// Copyright 2018 the Deno authors. All rights reserved. MIT license. import * as ts from "typescript"; import { assetSourceCode } from "./assets"; import * as deno from "./deno"; import { globalEval } from "./global-eval"; import { libdeno } from "./libdeno"; import { window } from "./globals"; import * as os from "./os"; import { RawSourceMap } from "./types"; import { assert, log, notImplemented } from "./util"; import * as sourceMaps from "./v8_source_maps"; const EOL = "\n"; const ASSETS = "$asset$"; // tslint:disable:no-any type AmdCallback = (...args: any[]) => void; type AmdErrback = (err: any) => void; export type AmdFactory = (...args: any[]) => object | void; // tslint:enable:no-any export type AmdDefine = (deps: string[], factory: AmdFactory) => void; // The location that a module is being loaded from. This could be a directory, // like ".", or it could be a module specifier like // "http://gist.github.com/somefile.ts" type ContainingFile = string; // The internal local filename of a compiled module. It will often be something // like "/home/ry/.deno/gen/f7b4605dfbc4d3bb356e98fda6ceb1481e4a8df5.js" type ModuleFileName = string; // The external name of a module - could be a URL or could be a relative path. // Examples "http://gist.github.com/somefile.ts" or "./somefile.ts" type ModuleSpecifier = string; // The compiled source code which is cached in .deno/gen/ type OutputCode = string; /** * Abstraction of the APIs required from the `os` module so they can be * easily mocked. */ export interface Os { codeCache: typeof os.codeCache; codeFetch: typeof os.codeFetch; exit: typeof os.exit; } /** * Abstraction of the APIs required from the `typescript` module so they can * be easily mocked. */ export interface Ts { createLanguageService: typeof ts.createLanguageService; /* tslint:disable-next-line:max-line-length */ formatDiagnosticsWithColorAndContext: typeof ts.formatDiagnosticsWithColorAndContext; } /** * A simple object structure for caching resolved modules and their contents. * * Named `ModuleMetaData` to clarify it is just a representation of meta data of * the module, not the actual module instance. */ export class ModuleMetaData implements ts.IScriptSnapshot { public readonly exports = {}; public scriptVersion = ""; constructor( public readonly fileName: string, public readonly sourceCode = "", public outputCode = "" ) { if (outputCode !== "" || fileName.endsWith(".d.ts")) { this.scriptVersion = "1"; } } public getText(start: number, end: number): string { return this.sourceCode.substring(start, end); } public getLength(): number { return this.sourceCode.length; } public getChangeRange(): undefined { // Required `IScriptSnapshot` API, but not implemented/needed in deno return undefined; } } /** * The required minimal API to allow formatting of TypeScript compiler * diagnostics. */ const formatDiagnosticsHost: ts.FormatDiagnosticsHost = { getCurrentDirectory: () => ".", getCanonicalFileName: (fileName: string) => fileName, getNewLine: () => EOL }; /** * Throw a module resolution error, when a module is unsuccessfully resolved. */ function throwResolutionError( message: string, moduleSpecifier: ModuleSpecifier, containingFile: ContainingFile ): never { throw new Error( // tslint:disable-next-line:max-line-length `Cannot resolve module "${moduleSpecifier}" from "${containingFile}".\n ${message}` ); } // ts.ScriptKind is not available at runtime, so local enum definition enum ScriptKind { JS = 1, TS = 3, JSON = 6 } /** * A singleton class that combines the TypeScript Language Service host API * with Deno specific APIs to provide an interface for compiling and running * TypeScript and JavaScript modules. */ export class DenoCompiler implements ts.LanguageServiceHost { // Modules are usually referenced by their ModuleSpecifier and ContainingFile, // and keeping a map of the resolved module file name allows more efficient // future resolution private readonly _fileNamesMap = new Map< ContainingFile, Map >(); // A reference to global eval, so it can be monkey patched during testing private _globalEval = globalEval; // A reference to the log utility, so it can be monkey patched during testing private _log = log; // A map of module file names to module meta data private readonly _moduleMetaDataMap = new Map< ModuleFileName, ModuleMetaData >(); // TODO ideally this are not static and can be influenced by command line // arguments private readonly _options: Readonly = { allowJs: