0
0
Fork 0
mirror of https://github.com/denoland/deno.git synced 2025-03-09 05:36:49 -04:00
deno/ext/canvas/lib.rs
2024-09-06 18:47:31 +09:00

1141 lines
34 KiB
Rust

// Copyright 2018-2024 the Deno authors. All rights reserved. MIT license.
use bytemuck::cast_slice;
use deno_core::error::type_error;
use deno_core::error::AnyError;
use deno_core::op2;
use deno_core::JsBuffer;
use deno_core::ToJsBuffer;
use deno_terminal::colors::cyan;
use image::codecs::bmp::BmpDecoder;
use image::codecs::gif::GifDecoder;
use image::codecs::ico::IcoDecoder;
use image::codecs::jpeg::JpegDecoder;
use image::codecs::png::PngDecoder;
use image::codecs::webp::WebPDecoder;
use image::imageops::overlay;
use image::imageops::FilterType;
use image::ColorType;
use image::DynamicImage;
use image::GenericImageView;
use image::ImageBuffer;
use image::ImageDecoder;
use image::ImageError;
use image::Luma;
use image::LumaA;
use image::Pixel;
use image::Primitive;
use image::Rgb;
use image::Rgba;
use image::RgbaImage;
use lcms2::PixelFormat;
use lcms2::Pod;
use lcms2::Profile;
use lcms2::Transform;
use num_traits::NumCast;
use num_traits::SaturatingMul;
use serde::Deserialize;
use serde::Serialize;
use std::borrow::Cow;
use std::io::BufRead;
use std::io::BufReader;
use std::io::Cursor;
use std::io::Seek;
use std::path::PathBuf;
pub mod error;
use error::DOMExceptionInvalidStateError;
fn to_js_buffer(image: &DynamicImage) -> ToJsBuffer {
image.as_bytes().to_vec().into()
}
fn image_error_message<'a, T: Into<Cow<'a, str>>>(
opreation: T,
reason: T,
) -> String {
format!(
"An error has occurred while {}.
reason: {}",
opreation.into(),
reason.into(),
)
}
// reference
// https://github.com/image-rs/image/blob/6d19ffa72756c1b00e7979a90f8794a0ef847b88/src/color.rs#L739
trait ProcessPremultiplyAlpha {
fn premultiply_alpha(&self) -> Self;
}
impl<T: Primitive> ProcessPremultiplyAlpha for LumaA<T> {
fn premultiply_alpha(&self) -> Self {
let max_t = T::DEFAULT_MAX_VALUE;
let mut pixel = [self.0[0], self.0[1]];
let alpha_index = pixel.len() - 1;
let alpha = pixel[alpha_index];
let normalized_alpha = alpha.to_f32().unwrap() / max_t.to_f32().unwrap();
if normalized_alpha == 0.0 {
return LumaA::<T>([pixel[0], pixel[alpha_index]]);
}
for rgb in pixel.iter_mut().take(alpha_index) {
*rgb = NumCast::from((rgb.to_f32().unwrap() * normalized_alpha).round())
.unwrap()
}
LumaA::<T>([pixel[0], pixel[alpha_index]])
}
}
impl<T: Primitive> ProcessPremultiplyAlpha for Rgba<T> {
fn premultiply_alpha(&self) -> Self {
let max_t = T::DEFAULT_MAX_VALUE;
let mut pixel = [self.0[0], self.0[1], self.0[2], self.0[3]];
let alpha_index = pixel.len() - 1;
let alpha = pixel[alpha_index];
let normalized_alpha = alpha.to_f32().unwrap() / max_t.to_f32().unwrap();
if normalized_alpha == 0.0 {
return Rgba::<T>([pixel[0], pixel[1], pixel[2], pixel[alpha_index]]);
}
for rgb in pixel.iter_mut().take(alpha_index) {
*rgb = NumCast::from((rgb.to_f32().unwrap() * normalized_alpha).round())
.unwrap()
}
Rgba::<T>([pixel[0], pixel[1], pixel[2], pixel[alpha_index]])
}
}
fn process_premultiply_alpha<I, P, S>(image: &I) -> ImageBuffer<P, Vec<S>>
where
I: GenericImageView<Pixel = P>,
P: Pixel<Subpixel = S> + ProcessPremultiplyAlpha + 'static,
S: Primitive + 'static,
{
let (width, height) = image.dimensions();
let mut out = ImageBuffer::new(width, height);
for (x, y, pixel) in image.pixels() {
let pixel = pixel.premultiply_alpha();
out.put_pixel(x, y, pixel);
}
out
}
fn apply_premultiply_alpha(
image: &DynamicImage,
) -> Result<DynamicImage, AnyError> {
match image.color() {
