1
0
Fork 0
mirror of https://github.com/denoland/deno.git synced 2025-01-21 13:00:36 -05:00
denoland-deno/ext/process/ipc.rs

559 lines
14 KiB
Rust
Raw Permalink Normal View History

// Copyright 2018-2025 the Deno authors. MIT license.
#![allow(unused)]
use std::cell::RefCell;
use std::future::Future;
use std::io;
use std::mem;
use std::pin::Pin;
use std::rc::Rc;
use std::sync::atomic::AtomicBool;
use std::sync::atomic::AtomicUsize;
use std::task::ready;
use std::task::Context;
use std::task::Poll;
use deno_core::serde;
use deno_core::serde_json;
use deno_core::AsyncRefCell;
use deno_core::CancelHandle;
use deno_core::ExternalOpsTracker;
use deno_core::RcRef;
use deno_io::BiPipe;
use deno_io::BiPipeRead;
use deno_io::BiPipeWrite;
use memchr::memchr;
use pin_project_lite::pin_project;
use tokio::io::AsyncRead;
use tokio::io::AsyncWriteExt;
use tokio::io::ReadBuf;
/// Tracks whether the IPC resources is currently
/// refed, and allows refing/unrefing it.
pub struct IpcRefTracker {
refed: AtomicBool,
tracker: OpsTracker,
}
/// A little wrapper so we don't have to get an
/// `ExternalOpsTracker` for tests. When we aren't
/// cfg(test), this will get optimized out.
enum OpsTracker {
External(ExternalOpsTracker),
#[cfg(test)]
Test,
}
impl OpsTracker {
fn ref_(&self) {
match self {
Self::External(tracker) => tracker.ref_op(),
#[cfg(test)]
Self::Test => {}
}
}
fn unref(&self) {
match self {
Self::External(tracker) => tracker.unref_op(),
#[cfg(test)]
Self::Test => {}
}
}
}
impl IpcRefTracker {
pub fn new(tracker: ExternalOpsTracker) -> Self {
Self {
refed: AtomicBool::new(false),
tracker: OpsTracker::External(tracker),
}
}
#[cfg(test)]
fn new_test() -> Self {
Self {
refed: AtomicBool::new(false),
tracker: OpsTracker::Test,
}
}
pub fn ref_(&self) {
if !self.refed.swap(true, std::sync::atomic::Ordering::AcqRel) {
self.tracker.ref_();
}
}
pub fn unref(&self) {
if self.refed.swap(false, std::sync::atomic::Ordering::AcqRel) {
self.tracker.unref();
}
}
}
pub struct IpcJsonStreamResource {
pub read_half: AsyncRefCell<IpcJsonStream>,
pub write_half: AsyncRefCell<BiPipeWrite>,
pub cancel: Rc<CancelHandle>,
pub queued_bytes: AtomicUsize,
pub ref_tracker: IpcRefTracker,
}
impl deno_core::Resource for IpcJsonStreamResource {
fn close(self: Rc<Self>) {
self.cancel.cancel();
}
}
impl IpcJsonStreamResource {
pub fn new(
stream: i64,
ref_tracker: IpcRefTracker,
) -> Result<Self, std::io::Error> {
let (read_half, write_half) = BiPipe::from_raw(stream as _)?.split();
Ok(Self {
read_half: AsyncRefCell::new(IpcJsonStream::new(read_half)),
write_half: AsyncRefCell::new(write_half),
cancel: Default::default(),
queued_bytes: Default::default(),
ref_tracker,
})
}
#[cfg(all(unix, test))]
pub fn from_stream(
stream: tokio::net::UnixStream,
ref_tracker: IpcRefTracker,
) -> Self {
let (read_half, write_half) = stream.into_split();
Self {
read_half: AsyncRefCell::new(IpcJsonStream::new(read_half.into())),
write_half: AsyncRefCell::new(write_half.into()),
cancel: Default::default(),
queued_bytes: Default::default(),
ref_tracker,
}
}
#[cfg(all(windows, test))]
pub fn from_stream(
pipe: tokio::net::windows::named_pipe::NamedPipeClient,
ref_tracker: IpcRefTracker,
) -> Self {
let (read_half, write_half) = tokio::io::split(pipe);
Self {
read_half: AsyncRefCell::new(IpcJsonStream::new(read_half.into())),
write_half: AsyncRefCell::new(write_half.into()),
cancel: Default::default(),
queued_bytes: Default::default(),
ref_tracker,
}
}
/// writes _newline terminated_ JSON message to the IPC pipe.
