1
0
Fork 0
mirror of https://github.com/denoland/deno.git synced 2025-01-21 21:50:00 -05:00
denoland-deno/src/isolate.rs

343 lines
9.4 KiB
Rust
Raw Normal View History

// Copyright 2018 the Deno authors. All rights reserved. MIT license.
// Do not use FlatBuffers in this module.
// TODO Currently this module uses Tokio, but it would be nice if they were
// decoupled.
use deno_dir;
use errors::DenoError;
use flags;
use libdeno;
use futures::Future;
use libc::c_void;
use std;
use std::ffi::CStr;
use std::ffi::CString;
use std::sync::atomic;
use std::sync::mpsc;
use std::sync::Arc;
use std::sync::Mutex;
2018-10-02 17:47:40 -07:00
use std::time::Duration;
use std::time::Instant;
use tokio;
use tokio_util;
type DenoException<'a> = &'a str;
// Buf represents a byte array returned from a "Op".
// The message might be empty (which will be translated into a null object on
// the javascript side) or it is a heap allocated opaque sequence of bytes.
// Usually a flatbuffer message.
pub type Buf = Box<[u8]>;
// JS promises in Deno map onto a specific Future
// which yields either a DenoError or a byte array.
pub type Op = Future<Item = Buf, Error = DenoError> + Send;
// Returns (is_sync, op)
pub type Dispatch =
2018-10-02 17:47:40 -07:00
fn(isolate: &mut Isolate, buf: &[u8], data_buf: &'static mut [u8])
-> (bool, Box<Op>);
pub struct Isolate {
libdeno_isolate: *const libdeno::isolate,
dispatch: Dispatch,
rx: mpsc::Receiver<(i32, Buf)>,
2018-10-07 04:14:33 +02:00
ntasks: i32,
2018-10-02 17:47:40 -07:00
pub timeout_due: Option<Instant>,
pub state: Arc<IsolateState>,
}
// Isolate cannot be passed between threads but IsolateState can. So any state that
// needs to be accessed outside the main V8 thread should be inside IsolateState.
pub struct IsolateState {
pub dir: deno_dir::DenoDir,
pub argv: Vec<String>,
pub flags: flags::DenoFlags,
tx: Mutex<Option<mpsc::Sender<(i32, Buf)>>>,
}
impl IsolateState {
// Thread safe.
fn send_to_js(&self, req_id: i32, buf: Buf) {
let mut g = self.tx.lock().unwrap();
let maybe_tx = g.as_mut();
assert!(maybe_tx.is_some(), "Expected tx to not be deleted.");
let tx = maybe_tx.unwrap();
tx.send((req_id, buf)).expect("tx.send error");
}
}
static DENO_INIT: std::sync::Once = std::sync::ONCE_INIT;
impl Isolate {
pub fn new(argv: Vec<String>, dispatch: Dispatch) -> Box<Isolate> {
DENO_INIT.call_once(|| {
unsafe { libdeno::deno_init() };
});
let (flags, argv_rest) = flags::set_flags(argv);
// This channel handles sending async messages back to the runtime.
let (tx, rx) = mpsc::channel::<(i32, Buf)>();
let mut isolate = Box::new(Isolate {
libdeno_isolate: 0 as *const libdeno::isolate,
dispatch,
rx,
2018-10-07 04:14:33 +02:00
ntasks: 0,
2018-10-02 17:47:40 -07:00
timeout_due: None,
state: Arc::new(IsolateState {
dir: deno_dir::DenoDir::new(flags.reload, None).unwrap(),
argv: argv_rest,
flags,
tx: Mutex::new(Some(tx)),
}),
});
(*isolate).libdeno_isolate = unsafe {
libdeno::deno_new(isolate.as_mut() as *mut _ as *mut c_void, pre_dispatch)
};
isolate
}
pub fn from_c<'a>(d: *const libdeno::isolate) -> &'a mut Isolate {
let ptr = unsafe { libdeno::deno_get_data(d) };
let ptr = ptr as *mut Isolate;
let isolate_box = unsafe { Box::from_raw(ptr) };
Box::leak(isolate_box)
}
pub fn execute(
&self,
js_filename: &str,
js_source: &str,
) -> Result<(), DenoException> {
let filename = CString::new(js_filename).unwrap();
let source = CString::new(js_source).unwrap();
let r = unsafe {
libdeno::deno_execute(
self.libdeno_isolate,
filename.as_ptr(),
source.as_ptr(),
)
};
if r == 0 {
let ptr = unsafe { libdeno::deno_last_exception(self.libdeno_isolate) };
let cstr = unsafe { CStr::from_ptr(ptr) };
return Err(cstr.to_str().unwrap());
}
Ok(())
}
pub fn respond(&self, req_id: i32, buf: Buf) {
// TODO(zero-copy) Use Buf::leak(buf) to leak the heap allocated buf. And
// don't do the memcpy in ImportBuf() (in libdeno/binding.cc)
unsafe { libdeno::deno_respond(self.libdeno_isolate, req_id, buf.into()) }
}
2018-10-02 17:47:40 -07:00
fn complete_op(&mut self, req_id: i32, buf: Buf) {
// Receiving a message on rx exactly corresponds to an async task
// completing.
self.ntasks_decrement();
// Call into JS with the buf.
self.respond(req_id, buf);
}
fn timeout(&self) {
let dummy_buf = libdeno::deno_buf {
alloc_ptr: 0 as *mut u8,
alloc_len: 0,
data_ptr: 0 as *mut u8,
data_len: 0,
};
unsafe { libdeno::deno_respond(self.libdeno_isolate, -1, dummy_buf) }
2018-10-02 17:47:40 -07:00
}
// TODO Use Park abstraction? Note at time of writing Tokio default runtime
// does not have new_with_park().