ColorType::La8 => Ok(DynamicImage::ImageLumaA8(process_premultiply_alpha(
&image.to_luma_alpha8(),
))),
ColorType::Rgba8 => Ok(DynamicImage::ImageRgba8(
process_premultiply_alpha(&image.to_rgba8()),
)),
ColorType::La16 => Ok(DynamicImage::ImageLumaA16(
process_premultiply_alpha(&image.to_luma_alpha16()),
)),
ColorType::Rgba16 => Ok(DynamicImage::ImageRgba16(
process_premultiply_alpha(&image.to_rgba16()),
)),
_ => Err(type_error(image_error_message(
"apply premultiplyAlpha: premultiply",
"The color type is not supported.",
))),
}
}
trait ProcessUnpremultiplyAlpha {
/// To determine if the image is premultiplied alpha,
/// checking premultiplied RGBA value is one where any of the R/G/B channel values exceeds the alpha channel value.\
/// https://www.w3.org/TR/webgpu/#color-spaces
fn is_premultiplied_alpha(&self) -> bool;
fn unpremultiply_alpha(&self) -> Self;
}
impl<T: Primitive + SaturatingMul + Ord> ProcessUnpremultiplyAlpha for Rgba<T> {
fn is_premultiplied_alpha(&self) -> bool {
let max_t = T::DEFAULT_MAX_VALUE;
let pixel = [self.0[0], self.0[1], self.0[2]];
let alpha_index = self.0.len() - 1;
let alpha = self.0[alpha_index];
match pixel.iter().max() {
Some(rgb_max) => rgb_max < &max_t.saturating_mul(&alpha),
// usually doesn't reach here
None => false,
}
}
fn unpremultiply_alpha(&self) -> Self {
let max_t = T::DEFAULT_MAX_VALUE;
let mut pixel = [self.0[0], self.0[1], self.0[2], self.0[3]];
let alpha_index = pixel.len() - 1;
let alpha = pixel[alpha_index];
for rgb in pixel.iter_mut().take(alpha_index) {
*rgb = NumCast::from(
(rgb.to_f32().unwrap()
/ (alpha.to_f32().unwrap() / max_t.to_f32().unwrap()))
.round(),
)
.unwrap();
}
Rgba::<T>([pixel[0], pixel[1], pixel[2], pixel[alpha_index]])
}
}
impl<T: Primitive + SaturatingMul + Ord> ProcessUnpremultiplyAlpha
for LumaA<T>
{
fn is_premultiplied_alpha(&self) -> bool {
let max_t = T::DEFAULT_MAX_VALUE;
let pixel = [self.0[0]];
let alpha_index = self.0.len() - 1;
let alpha = self.0[alpha_index];
pixel[0] < max_t.saturating_mul(&alpha)
}
fn unpremultiply_alpha(&self) -> Self {
let max_t = T::DEFAULT_MAX_VALUE;
let mut pixel = [self.0[0], self.0[1]];
let alpha_index = pixel.len() - 1;
let alpha = pixel[alpha_index];
for rgb in pixel.iter_mut().take(alpha_index) {
*rgb = NumCast::from(
(rgb.to_f32().unwrap()
/ (alpha.to_f32().unwrap() / max_t.to_f32().unwrap()))
.round(),
)
.unwrap();
}
LumaA::<T>([pixel[0], pixel[alpha_index]])
}
}
fn process_unpremultiply_alpha<I, P, S>(image: &I) -> ImageBuffer<P, Vec<S>>
where
I: GenericImageView<Pixel = P>,
P: Pixel<Subpixel = S> + ProcessUnpremultiplyAlpha + 'static,
S: Primitive + 'static,
{
let (width, height) = image.dimensions();
let mut out = ImageBuffer::new(width, height);
let is_premultiplied_alpha = image
.pixels()
.any(|(_, _, pixel)| pixel.is_premultiplied_alpha());
for (x, y, pixel) in image.pixels() {
let pixel = if is_premultiplied_alpha {
pixel.unpremultiply_alpha()
} else {
// return the original
pixel
};
out.put_pixel(x, y, pixel);
}
out
}
fn apply_unpremultiply_alpha(
image: &DynamicImage,
) -> Result<DynamicImage, AnyError> {
match image.color() {
ColorType::La8 => Ok(DynamicImage::ImageLumaA8(
process_unpremultiply_alpha(&image.to_luma_alpha8()),
)),
ColorType::Rgba8 => Ok(DynamicImage::ImageRgba8(
process_unpremultiply_alpha(&image.to_rgba8()),
)),
ColorType::La16 => Ok(DynamicImage::ImageLumaA16(
process_unpremultiply_alpha(&image.to_luma_alpha16()),
)),
ColorType::Rgba16 => Ok(DynamicImage::ImageRgba16(
process_unpremultiply_alpha(&image.to_rgba16()),
)),
_ => Err(type_error(image_error_message(