pub async fn write_msg_bytes(
self: Rc<Self>,
msg: &[u8],
) -> Result<(), io::Error> {
let mut write_half = RcRef::map(self, |r| &r.write_half).borrow_mut().await;
write_half.write_all(msg).await?;
Ok(())
}
}
// Initial capacity of the buffered reader and the JSON backing buffer.
//
// This is a tradeoff between memory usage and performance on large messages.
//
// 64kb has been chosen after benchmarking 64 to 66536 << 6 - 1 bytes per message.
pub const INITIAL_CAPACITY: usize = 1024 * 64;
/// A buffer for reading from the IPC pipe.
/// Similar to the internal buffer of `tokio::io::BufReader`.
///
/// This exists to provide buffered reading while granting mutable access
/// to the internal buffer (which isn't exposed through `tokio::io::BufReader`
/// or the `AsyncBufRead` trait). `simd_json` requires mutable access to an input
/// buffer for parsing, so this allows us to use the read buffer directly as the
/// input buffer without a copy (provided the message fits).
struct ReadBuffer {
buffer: Box<[u8]>,
pos: usize,
cap: usize,
}
impl ReadBuffer {
fn new() -> Self {
Self {
buffer: vec![0; INITIAL_CAPACITY].into_boxed_slice(),
pos: 0,
cap: 0,
}
}
fn get_mut(&mut self) -> &mut [u8] {
&mut self.buffer
}
fn available_mut(&mut self) -> &mut [u8] {
&mut self.buffer[self.pos..self.cap]
}
fn consume(&mut self, n: usize) {
self.pos = std::cmp::min(self.pos + n, self.cap);
}
fn needs_fill(&self) -> bool {
self.pos >= self.cap
}
}
#[derive(Debug, thiserror::Error, deno_error::JsError)]
pub enum IpcJsonStreamError {
#[class(inherit)]
#[error("{0}")]
Io(#[source] std::io::Error),
#[class(generic)]
#[error("{0}")]
SimdJson(#[source] simd_json::Error),
}
// JSON serialization stream over IPC pipe.
//
// `\n` is used as a delimiter between messages.
pub struct IpcJsonStream {
pipe: BiPipeRead,
buffer: Vec<u8>,
read_buffer: ReadBuffer,
}
impl IpcJsonStream {
fn new(pipe: BiPipeRead) -> Self {
Self {
pipe,
buffer: Vec::with_capacity(INITIAL_CAPACITY),
read_buffer: ReadBuffer::new(),
}
}
pub async fn read_msg(
&mut self,
) -> Result<Option<serde_json::Value>, IpcJsonStreamError> {
let mut json = None;
let nread = read_msg_inner(
&mut self.pipe,
&mut self.buffer,
&mut json,
&mut self.read_buffer,
)
.await
.map_err(IpcJsonStreamError::Io)?;
if nread == 0 {
// EOF.
return Ok(None);
}
let json = match json {
Some(v) => v,
None => {
// Took more than a single read and some buffering.
simd_json::from_slice(&mut self.buffer[..nread])
.map_err(IpcJsonStreamError::SimdJson)?
