// Copyright 2018 the Deno authors. All rights reserved. MIT license. use crate::js_errors::JSError; use crate::libdeno; use crate::libdeno::deno_buf; use crate::libdeno::deno_mod; use crate::shared_queue::SharedQueue; use crate::shared_queue::RECOMMENDED_SIZE; use futures::Async; use futures::Future; use futures::Poll; use libc::c_void; use std::ffi::CStr; use std::ffi::CString; use std::sync::{Arc, Mutex, Once, ONCE_INIT}; pub type Buf = Box<[u8]>; pub type Op = dyn Future + Send; struct PendingOp { op: Box, polled_recently: bool, zero_copy_id: usize, // non-zero if associated zero-copy buffer. } impl Future for PendingOp { type Item = Buf; type Error = (); fn poll(&mut self) -> Poll { // Do not call poll on ops we've already polled this turn. if self.polled_recently { Ok(Async::NotReady) } else { self.polled_recently = true; let op = &mut self.op; op.poll().map_err(|()| { // Ops should not error. If an op experiences an error it needs to // encode that error into a buf, so it can be returned to JS. panic!("ops should not error") }) } } } /// Stores a script used to initalize a Isolate pub struct StartupScript { pub source: String, pub filename: String, } /// Represents data used to initialize isolate at startup /// either a binary snapshot or a javascript source file /// in the form of the StartupScript struct. pub enum StartupData { Script(StartupScript), Snapshot(deno_buf), } /// Defines the behavior of an Isolate. pub trait Behavior { /// Allow for a behavior to define the snapshot or script used at /// startup to initalize the isolate. Called exactly once when an /// Isolate is created. fn startup_data(&mut self) -> Option; /// Called during mod_instantiate() to resolve imports. fn resolve(&mut self, specifier: &str, referrer: deno_mod) -> deno_mod; /// Called whenever libdeno.send() is called in JavaScript. zero_copy_buf /// corresponds to the second argument of libdeno.send(). fn dispatch( &mut self, control: &[u8], zero_copy_buf: deno_buf, ) -> (bool, Box); } /// A single execution context of JavaScript. Corresponds roughly to the "Web /// Worker" concept in the DOM. An Isolate is a Future that can be used with /// Tokio. The Isolate future complete when there is an error or when all /// pending ops have completed. /// /// Ops are created in JavaScript by calling libdeno.send(), and in Rust by /// implementing Behavior::dispatch. An Op corresponds exactly to a Promise in /// JavaScript. pub struct Isolate { libdeno_isolate: *const libdeno::isolate, shared_libdeno_isolate: Arc>>, behavior: B, needs_init: bool, shared: SharedQueue, pending_ops: Vec, polled_recently: bool, } unsafe impl Send for Isolate {} impl Drop for Isolate { fn drop(&mut self) { // remove shared_libdeno_isolate reference *self.shared_libdeno_isolate.lock().unwrap() = None; unsafe { libdeno::deno_delete(self.libdeno_isolate) } } } static DENO_INIT: Once = ONCE_INIT; impl Isolate { pub fn new(mut behavior: B) -> Self { DENO_INIT.call_once(|| { unsafe { libdeno::deno_init() }; }); let shared = SharedQueue::new(RECOMMENDED_SIZE); let needs_init = true; // Seperate into Option values for eatch startup type let (startup_snapshot, startup_script) = match behavior.startup_data() { Some(StartupData::Snapshot(d)) => (Some(d), None), Some(StartupData::Script(d)) => (None, Some(d)), None => (None, None), }; let config = libdeno::deno_config { will_snapshot: 0, load_snapshot: match startup_snapshot { Some(s) => s, None => libdeno::deno_buf::empty(), }, shared: shared.as_deno_buf(), recv_cb: Self::pre_dispatch, }; let libdeno_isolate = unsafe { libdeno::deno_new(config) }; let mut core_isolate = Self { libdeno_isolate, shared_libdeno_isolate: Arc::new(Mutex::new(Some(libdeno_isolate))), behavior, shared, needs_init, pending_ops: Vec::new(), polled_recently: false, }; // If we want to use execute this has to happen here sadly. match startup_script { Some(s) => core_isolate .execute(s.filename.as_str(), s.source.as_str()) .unwrap(), None => {} }; core_isolate } /// Get a thread safe handle on the isolate. pub fn shared_isolate_handle(&mut self) -> IsolateHandle { IsolateHandle { shared_libdeno_isolate: self.shared_libdeno_isolate.clone(), } } /// Executes a bit of built-in JavaScript to provide Deno._sharedQueue. pub fn shared_init(&mut self) { if self.needs_init { self.needs_init = false; js_check( self.execute("shared_queue.js", include_str!("shared_queue.js")), ); } } extern "C" fn pre_dispatch( user_data: *mut c_void, control_argv0: deno_buf, zero_copy_buf: deno_buf, ) { let isolate = unsafe { Isolate::::from_raw_ptr(user_data) }; let zero_copy_id = zero_copy_buf.zero_copy_id; let control_shared = isolate.shared.shift(); let (is_sync, op) = if control_argv0.len() > 0 { // The user called libdeno.send(control) isolate .behavior .dispatch(control_argv0.as_ref(), zero_copy_buf) } else if let Some(c) = control_shared { // The user called Deno._sharedQueue.push(control) isolate.behavior.dispatch(&c, zero_copy_buf) } else { // The sharedQueue is empty. The shouldn't happen usually, but it's also // not technically a failure. #[cfg(test)] unreachable!(); #[cfg(not(test))] return; }; // At this point the SharedQueue should be empty. assert_eq!(isolate.shared.size(), 0); if is_sync { let res_record = op.wait().unwrap(); // For sync messages, we always return the response via libdeno.send's // return value. // TODO(ry) check that if JSError thrown during respond(), that it will be // picked up. let _ = isolate.respond(Some(&res_record)); } else { isolate.pending_ops.push(PendingOp { op, polled_recently: false, zero_copy_id, }); isolate.polled_recently = false; } } fn zero_copy_release(&self, zero_copy_id: usize) { unsafe { libdeno::deno_zero_copy_release(self.libdeno_isolate, zero_copy_id) } } #[inline] unsafe fn from_raw_ptr<'a>(ptr: *const c_void) -> &'a mut Self { let ptr = ptr as *mut _; &mut *ptr } #[inline] fn as_raw_ptr(&self) -> *const c_void { self as *const _ as *const c_void } pub fn execute( &mut self, js_filename: &str, js_source: &str, ) -> Result<(), JSError> { self.shared_init(); let filename = CString::new(js_filename).unwrap(); let source = CString::new(js_source).unwrap(); unsafe { libdeno::deno_execute( self.libdeno_isolate, self.as_raw_ptr(), filename.as_ptr(), source.as_ptr(), ) }; if let Some(err) = self.last_exception() { return Err(err); } Ok(()) } fn last_exception(&self) -> Option { let ptr = unsafe { libdeno::deno_last_exception(self.libdeno_isolate) }; if ptr.is_null() { None } else { let cstr = unsafe { CStr::from_ptr(ptr) }; let v8_exception = cstr.to_str().unwrap(); debug!("v8_exception\n{}\n", v8_exception); let js_error = JSError::from_v8_exception(v8_exception).unwrap(); Some(js_error) } } fn check_promise_errors(&self) { unsafe { libdeno::deno_check_promise_errors(self.libdeno_isolate); } } fn respond(&mut self, maybe_buf: Option<&[u8]>) -> Result<(), JSError> { let buf = match maybe_buf { None => deno_buf::empty(), Some(r) => deno_buf::from(r), }; unsafe { libdeno::deno_respond(self.libdeno_isolate, self.as_raw_ptr(), buf) } if let Some(err) = self.last_exception() { Err(err) } else { Ok(()) } } /// Low-level module creation. /// You probably want to use IsolateState::mod_execute instead. pub fn mod_new( &self, main: bool, name: &str, source: &str, ) -> Result { let name_ = CString::new(name.to_string()).unwrap(); let name_ptr = name_.as_ptr() as *const libc::c_char; let source_ = CString::new(source.to_string()).unwrap(); let source_ptr = source_.as_ptr() as *const libc::c_char; let id = unsafe { libdeno::deno_mod_new(self.libdeno_isolate, main, name_ptr, source_ptr) }; if let Some(js_error) = self.last_exception() { assert_eq!