"apply premultiplyAlpha: none",
"The color type is not supported.",
))),
}
}
// reference
// https://www.w3.org/TR/css-color-4/#color-conversion-code
fn srgb_to_linear<T: Primitive>(value: T) -> f32 {
if value.to_f32().unwrap() <= 0.04045 {
value.to_f32().unwrap() / 12.92
} else {
((value.to_f32().unwrap() + 0.055) / 1.055).powf(2.4)
}
}
// reference
// https://www.w3.org/TR/css-color-4/#color-conversion-code
fn linear_to_display_p3<T: Primitive>(value: T) -> f32 {
if value.to_f32().unwrap() <= 0.0031308 {
value.to_f32().unwrap() * 12.92
} else {
1.055 * value.to_f32().unwrap().powf(1.0 / 2.4) - 0.055
}
}
fn normalize_value_to_0_1<T: Primitive>(value: T) -> f32 {
value.to_f32().unwrap() / T::DEFAULT_MAX_VALUE.to_f32().unwrap()
}
fn unnormalize_value_from_0_1<T: Primitive>(value: f32) -> T {
NumCast::from(
(value.clamp(0.0, 1.0) * T::DEFAULT_MAX_VALUE.to_f32().unwrap()).round(),
)
.unwrap()
}
fn srgb_to_display_p3<T: Primitive>(r: T, g: T, b: T) -> (T, T, T) {
// normalize the value to 0.0 - 1.0
let (r, g, b) = (
normalize_value_to_0_1(r),
normalize_value_to_0_1(g),
normalize_value_to_0_1(b),
);
// sRGB -> Linear RGB
let (r, g, b) = (srgb_to_linear(r), srgb_to_linear(g), srgb_to_linear(b));
// Display-P3 (RGB) -> Display-P3 (XYZ)
//
// inv[ P3-D65 (D65) to XYZ ] * [ sRGB (D65) to XYZ ]
// http://www.brucelindbloom.com/index.html?Eqn_RGB_XYZ_Matrix.html
// https://fujiwaratko.sakura.ne.jp/infosci/colorspace/colorspace2_e.html
// [ sRGB (D65) to XYZ ]
#[rustfmt::skip]
let (m1x, m1y, m1z) = (
[0.4124564, 0.3575761, 0.1804375],
[0.2126729, 0.7151522, 0.0721750],
[0.0193339, 0.1191920, 0.9503041],
);
let (r, g, b) = (
r * m1x[0] + g * m1x[1] + b * m1x[2],
r * m1y[0] + g * m1y[1] + b * m1y[2],
r * m1z[0] + g * m1z[1] + b * m1z[2],
);
// inv[ P3-D65 (D65) to XYZ ]
#[rustfmt::skip]
let (m2x, m2y, m2z) = (
[ 2.493496911941425, -0.9313836179191239, -0.40271078445071684 ],
[ -0.8294889695615747, 1.7626640603183463, 0.023624685841943577 ],
[ 0.03584583024378447,-0.07617238926804182, 0.9568845240076872 ],
);
let (r, g, b) = (
r * m2x[0] + g * m2x[1] + b * m2x[2],
r * m2y[0] + g * m2y[1] + b * m2y[2],
r * m2z[0] + g * m2z[1] + b * m2z[2],
);
// This calculation is similar as above that it is a little faster, but less accurate.
// let r = 0.8225 * r + 0.1774 * g + 0.0000 * b;
// let g = 0.0332 * r + 0.9669 * g + 0.0000 * b;
// let b = 0.0171 * r + 0.0724 * g + 0.9108 * b;
// Display-P3 (Linear) -> Display-P3
let (r, g, b) = (
linear_to_display_p3(r),
linear_to_display_p3(g),
linear_to_display_p3(b),
);
// unnormalize the value from 0.0 - 1.0
(
unnormalize_value_from_0_1(r),
unnormalize_value_from_0_1(g),
unnormalize_value_from_0_1(b),
)
}
trait ProcessColorSpaceConversion {
/// Display P3 Color Encoding (v 1.0)
/// https://www.color.org/chardata/rgb/DisplayP3.xalter
fn process_srgb_to_display_p3(&self) -> Self;
}
impl<T: Primitive> ProcessColorSpaceConversion for Rgb<T> {
fn process_srgb_to_display_p3(&self) -> Self {
let (r, g, b) = (self.0[0], self.0[1], self.0[2]);
let (r, g, b) = srgb_to_display_p3(r, g, b);
Rgb::<T>([r, g, b])
}
}
impl<T: Primitive> ProcessColorSpaceConversion for Rgba<T> {
fn process_srgb_to_display_p3(&self) -> Self {
let (r, g, b, a) = (self.0[0], self.0[1], self.0[2], self.0[3]);
let (r, g, b) = srgb_to_display_p3(r, g, b);
Rgba::<T>([r, g, b, a])
}
}
fn process_srgb_to_display_p3<I, P, S>(image: &I) -> ImageBuffer<P, Vec<S>>
where
I: GenericImageView<Pixel = P>,
P: Pixel<Subpixel = S> + ProcessColorSpaceConversion + 'static,
S: Primitive + 'static,
{
let (width, height) = image.dimensions();