true, module: ts.ModuleKind.AMD, outDir: "$deno$", // TODO https://github.com/denoland/deno/issues/23 inlineSourceMap: true, inlineSources: true, stripComments: true, target: ts.ScriptTarget.ESNext }; // A reference to the `./os.ts` module, so it can be monkey patched during // testing private _os: Os = os; // Used to contain the script file we are currently running private _scriptFileNames: string[] = []; // A reference to the TypeScript LanguageService instance so it can be // monkey patched during testing private _service: ts.LanguageService; // A reference to `typescript` module so it can be monkey patched during // testing private _ts: Ts = ts; // A reference to the global scope so it can be monkey patched during // testing private _window = window; /** * The TypeScript language service often refers to the resolved fileName of * a module, this is a shortcut to avoid unnecessary module resolution logic * for modules that may have been initially resolved by a `moduleSpecifier` * and `containingFile`. Also, `resolveModule()` throws when the module * cannot be resolved, which isn't always valid when dealing with the * TypeScript compiler, but the TypeScript compiler shouldn't be asking about * external modules that we haven't told it about yet. */ private _getModuleMetaData( fileName: ModuleFileName ): ModuleMetaData | undefined { return this._moduleMetaDataMap.has(fileName) ? this._moduleMetaDataMap.get(fileName) : fileName.startsWith(ASSETS) ? this.resolveModule(fileName, "") : undefined; } /** * Setup being able to map back source references back to their source * * TODO is this the best place for this? It is tightly coupled to how the * compiler works, but it is also tightly coupled to how the whole runtime * environment is bootstrapped. It also needs efficient access to the * `outputCode` of the module information, which exists inside of the * compiler instance. */ private _setupSourceMaps(): void { sourceMaps.install({ installPrepareStackTrace: true, getGeneratedContents: (fileName: string): string | RawSourceMap => { this._log("getGeneratedContents", fileName); if (fileName === "gen/bundle/main.js") { assert(libdeno.mainSource.length > 0); return libdeno.mainSource; } else if (fileName === "main.js.map") { return libdeno.mainSourceMap; } else if (fileName === "deno_main.js") { return ""; } else { const moduleMetaData = this._moduleMetaDataMap.get(fileName); if (!moduleMetaData) { this._log("getGeneratedContents cannot find", fileName); return ""; } return moduleMetaData.outputCode; } } }); } private constructor() { if (DenoCompiler._instance) { throw new TypeError("Attempt to create an additional compiler."); } this._service = this._ts.createLanguageService(this); this._setupSourceMaps(); } // Deno specific compiler API /** * Retrieve the output of the TypeScript compiler for a given `fileName`. */ compile(fileName: ModuleFileName): OutputCode { const service = this._service; const output = service.getEmitOutput(fileName); // Get the relevant diagnostics - this is 3x faster than // `getPreEmitDiagnostics`. const diagnostics = [ ...service.getCompilerOptionsDiagnostics(), ...service.getSyntacticDiagnostics(fileName), ...service.getSemanticDiagnostics(fileName) ]; if (diagnostics.length > 0) { const errMsg = this._ts.formatDiagnosticsWithColorAndContext( diagnostics, formatDiagnosticsHost ); console.log(errMsg); // All TypeScript errors are terminal for deno this._os.exit(1); } assert(!output.emitSkipped, "The emit was skipped for an unknown reason."); // Currently we are inlining source maps, there should be only 1 output file // See: https://github.com/denoland/deno/issues/23 assert( output.outputFiles.length === 1, "Only single file should be output." ); const [outputFile] = output.outputFiles; return outputFile.text; } /** * Create a localized AMD `define` function and return it. */ makeDefine(moduleMetaData: ModuleMetaData): AmdDefine { const localDefine = (deps: string[], factory: AmdFactory): void => { // TypeScript will emit a local require dependency when doing dynamic // `import()` const { _log: log } = this; const localExports = moduleMetaData.exports; // tslint:disable-next-line:no-any const resolveDependencies = (deps: string[]): any[] => { return deps.map(dep => { if (dep === "require") { return localRequire; } else if (dep === "exports") { return localExports; } else if (dep in DenoCompiler._builtins) { return DenoCompiler._builtins[dep]; } else { const