(id, 0); return Err(js_error); } Ok(id) } pub fn mod_get_imports(&self, id: deno_mod) -> Vec { let len = unsafe { libdeno::deno_mod_imports_len(self.libdeno_isolate, id) }; let mut out = Vec::new(); for i in 0..len { let specifier_ptr = unsafe { libdeno::deno_mod_imports_get(self.libdeno_isolate, id, i) }; let specifier_c: &CStr = unsafe { CStr::from_ptr(specifier_ptr) }; let specifier: &str = specifier_c.to_str().unwrap(); out.push(specifier.to_string()); } out } pub fn mod_instantiate(&self, id: deno_mod) -> Result<(), JSError> { unsafe { libdeno::deno_mod_instantiate( self.libdeno_isolate, self.as_raw_ptr(), id, Self::resolve_cb, ) }; if let Some(js_error) = self.last_exception() { return Err(js_error); } Ok(()) } pub fn mod_evaluate(&mut self, id: deno_mod) -> Result<(), JSError> { self.shared_init(); unsafe { libdeno::deno_mod_evaluate(self.libdeno_isolate, self.as_raw_ptr(), id) }; if let Some(js_error) = self.last_exception() { return Err(js_error); } Ok(()) } /// Called during mod_instantiate() only. extern "C" fn resolve_cb( user_data: *mut libc::c_void, specifier_ptr: *const libc::c_char, referrer: deno_mod, ) -> deno_mod { let isolate = unsafe { Isolate::::from_raw_ptr(user_data) }; let specifier_c: &CStr = unsafe { CStr::from_ptr(specifier_ptr) }; let specifier: &str = specifier_c.to_str().unwrap(); isolate.behavior.resolve(specifier, referrer) } } struct LockerScope { libdeno_isolate: *const libdeno::isolate, } impl LockerScope { fn new(libdeno_isolate: *const libdeno::isolate) -> LockerScope { unsafe { libdeno::deno_lock(libdeno_isolate) } LockerScope { libdeno_isolate } } } impl Drop for LockerScope { fn drop(&mut self) { unsafe { libdeno::deno_unlock(self.libdeno_isolate) } } } impl Future for Isolate { type Item = (); type Error = JSError; fn poll(&mut self) -> Poll<(), JSError> { // Lock the current thread for V8. let _locker = LockerScope::new(self.libdeno_isolate); // Clear poll_recently state both on the Isolate itself and // on the pending ops. self.polled_recently = false; for pending in self.pending_ops.iter_mut() { pending.polled_recently = false; } while !self.polled_recently { let mut completed_count = 0; self.polled_recently = true; assert_eq!(self.shared.size(), 0); let mut overflow_response: Option = None; let mut i = 0; while i < self.pending_ops.len() { assert!(overflow_response.is_none()); let pending = &mut self.pending_ops[i]; match pending.poll() { Err(()) => panic!("unexpected error"), Ok(Async::NotReady) => { i += 1; } Ok(Async::Ready(buf)) => { let completed = self.pending_ops.remove(i); if completed.zero_copy_id > 0 { self.zero_copy_release(completed.zero_copy_id); } let successful_push = self.shared.push(&buf); if !successful_push { // If we couldn't push the response to the shared queue, because // there wasn't enough size, we will return the buffer via the // legacy route, using the argument of deno_respond. overflow_response = Some(buf); // reset `polled_recently` so pending ops can be // done even if shared space overflows self.polled_recently = false; break; } completed_count += 1; } } } if completed_count > 0 { self.respond(None)?; // The other side should have shifted off all the messages. assert_eq!