let mut out = ImageBuffer::new(width, height);
for (x, y, pixel) in image.pixels() {
let pixel = pixel.process_srgb_to_display_p3();
out.put_pixel(x, y, pixel);
}
out
}
trait SliceToPixel {
fn slice_to_pixel(pixel: &[u8]) -> Self;
}
impl<T: Primitive + Pod> SliceToPixel for Luma<T> {
fn slice_to_pixel(pixel: &[u8]) -> Self {
let pixel: &[T] = cast_slice(pixel);
let pixel = [pixel[0]];
Luma::<T>(pixel)
}
}
impl<T: Primitive + Pod> SliceToPixel for LumaA<T> {
fn slice_to_pixel(pixel: &[u8]) -> Self {
let pixel: &[T] = cast_slice(pixel);
let pixel = [pixel[0], pixel[1]];
LumaA::<T>(pixel)
}
}
impl<T: Primitive + Pod> SliceToPixel for Rgb<T> {
fn slice_to_pixel(pixel: &[u8]) -> Self {
let pixel: &[T] = cast_slice(pixel);
let pixel = [pixel[0], pixel[1], pixel[2]];
Rgb::<T>(pixel)
}
}
impl<T: Primitive + Pod> SliceToPixel for Rgba<T> {
fn slice_to_pixel(pixel: &[u8]) -> Self {
let pixel: &[T] = cast_slice(pixel);
let pixel = [pixel[0], pixel[1], pixel[2], pixel[3]];
Rgba::<T>(pixel)
}
}
/// Convert the pixel slice to an array to avoid the copy to Vec.
/// I implemented this trait because of I couldn't find a way to effectively combine
/// the `Transform` struct of `lcms2` and `Pixel` trait of `image`.
/// If there is an implementation that is safer and can withstand changes, I would like to adopt it.
trait SliceToArray<const N: usize> {
fn slice_to_array(pixel: &[u8]) -> [u8; N];
}
macro_rules! impl_slice_to_array {
($type:ty, $n:expr) => {
impl<T: Primitive + Pod> SliceToArray<$n> for $type {
fn slice_to_array(pixel: &[u8]) -> [u8; $n] {
let mut dst = [0_u8; $n];
dst.copy_from_slice(&pixel[..$n]);
dst
}
}
};
}
impl_slice_to_array!(Luma<T>, 1);
impl_slice_to_array!(Luma<T>, 2);
impl_slice_to_array!(LumaA<T>, 2);
impl_slice_to_array!(LumaA<T>, 4);
impl_slice_to_array!(Rgb<T>, 3);
impl_slice_to_array!(Rgb<T>, 6);
impl_slice_to_array!(Rgba<T>, 4);
impl_slice_to_array!(Rgba<T>, 8);
fn process_color_space_from_icc_profile_to_srgb<P, S, const N: usize>(
image: &DynamicImage,
icc_profile: Profile,
) -> ImageBuffer<P, Vec<S>>
where
P: Pixel<Subpixel = S> + SliceToPixel + SliceToArray<N> + 'static,
S: Primitive + 'static,
{
let (width, height) = image.dimensions();
let mut out = ImageBuffer::new(width, height);
let chunk_size = image.color().bytes_per_pixel() as usize;
let pixel_iter = image
.as_bytes()
.chunks_exact(chunk_size)
.zip(image.pixels());
let pixel_format = match image.color() {
ColorType::L8 => PixelFormat::GRAY_8,
ColorType::L16 => PixelFormat::GRAY_16,
ColorType::La8 => PixelFormat::GRAYA_8,
ColorType::La16 => PixelFormat::GRAYA_16,
ColorType::Rgb8 => PixelFormat::RGB_8,
ColorType::Rgb16 => PixelFormat::RGB_16,
ColorType::Rgba8 => PixelFormat::RGBA_8,
ColorType::Rgba16 => PixelFormat::RGBA_16,
// This arm usually doesn't reach, but it should be handled with returning the original image.
_ => {
return {
for (pixel, (x, y, _)) in pixel_iter {
out.put_pixel(x, y, P::slice_to_pixel(&pixel));
}
out
}
}
};
let srgb_icc_profile = Profile::new_srgb();
let transformer = Transform::new(
&icc_profile,
pixel_format,
&srgb_icc_profile,
pixel_format,
srgb_icc_profile.header_rendering_intent(),
);
for (pixel, (x, y, _)) in pixel_iter {
let pixel = match transformer {
Ok(ref transformer) => {
let mut dst = P::slice_to_array(pixel);
transformer.transform_in_place(&mut dst);
dst
}
// This arm will reach when the ffi call fails.
Err(_) => P::slice_to_array(pixel),
};
out.put_pixel(x, y, P::slice_to_pixel(&pixel));
}
out
}
/// According to the spec, it's not clear how to handle the color space conversion.