}
};
// Safety: Same as `Vec::clear` but without the `drop_in_place` for
// each element (nop for u8). Capacity remains the same.
unsafe {
self.buffer.set_len(0);
}
Ok(Some(json))
}
}
pin_project! {
#[must_use = "futures do nothing unless you `.await` or poll them"]
struct ReadMsgInner<'a, R: ?Sized> {
reader: &'a mut R,
buf: &'a mut Vec<u8>,
json: &'a mut Option<serde_json::Value>,
// The number of bytes appended to buf. This can be less than buf.len() if
// the buffer was not empty when the operation was started.
read: usize,
read_buffer: &'a mut ReadBuffer,
}
}
fn read_msg_inner<'a, R>(
reader: &'a mut R,
buf: &'a mut Vec<u8>,
json: &'a mut Option<serde_json::Value>,
read_buffer: &'a mut ReadBuffer,
) -> ReadMsgInner<'a, R>
where
R: AsyncRead + ?Sized + Unpin,
{
ReadMsgInner {
reader,
buf,
json,
read: 0,
read_buffer,
}
}
fn read_msg_internal<R: AsyncRead + ?Sized>(
mut reader: Pin<&mut R>,
cx: &mut Context<'_>,
buf: &mut Vec<u8>,
read_buffer: &mut ReadBuffer,
json: &mut Option<serde_json::Value>,
read: &mut usize,
) -> Poll<io::Result<usize>> {
loop {
let (done, used) = {
// effectively a tiny `poll_fill_buf`, but allows us to get a mutable reference to the buffer.
if read_buffer.needs_fill() {
let mut read_buf = ReadBuf::new(read_buffer.get_mut());
ready!(reader.as_mut().poll_read(cx, &mut read_buf))?;
read_buffer.cap = read_buf.filled().len();
read_buffer.pos = 0;
}
let available = read_buffer.available_mut();
if let Some(i) = memchr(b'\n', available) {
if *read == 0 {
// Fast path: parse and put into the json slot directly.
json.replace(
simd_json::from_slice(&mut available[..i + 1])
.map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))?,
);
} else {
// This is not the first read, so we have to copy the data
// to make it contiguous.
buf.extend_from_slice(&available[..=i]);
}
(true, i + 1)
} else {
buf.extend_from_slice(available);
(false, available.len())
}
};
read_buffer.consume(used);
*read += used;
if done || used == 0 {
return Poll::Ready(Ok(mem::replace(read, 0)));
}
}
}
impl<R: AsyncRead + ?Sized + Unpin> Future for ReadMsgInner<'_, R> {
type Output = io::Result<usize>;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let me = self.project();
read_msg_internal(
Pin::new(*me.reader),
cx,
me.buf,
me.read_buffer,
me.json,
me.read,
)
}
}
#[cfg(test)]
mod tests {
use std::rc::Rc;
use deno_core::serde_json::json;
use deno_core::v8;
use deno_core::JsRuntime;
use deno_core::RcRef;
use deno_core::RuntimeOptions;
use super::IpcJsonStreamResource;
#[allow(clippy::unused_async)]
#[cfg(unix)]
pub async fn pair() -> (Rc<IpcJsonStreamResource>, tokio::net::UnixStream) {
let (a, b) = tokio::net::UnixStream::pair().unwrap();
/* Similar to how ops would use the resource */
let a = Rc::new(IpcJsonStreamResource::from_stream(
a,
super::IpcRefTracker::new_test(),
));
(a, b)
}
#[cfg(windows)]
pub async fn pair() -> (
Rc<IpcJsonStreamResource>,
tokio::net::windows::named_pipe::NamedPipeServer,
) {
use tokio::net::windows::named_pipe::ClientOptions;
use tokio::net::windows::named_pipe::ServerOptions;
let name =
format!(r"\\.\pipe\deno-named-pipe-test-{}", rand::random::<u32>());
let server = ServerOptions::new().create(name.clone()).unwrap();
let client = ClientOptions::new().open(name).unwrap();
server.connect().await.unwrap();
/* Similar to how ops would use the resource */
let client = Rc::new(IpcJsonStreamResource::from_stream(
client,
super::IpcRefTracker::new_test(),
));
(client, server)
}
#[allow(clippy::print_stdout)]
#[tokio::test]
async fn bench_ipc() -> Result<(), Box<dyn std::error::Error>> {
// A simple round trip benchmark for quick dev feedback.