(self.shared.size(), 0); } if overflow_response.is_some() { let buf = overflow_response.take().unwrap(); self.respond(Some(&buf))?; } } self.check_promise_errors(); if let Some(err) = self.last_exception() { return Err(err); } // We're idle if pending_ops is empty. if self.pending_ops.is_empty() { Ok(futures::Async::Ready(())) } else { Ok(futures::Async::NotReady) } } } /// IsolateHandle is a thread safe handle on an Isolate. It exposed thread safe V8 functions. #[derive(Clone)] pub struct IsolateHandle { shared_libdeno_isolate: Arc>>, } unsafe impl Send for IsolateHandle {} impl IsolateHandle { /// Terminate the execution of any currently running javascript. /// After terminating execution it is probably not wise to continue using /// the isolate. pub fn terminate_execution(&self) { unsafe { match *self.shared_libdeno_isolate.lock().unwrap() { Some(isolate) => libdeno::deno_terminate_execution(isolate), None => (), } } } } pub fn js_check(r: Result<(), JSError>) { if let Err(e) = r { panic!(e.to_string()); } } #[cfg(test)] mod tests { use super::*; use std::collections::HashMap; pub enum TestBehaviorMode { AsyncImmediate, OverflowReqSync, OverflowResSync, OverflowReqAsync, OverflowResAsync, } pub struct TestBehavior { pub dispatch_count: usize, pub resolve_count: usize, pub mod_map: HashMap, mode: TestBehaviorMode, } impl TestBehavior { pub fn setup(mode: TestBehaviorMode) -> Isolate { let mut isolate = Isolate::new(TestBehavior { dispatch_count: 0, resolve_count: 0, mode, mod_map: HashMap::new(), }); js_check(isolate.execute( "setup.js", r#" function assert(cond) { if (!cond) { throw Error("assert"); } } "#, )); assert_eq!(isolate.behavior.dispatch_count, 0); isolate } pub fn register(&mut self, name: &str, id: deno_mod) { self.mod_map.insert(name.to_string(), id); } } impl Behavior for TestBehavior { fn startup_data(&mut self) -> Option { None } fn resolve(&mut self, specifier: &str, _referrer: deno_mod) -> deno_mod { self.resolve_count += 1; match self.mod_map.get(specifier) { Some(id) => *id, None => 0, } } fn dispatch( &mut self, control: &[u8], _zero_copy_buf: deno_buf, ) -> (bool, Box) { self.dispatch_count += 1; match self.mode { TestBehaviorMode::AsyncImmediate => { assert_eq!(control.len(), 1); assert_eq!(control[0], 42); let buf = vec![43u8].into_boxed_slice(); (false, Box::new(futures::future::ok(buf))) } TestBehaviorMode::OverflowReqSync => { assert_eq!(control.len(), 100 * 1024 * 1024); let buf = vec![43u8].into_boxed_slice(); (true, Box::new(futures::future::ok(buf))) } TestBehaviorMode::OverflowResSync => { assert_eq!(control.len(), 1); assert_eq!(control[0], 42); let mut vec = Vec::::new(); vec.resize(100 * 1024 * 1024, 0); vec[0] = 99; let buf = vec.into_boxed_slice(); (true, Box::new(futures::future::ok(buf))) } TestBehaviorMode::OverflowReqAsync => { assert_eq!(control.len(), 100 * 1024 * 1024); let buf = vec![43u8].into_boxed_slice(); (false, Box::new(futures::future::ok(buf))) } TestBehaviorMode::OverflowResAsync => { assert_eq!(control.len(), 1); assert_eq!(control[0], 42); let mut vec = Vec::::new(); vec.resize(100 * 1024 * 1024, 0); vec[0] = 4; let buf = vec.into_boxed_slice(); (false, Box::new(futures::future::ok(buf))) } } } } #[test] fn test_dispatch() { let mut isolate = TestBehavior::setup(TestBehaviorMode::AsyncImmediate); js_check(isolate.execute( "filename.js", r#" let control = new Uint8Array([42]); libdeno.send(control); async function main() { libdeno.send(control); } main(); "#, )); assert_eq!(isolate.behavior.dispatch_count, 2); } #[test] fn test_mods() { let mut isolate = TestBehavior::setup(TestBehaviorMode::AsyncImmediate); let mod_a = isolate .mod_new( true, "a.js", r#" import { b } from 'b.js' if (b() != 'b') throw Error(); let control = new Uint8Array([42]); libdeno.send(control); "#, ).unwrap(); assert_eq!(isolate.behavior.dispatch_count, 0); assert_eq!(isolate.behavior.resolve_count, 0); let imports = isolate.mod_get_imports(mod_a); assert_eq!(imports, vec!["b.js".to_string()]); let mod_b = isolate .mod_new(false, "b.js", "export function b() { return 'b' }") .unwrap(); let imports = isolate.mod_get_imports(mod_b); assert_eq!(imports.len(), 0); js_check(isolate.mod_instantiate(mod_b)); assert_eq!