///
/// Therefore, if you interpret the specification description from the implementation and wpt results, it will be as follows.
///
/// Let val be the value of the colorSpaceConversion member of options, and then run these substeps:
/// 1. If val is "default", to convert to the sRGB color space.
/// 2. If val is "none", to use the decoded image data as is.
///
/// related issue in whatwg
/// https://github.com/whatwg/html/issues/10578
///
/// reference in wpt
/// https://github.com/web-platform-tests/wpt/blob/d575dc75ede770df322fbc5da3112dcf81f192ec/html/canvas/element/manual/imagebitmap/createImageBitmap-colorSpaceConversion.html#L18
/// https://wpt.live/html/canvas/element/manual/imagebitmap/createImageBitmap-colorSpaceConversion.html
fn apply_color_space_conversion(
image: DynamicImage,
icc_profile: Option<Vec<u8>>,
image_bitmap_source: &ImageBitmapSource,
color_space_conversion: &ColorSpaceConversion,
predefined_color_space: &PredefinedColorSpace,
) -> Result<DynamicImage, AnyError> {
match color_space_conversion {
// return the decoded image as is.
ColorSpaceConversion::None => Ok(image),
ColorSpaceConversion::Default => {
match image_bitmap_source {
ImageBitmapSource::Blob => match icc_profile {
// If there is no color profile information, return the image as is.
None => Ok(image),
Some(icc_profile) => match Profile::new_icc(&icc_profile) {
// If the color profile information is invalid, return the image as is.
Err(_) => Ok(image),
Ok(icc_profile) => match image.color() {
ColorType::L8 => Ok(DynamicImage::ImageLuma8(
process_color_space_from_icc_profile_to_srgb::<_, _, 1>(
&image,
icc_profile,
),
)),
ColorType::L16 => Ok(DynamicImage::ImageLuma16(
process_color_space_from_icc_profile_to_srgb::<_, _, 2>(
&image,
icc_profile,
),
)),
ColorType::La8 => Ok(DynamicImage::ImageLumaA8(
process_color_space_from_icc_profile_to_srgb::<_, _, 2>(
&image,
icc_profile,
),
)),
ColorType::La16 => Ok(DynamicImage::ImageLumaA16(
process_color_space_from_icc_profile_to_srgb::<_, _, 4>(
&image,
icc_profile,
),
)),
ColorType::Rgb8 => Ok(DynamicImage::ImageRgb8(
process_color_space_from_icc_profile_to_srgb::<_, _, 3>(
&image,
icc_profile,
),
)),
ColorType::Rgb16 => Ok(DynamicImage::ImageRgb16(
process_color_space_from_icc_profile_to_srgb::<_, _, 6>(
&image,
icc_profile,
),
)),
ColorType::Rgba8 => Ok(DynamicImage::ImageRgba8(
process_color_space_from_icc_profile_to_srgb::<_, _, 4>(
&image,
icc_profile,
),
)),
ColorType::Rgba16 => Ok(DynamicImage::ImageRgba16(
process_color_space_from_icc_profile_to_srgb::<_, _, 8>(
&image,
icc_profile,
),
)),
_ => Err(type_error(image_error_message(
"apply colorspaceConversion: default",
"The color type is not supported.",
))),
},
},
},
ImageBitmapSource::ImageData => match predefined_color_space {
// If the color space is sRGB, return the image as is.
PredefinedColorSpace::Srgb => Ok(image),
PredefinedColorSpace::DisplayP3 => {
match image.color() {
// The conversion of the lumincance color types to the display-p3 color space is meaningless.