//
// Only ran when the env var is set.
if std::env::var_os("BENCH_IPC_DENO").is_none() {
return Ok(());
}
let (ipc, mut fd2) = pair().await;
let child = tokio::spawn(async move {
use tokio::io::AsyncWriteExt;
let size = 1024 * 1024;
let stri = "x".repeat(size);
let data = format!("\"{}\"\n", stri);
for _ in 0..100 {
fd2.write_all(data.as_bytes()).await?;
}
Ok::<_, std::io::Error>(())
});
let start = std::time::Instant::now();
let mut bytes = 0;
let mut ipc = RcRef::map(ipc, |r| &r.read_half).borrow_mut().await;
loop {
let Some(msgs) = ipc.read_msg().await? else {
break;
};
bytes += msgs.as_str().unwrap().len();
if start.elapsed().as_secs() > 5 {
break;
}
}
let elapsed = start.elapsed();
let mb = bytes as f64 / 1024.0 / 1024.0;
println!("{} mb/s", mb / elapsed.as_secs_f64());
child.await??;
Ok(())
}
#[tokio::test]
async fn unix_ipc_json() -> Result<(), Box<dyn std::error::Error>> {
let (ipc, mut fd2) = pair().await;
let child = tokio::spawn(async move {
use tokio::io::AsyncReadExt;
use tokio::io::AsyncWriteExt;
const EXPECTED: &[u8] = b"\"hello\"\n";
let mut buf = [0u8; EXPECTED.len()];
let n = fd2.read_exact(&mut buf).await?;
assert_eq!(&buf[..n], EXPECTED);
fd2.write_all(b"\"world\"\n").await?;
Ok::<_, std::io::Error>(())
});
ipc
.clone()
.write_msg_bytes(&json_to_bytes(json!("hello")))
.await?;
let mut ipc = RcRef::map(ipc, |r| &r.read_half).borrow_mut().await;
let msgs = ipc.read_msg().await?.unwrap();
assert_eq!(msgs, json!("world"));
child.await??;
Ok(())
}
fn json_to_bytes(v: deno_core::serde_json::Value) -> Vec<u8> {
let mut buf = deno_core::serde_json::to_vec(&v).unwrap();
buf.push(b'\n');
buf
}
#[tokio::test]
async fn unix_ipc_json_multi() -> Result<(), Box<dyn std::error::Error>> {
let (ipc, mut fd2) = pair().await;
let child = tokio::spawn(async move {
use tokio::io::AsyncReadExt;
use tokio::io::AsyncWriteExt;
const EXPECTED: &[u8] = b"\"hello\"\n\"world\"\n";
let mut buf = [0u8; EXPECTED.len()];
let n = fd2.read_exact(&mut buf).await?;
assert_eq!(&buf[..n], EXPECTED);
fd2.write_all(b"\"foo\"\n\"bar\"\n").await?;
Ok::<_, std::io::Error>(())
});
ipc
.clone()
.write_msg_bytes(&json_to_bytes(json!("hello")))
.await?;
ipc
.clone()
.write_msg_bytes(&json_to_bytes(json!("world")))
.await?;
let mut ipc = RcRef::map(ipc, |r| &r.read_half).borrow_mut().await;
let msgs = ipc.read_msg().await?.unwrap();
assert_eq!(msgs, json!("foo"));
child.await??;
Ok(())
}
#[tokio::test]
async fn unix_ipc_json_invalid() -> Result<(), Box<dyn std::error::Error>> {
let (ipc, mut fd2) = pair().await;
let child = tokio::spawn(async move {
tokio::io::AsyncWriteExt::write_all(&mut fd2, b"\n\n").await?;
Ok::<_, std::io::Error>(())
});
let mut ipc = RcRef::map(ipc, |r| &r.read_half).borrow_mut().await;
let _err = ipc.read_msg().await.unwrap_err();
child.await??;
Ok(())
}
#[test]
fn memchr() {
let str = b"hello world";
assert_eq!(super::memchr(b'h', str), Some(0));
assert_eq!(super::memchr(b'w', str), Some(6));
assert_eq!(super::memchr(b'd', str), Some(10));
assert_eq!(super::memchr(b'x', str), None);
let empty = b"";
assert_eq!(super::memchr(b'\n', empty), None);
}
}