(isolate.behavior.dispatch_count, 0); assert_eq!(isolate.behavior.resolve_count, 0); isolate.behavior.register("b.js", mod_b); js_check(isolate.mod_instantiate(mod_a)); assert_eq!(isolate.behavior.dispatch_count, 0); assert_eq!(isolate.behavior.resolve_count, 1); js_check(isolate.mod_evaluate(mod_a)); assert_eq!(isolate.behavior.dispatch_count, 1); assert_eq!(isolate.behavior.resolve_count, 1); } #[test] fn test_poll_async_immediate_ops() { let mut isolate = TestBehavior::setup(TestBehaviorMode::AsyncImmediate); js_check(isolate.execute( "setup2.js", r#" let nrecv = 0; DenoCore.setAsyncHandler((buf) => { nrecv++; }); "#, )); assert_eq!(isolate.behavior.dispatch_count, 0); js_check(isolate.execute( "check1.js", r#" assert(nrecv == 0); let control = new Uint8Array([42]); libdeno.send(control); assert(nrecv == 0); "#, )); assert_eq!(isolate.behavior.dispatch_count, 1); assert_eq!(Ok(Async::Ready(())), isolate.poll()); assert_eq!(isolate.behavior.dispatch_count, 1); js_check(isolate.execute( "check2.js", r#" assert(nrecv == 1); libdeno.send(control); assert(nrecv == 1); "#, )); assert_eq!(isolate.behavior.dispatch_count, 2); assert_eq!(Ok(Async::Ready(())), isolate.poll()); js_check(isolate.execute("check3.js", "assert(nrecv == 2)")); assert_eq!(isolate.behavior.dispatch_count, 2); // We are idle, so the next poll should be the last. assert_eq!(Ok(Async::Ready(())), isolate.poll()); } #[test] fn test_shared() { let mut isolate = TestBehavior::setup(TestBehaviorMode::AsyncImmediate); js_check(isolate.execute( "setup2.js", r#" let nrecv = 0; DenoCore.setAsyncHandler((buf) => { assert(buf.byteLength === 1); assert(buf[0] === 43); nrecv++; }); "#, )); assert_eq!(isolate.behavior.dispatch_count, 0); js_check(isolate.execute( "send1.js", r#" let control = new Uint8Array([42]); DenoCore.shared.push(control); libdeno.send(); assert(nrecv === 0); DenoCore.shared.push(control); libdeno.send(); assert(nrecv === 0); "#, )); assert_eq!(isolate.behavior.dispatch_count, 2); assert_eq!(Ok(Async::Ready(())), isolate.poll()); js_check(isolate.execute("send1.js", "assert(nrecv === 2);")); } #[test] fn terminate_execution() { let (tx, rx) = std::sync::mpsc::channel::(); let tx_clone = tx.clone(); let mut isolate = TestBehavior::setup(TestBehaviorMode::AsyncImmediate); let shared = isolate.shared_isolate_handle(); let t1 = std::thread::spawn(move || { // allow deno to boot and run std::thread::sleep(std::time::Duration::from_millis(100)); // terminate execution shared.terminate_execution(); // allow shutdown std::thread::sleep(std::time::Duration::from_millis(100)); // unless reported otherwise the test should fail after this point tx_clone.send(false).ok(); }); let t2 = std::thread::spawn(move || { // run an infinite loop let res = isolate.execute( "infinite_loop.js", r#" let i = 0; while (true) { i++; } "#, ); // execute() terminated, which means terminate_execution() was successful. tx.send(true).ok(); if let Err(e) = res { assert_eq!(e.to_string(), "Uncaught Error: execution terminated"); } else { panic!("should return an error"); } // make sure the isolate is still unusable let res = isolate.execute("simple.js", "1+1;"); if let Err(e) = res { assert_eq!(e.to_string(), "Uncaught Error: execution terminated"); } else { panic!("should return an error"); } }); if !rx.recv().unwrap() { panic!