ColorType::L8 => Ok(DynamicImage::ImageLuma8(image.to_luma8())),
ColorType::L16 => {
Ok(DynamicImage::ImageLuma16(image.to_luma16()))
}
ColorType::La8 => {
Ok(DynamicImage::ImageLumaA8(image.to_luma_alpha8()))
}
ColorType::La16 => {
Ok(DynamicImage::ImageLumaA16(image.to_luma_alpha16()))
}
ColorType::Rgb8 => Ok(DynamicImage::ImageRgb8(
process_srgb_to_display_p3(&image.to_rgb8()),
)),
ColorType::Rgb16 => Ok(DynamicImage::ImageRgb16(
process_srgb_to_display_p3(&image.to_rgb16()),
)),
ColorType::Rgba8 => Ok(DynamicImage::ImageRgba8(
process_srgb_to_display_p3(&image.to_rgba8()),
)),
ColorType::Rgba16 => Ok(DynamicImage::ImageRgba16(
process_srgb_to_display_p3(&image.to_rgba16()),
)),
_ => Err(type_error(image_error_message(
"apply colorspace: display-p3",
"The color type is not supported.",
))),
}
}
},
}
}
}
}
#[derive(Debug, Deserialize, PartialEq)]
#[serde(rename_all = "camelCase")]
enum ImageResizeQuality {
Pixelated,
Low,
Medium,
High,
}
#[derive(Debug, Deserialize, PartialEq)]
// Follow the cases defined in the spec
enum ImageBitmapSource {
Blob,
ImageData,
}
#[derive(Debug, Deserialize, PartialEq)]
#[serde(rename_all = "camelCase")]
enum PremultiplyAlpha {
Default,
Premultiply,
None,
}
// https://github.com/gfx-rs/wgpu/blob/04618b36a89721c23dc46f5844c71c0e10fc7844/wgpu-types/src/lib.rs#L6948C10-L6948C30
#[derive(Debug, Deserialize, PartialEq)]
#[serde(rename_all = "camelCase")]
enum PredefinedColorSpace {
Srgb,
#[serde(rename = "display-p3")]
DisplayP3,
}
#[derive(Debug, Deserialize, PartialEq)]
#[serde(rename_all = "camelCase")]
enum ColorSpaceConversion {
Default,
None,
}
#[derive(Debug, Deserialize, PartialEq)]
#[serde(rename_all = "camelCase")]
enum ImageOrientation {
FlipY,
#[serde(rename = "from-image")]
FromImage,
}
#[derive(Debug, Deserialize)]
#[serde(rename_all = "camelCase")]
struct ImageProcessArgs {
width: u32,
height: u32,
sx: Option<i32>,
sy: Option<i32>,
sw: Option<i32>,
sh: Option<i32>,
image_orientation: ImageOrientation,
premultiply_alpha: PremultiplyAlpha,
predefined_color_space: PredefinedColorSpace,
color_space_conversion: ColorSpaceConversion,
resize_width: Option<u32>,
resize_height: Option<u32>,
resize_quality: ImageResizeQuality,
image_bitmap_source: ImageBitmapSource,
mime_type: String,
}
#[derive(Debug, Serialize)]
#[serde(rename_all = "camelCase")]
struct ImageProcessResult {
data: ToJsBuffer,
width: u32,
height: u32,
}
//
// About the animated image
// > Blob .4
// > ... If this is an animated image, imageBitmap's bitmap data must only be taken from
// > the default image of the animation (the one that the format defines is to be used when animation is
// > not supported or is disabled), or, if there is no such image, the first frame of the animation.
// https://html.spec.whatwg.org/multipage/imagebitmap-and-animations.html
//
// see also browser implementations: (The implementation of Gecko and WebKit is hard to read.)
// https://source.chromium.org/chromium/chromium/src/+/bdbc054a6cabbef991904b5df9066259505cc686:third_party/blink/renderer/platform/image-decoders/image_decoder.h;l=175-189
//
trait ImageDecoderFromReader<'a, R: BufRead + Seek> {
fn to_decoder(reader: R) -> Result<Self, AnyError>
where
Self: Sized;
fn to_intermediate_image(self) -> Result<DynamicImage, AnyError>;
fn get_icc_profile(&mut self) -> Option<Vec<u8>>;
}
type ImageDecoderFromReaderType<'a> = BufReader<Cursor<&'a [u8]>>;
fn image_decoding_error(error: ImageError) -> DOMExceptionInvalidStateError {
DOMExceptionInvalidStateError::new(&image_error_message(
"decoding",
&error.to_string(),
))
}
macro_rules! impl_image_decoder_from_reader {
($decoder:ty, $reader:ty) => {
impl<'a, R: BufRead + Seek> ImageDecoderFromReader<'a, R> for $decoder {
fn to_decoder(reader: R) -> Result<Self, AnyError>
where
Self: Sized,
{
match <$decoder>::new(reader) {
Ok(decoder) => Ok(decoder),
Err(err) => return Err(image_decoding_error(err).into()),
}
}
fn to_intermediate_image(self) -> Result<DynamicImage, AnyError> {
match DynamicImage::from_decoder(self) {
Ok(image) => Ok(image),
Err(err) => Err(image_decoding_error(err).into()),
}
}
fn get_icc_profile(&mut self) -> Option<Vec<u8>> {
match self.icc_profile() {
Ok(profile) => profile,
Err(_) => None,
}
}
}
};
}
// If PngDecoder decodes an animated image, it returns the default image if one is set, or the first frame if not.
impl_image_decoder_from_reader!(PngDecoder<R>, ImageDecoderFromReaderType);
impl_image_decoder_from_reader!(JpegDecoder<R>, ImageDecoderFromReaderType);
// The GifDecoder decodes the first frame.
impl_image_decoder_from_reader!(GifDecoder<R>, ImageDecoderFromReaderType);
impl_image_decoder_from_reader!(BmpDecoder<R>, ImageDecoderFromReaderType);
impl_image_decoder_from_reader!(IcoDecoder<R>, ImageDecoderFromReaderType);
// The WebPDecoder decodes the first frame.
impl_image_decoder_from_reader!(WebPDecoder<R>, ImageDecoderFromReaderType);
type DecodeBitmapDataReturn = (DynamicImage, u32, u32, Option<Vec<u8>>);
fn decode_bitmap_data(
buf: &[u8],
width: u32,
height: u32,
image_bitmap_source: &ImageBitmapSource,
mime_type: String,
) -> Result<DecodeBitmapDataReturn, AnyError> {
let (view, width, height, icc_profile) = match image_bitmap_source {
ImageBitmapSource::Blob => {
let (image, icc_profile) = match &*mime_type {
// Should we support the "image/apng" MIME type here?
