cmd_id,
builder,
msg::BaseArgs {
inner: Some(inner.as_union_value()),
inner_type: msg::Any::FetchModuleMetaDataRes,
..Default::default()
},
))
}()))
let fut = state
.dir
.fetch_module_meta_data_async(specifier, referrer, use_cache, no_fetch)
.and_then(move |out| {
let builder = &mut FlatBufferBuilder::new();
let data_off = builder.create_vector(out.source_code.as_slice());
let msg_args = msg::FetchModuleMetaDataResArgs {
module_name: Some(builder.create_string(&out.module_name)),
filename: Some(builder.create_string(&out.filename)),
media_type: out.media_type,
data: Some(data_off),
};
let inner = msg::FetchModuleMetaDataRes::create(builder, &msg_args);
Ok(serialize_response(
cmd_id,
builder,
msg::BaseArgs {
inner: Some(inner.as_union_value()),
inner_type: msg::Any::FetchModuleMetaDataRes,
..Default::default()
},
))
});
// Unfortunately TypeScript's CompilerHost interface does not leave room for
// asynchronous source code fetching. This complicates things greatly and
// requires us to use tokio_util::block_on() below.
assert!(base.sync());
// WARNING: Here we use tokio_util::block_on() which starts a new Tokio
// runtime for executing the future. This is so we don't inadvernently run
// out of threads in the main runtime.
Box::new(futures::future::result(tokio_util::block_on(fut)))
}
/// Retrieve any relevant compiler configuration.

View file

@ -11,14 +11,8 @@ use tokio::net::TcpStream;
use tokio::runtime;
pub fn create_threadpool_runtime() -> tokio::runtime::Runtime {
// This code can be simplified once the following PR is landed and
// released: https://github.com/tokio-rs/tokio/pull/1055
use tokio_threadpool::Builder as ThreadPoolBuilder;
let mut threadpool_builder = ThreadPoolBuilder::new();
threadpool_builder.panic_handler(|err| std::panic::resume_unwind(err));
#[allow(deprecated)]
runtime::Builder::new()
.threadpool_builder(threadpool_builder)
.panic_handler(|err| std::panic::resume_unwind(err))
.build()
.unwrap()
}
@ -32,15 +26,28 @@ where
rt.block_on_all(future).unwrap();
}
/// THIS IS A HACK AND SHOULD BE AVOIDED.
///
/// This creates a new tokio runtime, with many new threads, to execute the
/// given future. This is useful when we want to block the main runtime to
/// resolve a future without worrying that we'll us up all the threads in the
/// main runtime.
pub fn block_on<F, R, E>(future: F) -> Result<R, E>
where
F: Send + 'static + Future<Item = R, Error = E>,
R: Send + 'static,
E: Send + 'static,
{
let (tx, rx) = futures::sync::oneshot::channel();
tokio::spawn(future.then(move |r| tx.send(r).map_err(|_| unreachable!())));
rx.wait().unwrap()
use std::sync::mpsc::channel;
use std::thread;
let (sender, receiver) = channel();
// Create a new runtime to evaluate the future asynchronously.
thread::spawn(move || {
let mut rt = create_threadpool_runtime();
let r = rt.block_on(future);
sender.send(r).unwrap();
});
receiver.recv().unwrap()
}
// Set the default executor so we can use tokio::spawn(). It's difficult to