pub fn event_loop(&mut self) {
// Main thread event loop.
while !self.is_idle() {
2018-10-02 17:47:40 -07:00
// Ideally, mpsc::Receiver would have a receive method that takes a optional
// timeout. But it doesn't so we need all this duplicate code.
match self.timeout_due {
Some(due) => {
// Subtracting two Instants causes a panic if the resulting duration
// would become negative. Avoid this.
let now = Instant::now();
let timeout = if due > now {
due - now
} else {
Duration::new(0, 0)
};
// TODO: use recv_deadline() instead of recv_timeout() when this
// feature becomes stable/available.
match self.rx.recv_timeout(timeout) {
Ok((req_id, buf)) => self.complete_op(req_id, buf),
Err(mpsc::RecvTimeoutError::Timeout) => self.timeout(),
Err(e) => panic!("mpsc::Receiver::recv_timeout() failed: {:?}", e),
}
}
None => match self.rx.recv() {
Ok((req_id, buf)) => self.complete_op(req_id, buf),
Err(e) => panic!("mpsc::Receiver::recv() failed: {:?}", e),
},
};
}
}
fn ntasks_increment(&mut self) {
2018-10-07 04:14:33 +02:00
assert!(self.ntasks >= 0);
self.ntasks = self.ntasks + 1;
}
fn ntasks_decrement(&mut self) {
2018-10-07 04:14:33 +02:00
self.ntasks = self.ntasks - 1;
assert!(self.ntasks >= 0);
}
fn is_idle(&self) -> bool {
2018-10-07 04:14:33 +02:00
self.ntasks == 0 && self.timeout_due.is_none()
}
}
impl Drop for Isolate {
fn drop(&mut self) {
unsafe { libdeno::deno_delete(self.libdeno_isolate) }
}
}
/// Converts Rust Buf to libdeno deno_buf.
impl From<Buf> for libdeno::deno_buf {
fn from(x: Buf) -> libdeno::deno_buf {
let len = x.len();
let ptr = Box::into_raw(x);
libdeno::deno_buf {
alloc_ptr: 0 as *mut u8,
alloc_len: 0,
data_ptr: ptr as *mut u8,
data_len: len,
}
}
}
// Dereferences the C pointer into the Rust Isolate object.
extern "C" fn pre_dispatch(
d: *const libdeno::isolate,
req_id: i32,
control_buf: libdeno::deno_buf,
data_buf: libdeno::deno_buf,
) {
// control_buf is only valid for the lifetime of this call, thus is
// interpretted as a slice.
let control_slice = unsafe {
std::slice::from_raw_parts(control_buf.data_ptr, control_buf.data_len)
};
// data_buf is valid for the lifetime of the promise, thus a mutable buf with
// static lifetime.
let data_slice = unsafe {
std::slice::from_raw_parts_mut::<'static>(
data_buf.data_ptr,
data_buf.data_len,
)
};
let isolate = Isolate::from_c(d);
let dispatch = isolate.dispatch;
2018-10-02 17:47:40 -07:00
let (is_sync, op) = dispatch(isolate, control_slice, data_slice);
if is_sync {
// Execute op synchronously.
let buf = tokio_util::block_on(op).unwrap();
if buf.len() != 0 {
// Set the synchronous response, the value returned from isolate.send().
isolate.respond(req_id, buf);
}
} else {
// Execute op asynchronously.
let state = isolate.state.clone();
// TODO Ideally Tokio would could tell us how many tasks are executing, but
// it cannot currently. Therefore we track top-level promises/tasks
// manually.
isolate.ntasks_increment();
let task = op
.and_then(move |buf| {
state.send_to_js(req_id, buf);
Ok(())
}).map_err(|_| ());
tokio::spawn(task);
}
}
#[cfg(test)]
mod tests {
use super::*;
use futures;
#[test]
fn test_c_to_rust() {
let argv = vec![String::from("./deno"), String::from("hello.js")];
let isolate = Isolate::new(argv, unreachable_dispatch);
let isolate2 = Isolate::from_c(isolate.libdeno_isolate);
assert_eq!(isolate.libdeno_isolate, isolate2.libdeno_isolate);
assert_eq!(
isolate.state.dir.root.join("gen"),
isolate.state.dir.gen,
"Sanity check"
);
}
fn unreachable_dispatch(
2018-10-02 17:47:40 -07:00
_isolate: &mut Isolate,
_control: &[u8],
_data: &'static mut [u8],
) -> (bool, Box<Op>) {
unreachable!();
}
#[test]
fn test_dispatch_sync() {
let argv = vec![String::from("./deno"), String::from("hello.js")];
let mut isolate = Isolate::new(argv, dispatch_sync);
tokio_util::init(|| {
isolate
.execute(
"y.js",
r#"
const m = new Uint8Array([4, 5, 6]);
let n = libdeno.send(m);
if (!(n.byteLength === 3 &&
n[0] === 1 &&
n[1] === 2 &&
n[2] === 3)) {
throw Error("assert error");
}
"#,
).expect("execute error");
isolate.event_loop();
});
}
fn dispatch_sync(
2018-10-02 17:47:40 -07:00
_isolate: &mut Isolate,
control: &[u8],
data: &'static mut [u8],
) -> (bool, Box<Op>) {
assert_eq!(control[0], 4);
assert_eq!(control[1], 5);
assert_eq!(control[2], 6);
assert_eq!(data.len(), 0);
// Send back some sync response.
let vec: Vec<u8> = vec![1, 2, 3];
let control = vec.into_boxed_slice();
let op = Box::new(futures::future::ok(control));
(true, op)
}
}