"image/png" => {
let mut decoder: PngDecoder<ImageDecoderFromReaderType> =
ImageDecoderFromReader::to_decoder(BufReader::new(Cursor::new(
buf,
)))?;
let icc_profile = decoder.get_icc_profile();
(decoder.to_intermediate_image()?, icc_profile)
}
"image/jpeg" => {
let mut decoder: JpegDecoder<ImageDecoderFromReaderType> =
ImageDecoderFromReader::to_decoder(BufReader::new(Cursor::new(
buf,
)))?;
let icc_profile = decoder.get_icc_profile();
(decoder.to_intermediate_image()?, icc_profile)
}
"image/gif" => {
let mut decoder: GifDecoder<ImageDecoderFromReaderType> =
ImageDecoderFromReader::to_decoder(BufReader::new(Cursor::new(
buf,
)))?;
let icc_profile = decoder.get_icc_profile();
(decoder.to_intermediate_image()?, icc_profile)
}
"image/bmp" => {
let mut decoder: BmpDecoder<ImageDecoderFromReaderType> =
ImageDecoderFromReader::to_decoder(BufReader::new(Cursor::new(
buf,
)))?;
let icc_profile = decoder.get_icc_profile();
(decoder.to_intermediate_image()?, icc_profile)
}
"image/x-icon" => {
let mut decoder: IcoDecoder<ImageDecoderFromReaderType> =
ImageDecoderFromReader::to_decoder(BufReader::new(Cursor::new(
buf,
)))?;
let icc_profile = decoder.get_icc_profile();
(decoder.to_intermediate_image()?, icc_profile)
}
"image/webp" => {
let mut decoder: WebPDecoder<ImageDecoderFromReaderType> =
ImageDecoderFromReader::to_decoder(BufReader::new(Cursor::new(
buf,
)))?;
let icc_profile = decoder.get_icc_profile();
(decoder.to_intermediate_image()?, icc_profile)
}
"" => {
return Err(
DOMExceptionInvalidStateError::new(
&format!("The MIME type of source image is not specified.
INFO: The behavior of the Blob constructor in browsers is different from the spec.
It needs to specify the MIME type like {} that works well between Deno and browsers.
See: https://developer.mozilla.org/en-US/docs/Web/API/Blob/type\n",
cyan("new Blob([blobParts], { type: 'image/png' })")
)).into(),
)
}
// return an error if the MIME type is not supported in the variable list of ImageTypePatternTable below
// ext/web/01_mimesniff.js
//
// NOTE: Chromium supports AVIF
// https://source.chromium.org/chromium/chromium/src/+/ef3f4e4ed97079dc57861d1195fb2389483bc195:third_party/blink/renderer/platform/image-decoders/image_decoder.cc;l=311
x => {
return Err(
DOMExceptionInvalidStateError::new(
&format!("The the MIME type {} of source image is not a supported format.
INFO: The following MIME types are supported:
See: https://mimesniff.spec.whatwg.org/#image-type-pattern-matching-algorithm\n",
x
)).into()
)
}
};
let width = image.width();
let height = image.height();
(image, width, height, icc_profile)
}
ImageBitmapSource::ImageData => {
// > 4.12.5.1.15 Pixel manipulation
// > imagedata.data
// > Returns the one-dimensional array containing the data in RGBA order, as integers in the range 0 to 255.
// https://html.spec.whatwg.org/multipage/canvas.html#pixel-manipulation
let image = match RgbaImage::from_raw(width, height, buf.into()) {
Some(image) => image.into(),
None => {
return Err(type_error(image_error_message(
"decoding",
"The Chunk Data is not big enough with the specified width and height.",
)))
}
};
(image, width, height, None)
}
};
Ok((view, width, height, icc_profile))
}
#[op2]
#[serde]
fn op_image_process(
#[buffer] zero_copy: JsBuffer,
#[serde] args: ImageProcessArgs,
) -> Result<ImageProcessResult, AnyError> {
let buf = &*zero_copy;
let ImageProcessArgs {
width,
height,
sh,
sw,
sx,
sy,
image_orientation,
premultiply_alpha,
predefined_color_space,
color_space_conversion,
resize_width,
resize_height,
resize_quality,
image_bitmap_source,
mime_type,
} = ImageProcessArgs {
width: args.width,
height: args.height,
sx: args.sx,
sy: args.sy,
sw: args.sw,
sh: args.sh,
image_orientation: args.image_orientation,
premultiply_alpha: args.premultiply_alpha,
predefined_color_space: args.predefined_color_space,
color_space_conversion: args.color_space_conversion,
resize_width: args.resize_width,
resize_height: args.resize_height,
resize_quality: args.resize_quality,
image_bitmap_source: args.image_bitmap_source,
mime_type: args.mime_type,
};
let (view, width, height, icc_profile) =
decode_bitmap_data(buf, width, height, &image_bitmap_source, mime_type)?;
#[rustfmt::skip]
let source_rectangle: [[i32; 2]; 4] =
if let (Some(sx), Some(sy), Some(sw), Some(sh)) = (sx, sy, sw, sh) {
[
[sx, sy],
[sx + sw, sy],
[sx + sw, sy + sh],
[sx, sy + sh]
]
} else {
[
[0, 0],
[width as i32, 0],
[width as i32, height as i32],
[0, height as i32],
]
};
/*
* The cropping works differently than the spec specifies:
* The spec states to create an infinite surface and place the top-left corner
* of the image a 0,0 and crop based on sourceRectangle.