("should have terminated") } t1.join().unwrap(); t2.join().unwrap(); } #[test] fn dangling_shared_isolate() { let shared = { // isolate is dropped at the end of this block let mut isolate = TestBehavior::setup(TestBehaviorMode::AsyncImmediate); isolate.shared_isolate_handle() }; // this should not SEGFAULT shared.terminate_execution(); } #[test] fn overflow_req_sync() { let mut isolate = TestBehavior::setup(TestBehaviorMode::OverflowReqSync); js_check(isolate.execute( "overflow_req_sync.js", r#" let asyncRecv = 0; DenoCore.setAsyncHandler((buf) => { asyncRecv++ }); // Large message that will overflow the shared space. let control = new Uint8Array(100 * 1024 * 1024); let response = DenoCore.dispatch(control); assert(response instanceof Uint8Array); assert(response.length == 1); assert(response[0] == 43); assert(asyncRecv == 0); "#, )); assert_eq!(isolate.behavior.dispatch_count, 1); } #[test] fn overflow_res_sync() { // TODO(ry) This test is quite slow due to memcpy-ing 100MB into JS. We // should optimize this. let mut isolate = TestBehavior::setup(TestBehaviorMode::OverflowResSync); js_check(isolate.execute( "overflow_res_sync.js", r#" let asyncRecv = 0; DenoCore.setAsyncHandler((buf) => { asyncRecv++ }); // Large message that will overflow the shared space. let control = new Uint8Array([42]); let response = DenoCore.dispatch(control); assert(response instanceof Uint8Array); assert(response.length == 100 * 1024 * 1024); assert(response[0] == 99); assert(asyncRecv == 0); "#, )); assert_eq!(isolate.behavior.dispatch_count, 1); } #[test] fn overflow_req_async() { let mut isolate = TestBehavior::setup(TestBehaviorMode::OverflowReqAsync); js_check(isolate.execute( "overflow_req_async.js", r#" let asyncRecv = 0; DenoCore.setAsyncHandler((buf) => { assert(buf.byteLength === 1); assert(buf[0] === 43); asyncRecv++; }); // Large message that will overflow the shared space. let control = new Uint8Array(100 * 1024 * 1024); let response = DenoCore.dispatch(control); // Async messages always have null response. assert(response == null); assert(asyncRecv == 0); "#, )); assert_eq!(isolate.behavior.dispatch_count, 1); assert_eq!(Ok(Async::Ready(())), isolate.poll()); js_check(isolate.execute("check.js", "assert(asyncRecv == 1);")); } #[test] fn overflow_res_async() { // TODO(ry) This test is quite slow due to memcpy-ing 100MB into JS. We // should optimize this. let mut isolate = TestBehavior::setup(TestBehaviorMode::OverflowResAsync); js_check(isolate.execute( "overflow_res_async.js", r#" let asyncRecv = 0; DenoCore.setAsyncHandler((buf) => { assert(buf.byteLength === 100 * 1024 * 1024); assert(buf[0] === 4); asyncRecv++; }); // Large message that will overflow the shared space. let control = new Uint8Array([42]); let response = DenoCore.dispatch(control); assert(response == null); assert(asyncRecv == 0); "#, )); assert_eq!(isolate.behavior.dispatch_count, 1); assert_eq!(Ok(Async::Ready(())), isolate.poll()); js_check(isolate.execute("check.js", "assert(asyncRecv == 1);")); } #[test] fn overflow_res_multiple_dispatch_async() { // TODO(ry) This test is quite slow due to memcpy-ing 100MB into JS. We // should optimize this. let mut isolate = TestBehavior::setup(TestBehaviorMode::OverflowResAsync); js_check(isolate.execute( "overflow_res_multiple_dispatch_async.js", r#" let asyncRecv = 0; DenoCore.setAsyncHandler((buf) => { assert(buf.byteLength === 100 * 1024 * 1024); assert(buf[0] === 4); asyncRecv++; }); // Large message that will overflow the shared space. let control = new Uint8Array([42]); let response = DenoCore.dispatch(control); assert(response == null); assert(asyncRecv == 0); // Dispatch another message to verify that pending ops // are done even if shared space overflows DenoCore.dispatch(control); "#, )); assert_eq!(isolate.behavior.dispatch_count, 2); assert_eq!(Ok(Async::Ready(())), isolate.poll()); js_check(isolate.execute("check.js", "assert(asyncRecv == 2);")); } #[test] fn test_js() { let mut isolate = TestBehavior::setup(TestBehaviorMode::AsyncImmediate); js_check( isolate .execute("shared_queue_test.js", include_str!("shared_queue_test.js")), ); assert_eq!(Ok(Async::Ready(())), isolate.poll()); } }