depModuleMetaData = this.run(dep, moduleMetaData.fileName); return depModuleMetaData.exports; } }); }; // this is a function because we need hoisting function localRequire( deps: string[], callback: AmdCallback, errback: AmdErrback ): void { log("localRequire", deps); try { const args = resolveDependencies(deps); callback(...args); } catch (e) { errback(e); } } this._log("localDefine", moduleMetaData.fileName, deps, localExports); const args = resolveDependencies(deps); factory(...args); }; return localDefine; } /** * Given a `moduleSpecifier` and `containingFile` retrieve the cached * `fileName` for a given module. If the module has yet to be resolved * this will return `undefined`. */ resolveFileName( moduleSpecifier: ModuleSpecifier, containingFile: ContainingFile ): ModuleFileName | undefined { this._log("resolveFileName", { moduleSpecifier, containingFile }); const innerMap = this._fileNamesMap.get(containingFile); if (innerMap) { return innerMap.get(moduleSpecifier); } return undefined; } /** * Given a `moduleSpecifier` and `containingFile`, resolve the module and * return the `ModuleMetaData`. */ resolveModule( moduleSpecifier: ModuleSpecifier, containingFile: ContainingFile ): ModuleMetaData { this._log("resolveModule", { moduleSpecifier, containingFile }); assert(moduleSpecifier != null && moduleSpecifier.length > 0); let fileName = this.resolveFileName(moduleSpecifier, containingFile); if (fileName && this._moduleMetaDataMap.has(fileName)) { return this._moduleMetaDataMap.get(fileName)!; } let sourceCode: string | undefined; let outputCode: string | undefined; if ( moduleSpecifier.startsWith(ASSETS) || containingFile.startsWith(ASSETS) ) { // Assets are compiled into the runtime javascript bundle. // we _know_ `.pop()` will return a string, but TypeScript doesn't so // not null assertion const moduleId = moduleSpecifier.split("/").pop()!; const assetName = moduleId.includes(".") ? moduleId : `${moduleId}.d.ts`; assert(assetName in assetSourceCode, `No such asset "${assetName}"`); sourceCode = assetSourceCode[assetName]; fileName = `${ASSETS}/${assetName}`; } else { // We query Rust with a CodeFetch message. It will load the sourceCode, // and if there is any outputCode cached, will return that as well. let fetchResponse; try { fetchResponse = this._os.codeFetch(moduleSpecifier, containingFile); } catch (e) { return throwResolutionError( `os.codeFetch message: ${e.message}`, moduleSpecifier, containingFile ); } fileName = fetchResponse.filename || undefined; sourceCode = fetchResponse.sourceCode || undefined; outputCode = fetchResponse.outputCode || undefined; } if (!sourceCode || sourceCode.length === 0 || !fileName) { return throwResolutionError( "Invalid source code or file name.", moduleSpecifier, containingFile ); } this._log("resolveModule sourceCode length ", sourceCode.length); this.setFileName(moduleSpecifier, containingFile, fileName); if (fileName && this._moduleMetaDataMap.has(fileName)) { return this._moduleMetaDataMap.get(fileName)!; } const moduleMetaData = new ModuleMetaData(fileName, sourceCode, outputCode); this._moduleMetaDataMap.set(fileName, moduleMetaData); return moduleMetaData; } /** * Resolve the `fileName` for a given `moduleSpecifier` and `containingFile` */ resolveModuleName( moduleSpecifier: ModuleSpecifier, containingFile: ContainingFile ): ModuleFileName | undefined { const moduleMetaData = this.resolveModule(moduleSpecifier, containingFile); return moduleMetaData ? moduleMetaData.fileName : undefined; } /* tslint:disable-next-line:no-any */ /** * Execute a module based on the `moduleSpecifier` and the `containingFile` * and return the resulting `FileModule`. */ run( moduleSpecifier: ModuleSpecifier, containingFile: ContainingFile ): ModuleMetaData { this._log("run", { moduleSpecifier, containingFile }); const moduleMetaData = this.resolveModule(moduleSpecifier, containingFile); const fileName = moduleMetaData.fileName; this._scriptFileNames = [fileName]; const sourceCode = moduleMetaData.sourceCode; let outputCode = moduleMetaData.outputCode; if (!outputCode) { outputCode = moduleMetaData.outputCode = `${this.compile( fileName )}\n//# sourceURL=${fileName}`; moduleMetaData!.scriptVersion = "1"; this._os.codeCache(fileName, sourceCode, outputCode); } this._window.define = this.makeDefine(moduleMetaData); this._globalEval(moduleMetaData.outputCode); this._window.define = undefined; return moduleMetaData!; } /** * Caches the resolved `fileName` in relationship to the `moduleSpecifier` * and `containingFile` in order to reduce calls to the privileged side * to retrieve the contents of a module. */ setFileName( moduleSpecifier: ModuleSpecifier, containingFile: ContainingFile, fileName: ModuleFileName ): void { this._log("setFileName", { moduleSpecifier, containingFile }); let innerMap = this._fileNamesMap.get(containingFile); if (!innerMap) { innerMap = new Map(); this._fileNamesMap.set(containingFile, innerMap); } innerMap.set(moduleSpecifier, fileName); } // TypeScript Language Service API getCompilationSettings(): ts.CompilerOptions { this._log("getCompilationSettings()"); return this._options; } getNewLine(): string { return EOL; } getScriptFileNames(): string[] { // This is equal to `"files"` in the `tsconfig.json`, therefore we only need // to include the actual base source files we are evaluating at the moment, // which would be what is set during the `.run()` return this._scriptFileNames; } getScriptKind(fileName: ModuleFileName): ts.ScriptKind { this._log("getScriptKind()", fileName); const suffix = fileName.substr(fileName.lastIndexOf(".") + 1); switch (suffix) { case "ts": return ScriptKind.TS; case "js": return ScriptKind.JS; case "json": return ScriptKind.JSON; default: return this._options.allowJs ? ScriptKind.JS : ScriptKind.TS; } } getScriptVersion(fileName: ModuleFileName): string { this._log("getScriptVersion()", fileName); const moduleMetaData = this._getModuleMetaData(fileName); return (moduleMetaData && moduleMetaData.scriptVersion) || ""; } getScriptSnapshot(fileName: ModuleFileName): ts.IScriptSnapshot | undefined { this._log("getScriptSnapshot()", fileName); return this._getModuleMetaData(fileName); } getCurrentDirectory(): string { this._log("getCurrentDirectory()"); return ""; } getDefaultLibFileName(): string { this._log("getDefaultLibFileName()"); const moduleSpecifier = "lib.globals.d.ts"; const moduleMetaData = this.resolveModule(moduleSpecifier, ASSETS); return moduleMetaData.fileName; } useCaseSensitiveFileNames(): boolean { this._log("useCaseSensitiveFileNames"); return true; } readFile(path: string): string | undefined { this._log("readFile", path); return notImplemented(); } fileExists(fileName: string): boolean { const moduleMetaData = this._getModuleMetaData(fileName); const exists = moduleMetaData != null; this._log("fileExists", fileName, exists); return exists; } resolveModuleNames( moduleNames: ModuleSpecifier[], containingFile: ContainingFile ): ts.ResolvedModule[] { this._log("resolveModuleNames", { moduleNames, containingFile }); return moduleNames.map(name => { let resolvedFileName; if (name === "deno") { resolvedFileName = this.resolveModuleName("deno.d.ts", ASSETS); } else if (name === "compiler") { resolvedFileName = this.resolveModuleName("compiler.d.ts", ASSETS); } else if (name === "typescript") { resolvedFileName = this.resolveModuleName("typescript.d.ts", ASSETS); } else { resolvedFileName = this.resolveModuleName(name, containingFile); } // According to the interface we shouldn't return `undefined` but if we // fail to return the same length of modules to those we cannot resolve // then TypeScript fails on an assertion that the lengths can't be // different, so we have to return an "empty" resolved module // TODO: all this does is push the problem downstream, and TypeScript // will complain it can't identify the type of the file and throw // a runtime exception, so we need to handle missing modules better resolvedFileName = resolvedFileName || ""; // This flags to the compiler to not go looking to transpile functional // code, anything that is in `/$asset$/` is just library code const isExternalLibraryImport = resolvedFileName.startsWith(ASSETS); // TODO: we should be returning a ts.ResolveModuleFull return { resolvedFileName, isExternalLibraryImport }; }); } // Deno specific static properties and methods /** * Built in modules which can be returned to external modules * * Placed as a private static otherwise we get use before * declared with the `DenoCompiler` */ // tslint:disable-next-line:no-any private static _builtins: { [mid: string]: any } = { typescript: ts, deno, compiler: { DenoCompiler, ModuleMetaData } }; private static _instance: DenoCompiler | undefined; /** * Returns the instance of `DenoCompiler` or creates a new instance. */ static instance(): DenoCompiler { return ( DenoCompiler._instance || (DenoCompiler._instance = new DenoCompiler()) ); } }