*
* We instead create a surface the size of sourceRectangle, and position
* the image at the correct location, which is the inverse of the x & y of
* sourceRectangle's top-left corner.
*/
let input_x = -(source_rectangle[0][0] as i64);
let input_y = -(source_rectangle[0][1] as i64);
let surface_width = (source_rectangle[1][0] - source_rectangle[0][0]) as u32;
let surface_height = (source_rectangle[3][1] - source_rectangle[0][1]) as u32;
let output_width = if let Some(resize_width) = resize_width {
resize_width
} else if let Some(resize_height) = resize_height {
(surface_width * resize_height).div_ceil(surface_height)
} else {
surface_width
};
let output_height = if let Some(resize_height) = resize_height {
resize_height
} else if let Some(resize_width) = resize_width {
(surface_height * resize_width).div_ceil(surface_width)
} else {
surface_height
};
let color = view.color();
let surface = if !(width == surface_width
&& height == surface_height
&& input_x == 0
&& input_y == 0)
{
let mut surface = DynamicImage::new(surface_width, surface_height, color);
overlay(&mut surface, &view, input_x, input_y);
surface
} else {
view
};
let filter_type = match resize_quality {
ImageResizeQuality::Pixelated => FilterType::Nearest,
ImageResizeQuality::Low => FilterType::Triangle,
ImageResizeQuality::Medium => FilterType::CatmullRom,
ImageResizeQuality::High => FilterType::Lanczos3,
};
// should use resize_exact
// https://github.com/image-rs/image/issues/1220#issuecomment-632060015
let image_out =
surface.resize_exact(output_width, output_height, filter_type);
//
// FIXME: It also need to fix about orientation when the spec is updated.
//
// > Multiple browser vendors discussed this a while back and (99% sure, from recollection)
// > agreed to change createImageBitmap's behavior.
// > The HTML spec should be updated to say:
// > first EXIF orientation is applied, and then if imageOrientation is flipY, the image is flipped vertically
// https://github.com/whatwg/html/issues/8085#issuecomment-2204696312
let image_out = if image_orientation == ImageOrientation::FlipY {
image_out.flipv()
} else {
image_out
};
// 9.
let image_out = apply_color_space_conversion(
image_out,
icc_profile,
&image_bitmap_source,
&color_space_conversion,
&predefined_color_space,
)?;
// 10.
if color.has_alpha() {
match premultiply_alpha {
// 1.
PremultiplyAlpha::Default => { /* noop */ }
// https://html.spec.whatwg.org/multipage/canvas.html#convert-from-premultiplied
// 2.
PremultiplyAlpha::Premultiply => {
let result = apply_premultiply_alpha(&image_out)?;
let data = to_js_buffer(&result);
return Ok(ImageProcessResult {
data,
width: output_width,
height: output_height,
});
}
// 3.
PremultiplyAlpha::None => {
// NOTE: It's not clear how to handle the case of ImageData.
// https://issues.chromium.org/issues/339759426
// https://github.com/whatwg/html/issues/5365
if image_bitmap_source == ImageBitmapSource::ImageData {
return Ok(ImageProcessResult {
data: image_out.clone().into_bytes().into(),
width: output_width,
height: output_height,
});
}
let result = apply_unpremultiply_alpha(&image_out)?;
let data = to_js_buffer(&result);
return Ok(ImageProcessResult {
data,
width: output_width,
height: output_height,
});
}
}
}
Ok(ImageProcessResult {
data: image_out.clone().into_bytes().into(),
width: output_width,
height: output_height,
})
}
deno_core::extension!(
deno_canvas,
deps = [deno_webidl, deno_web, deno_webgpu],
ops = [op_image_process],
lazy_loaded_esm = ["01_image.js"],
);
pub fn get_declaration() -> PathBuf {
PathBuf::from(env!("CARGO_MANIFEST_DIR")).join("lib.deno_canvas.d.ts")
}