// Copyright 2018-2019 the Deno authors. All rights reserved. MIT license. // Think of Resources as File Descriptors. They are integers that are allocated // by the privileged side of Deno to refer to various resources. The simplest // example are standard file system files and stdio - but there will be other // resources added in the future that might not correspond to operating system // level File Descriptors. To avoid confusion we call them "resources" not "file // descriptors". This module implements a global resource table. Ops (AKA // handlers) look up resources by their integer id here. #[cfg(unix)] use eager_unix as eager; use errors; use errors::bad_resource; use errors::DenoError; use errors::DenoResult; use http_body::HttpBody; use isolate::WorkerChannels; use repl::Repl; use tokio_util; use tokio_write; use futures; use futures::future::{Either, FutureResult}; use futures::Future; use futures::Poll; use futures::Sink; use futures::Stream; use hyper; use isolate::Buf; use std; use std::collections::HashMap; use std::io::{Error, Read, Write}; use std::net::{Shutdown, SocketAddr}; use std::process::ExitStatus; use std::sync::atomic::AtomicUsize; use std::sync::atomic::Ordering; use std::sync::Mutex; use tokio; use tokio::io::{AsyncRead, AsyncWrite}; use tokio::net::TcpStream; use tokio_io; use tokio_process; pub type ResourceId = u32; // Sometimes referred to RID. // These store Deno's file descriptors. These are not necessarily the operating // system ones. type ResourceTable = HashMap; #[cfg(not(windows))] use std::os::unix::io::FromRawFd; #[cfg(windows)] use std::os::windows::io::FromRawHandle; #[cfg(windows)] extern crate kernel32; #[cfg(windows)] extern crate winapi; lazy_static! { // Starts at 3 because stdio is [0-2]. static ref NEXT_RID: AtomicUsize = AtomicUsize::new(3); static ref RESOURCE_TABLE: Mutex = Mutex::new({ let mut m = HashMap::new(); // TODO Load these lazily during lookup? m.insert(0, Repr::Stdin(tokio::io::stdin())); m.insert(1, Repr::Stdout({ #[cfg(not(windows))] let stdout = unsafe { std::fs::File::from_raw_fd(1) }; #[cfg(windows)] let stdout = unsafe { std::fs::File::from_raw_handle(kernel32::GetStdHandle( winapi::um::winbase::STD_OUTPUT_HANDLE)) }; tokio::fs::File::from_std(stdout) })); m.insert(2, Repr::Stderr(tokio::io::stderr())); m }); } // Internal representation of Resource. enum Repr { Stdin(tokio::io::Stdin), Stdout(tokio::fs::File), Stderr(tokio::io::Stderr), FsFile(tokio::fs::File), TcpListener(tokio::net::TcpListener), TcpStream(tokio::net::TcpStream), HttpBody(HttpBody), Repl(Repl), // Enum size is bounded by the largest variant. // Use `Box` around large `Child` struct. // https://rust-lang.github.io/rust-clippy/master/index.html#large_enum_variant Child(Box), ChildStdin(tokio_process::ChildStdin), ChildStdout(tokio_process::ChildStdout), ChildStderr(tokio_process::ChildStderr), Worker(WorkerChannels), } /// If the given rid is open, this returns the type of resource, E.G. "worker". /// If the rid is closed or was never open, it returns None. pub fn get_type(rid: ResourceId) -> Option { let table = RESOURCE_TABLE.lock().unwrap(); table.get(&rid).map(inspect_repr) } pub fn table_entries() -> Vec<(u32, String)> { let table = RESOURCE_TABLE.lock().unwrap(); table .iter() .map(|(key, value)| (*key, inspect_repr(&value))) .collect() } #[test] fn test_table_entries() { let mut entries = table_entries(); entries.sort(); assert_eq!(entries.len(), 3); assert_eq!(entries[0], (0, String::from("stdin"))); assert_eq!(entries[1], (1, String::from("stdout"))); assert_eq!(entries[2], (2, String::from("stderr"))); } fn inspect_repr(repr: &Repr) -> String { let h_repr = match repr { Repr::Stdin(_) => "stdin", Repr::Stdout(_) => "stdout", Repr::Stderr(_) => "stderr", Repr::FsFile(_) => "fsFile", Repr::TcpListener(_) => "tcpListener", Repr::TcpStream(_) => "tcpStream", Repr::HttpBody(_) => "httpBody", Repr::Repl(_) => "repl", Repr::Child(_) => "child", Repr::ChildStdin(_) => "childStdin", Repr::ChildStdout(_) => "childStdout", Repr::ChildStderr(_) => "childStderr", Repr::Worker(_) => "worker", }; String::from(h_repr) } // Abstract async file interface. // Ideally in unix, if Resource represents an OS rid, it will be the same. #[derive(Clone, Debug)] pub struct Resource { pub rid: ResourceId, } impl Resource { // TODO Should it return a Resource instead of net::TcpStream? pub fn poll_accept(&mut self) -> Poll<(TcpStream, SocketAddr), Error> { let mut table = RESOURCE_TABLE.lock().unwrap(); let maybe_repr = table.get_mut(&self.rid); match maybe_repr { None => panic!("bad rid"), Some(repr) => match repr { Repr::TcpListener(ref mut s) => s.poll_accept(), _ => panic!("Cannot accept"), }, } } // close(2) is done by dropping the value. Therefore we just need to remove // the resource from the RESOURCE_TABLE. pub fn close(&mut self) { let mut table = RESOURCE_TABLE.lock().unwrap(); let r = table.remove(&self.rid); assert!(r.is_some()); } pub fn shutdown(&mut self, how: Shutdown) -> Result<(), DenoError> { let mut table = RESOURCE_TABLE.lock().unwrap(); let maybe_repr = table.get_mut(&self.rid); match maybe_repr { None => panic!("bad rid"), Some(repr) => match repr { Repr::TcpStream(ref mut f) => { TcpStream::shutdown(f, how).map_err(DenoError::from) } _ => panic!("Cannot shutdown"), }, } } } impl Read for Resource { fn read(&mut self, _buf: &mut [u8]) -> std::io::Result { unimplemented!(); } } impl AsyncRead for Resource { fn poll_read(&mut self, buf: &mut [u8]) -> Poll { let mut table = RESOURCE_TABLE.lock().unwrap(); let maybe_repr = table.get_mut(&self.rid); match maybe_repr { None => panic!("bad rid"), Some(repr) => match repr { Repr::FsFile(ref mut f) => f.poll_read(buf), Repr::Stdin(ref mut f) => f.poll_read(buf), Repr::TcpStream(ref mut f) => f.poll_read(buf), Repr::HttpBody(ref mut f) => f.poll_read(buf), Repr::ChildStdout(ref mut f) => f.poll_read(buf), Repr::ChildStderr(ref mut f) => f.poll_read(buf), _ => panic!("Cannot read"), }, } } } impl Write for Resource { fn write(&mut self, _buf: &[u8]) -> std::io::Result { unimplemented!() } fn flush(&mut self) -> std::io::Result<()> { unimplemented!() } } impl AsyncWrite for Resource { fn poll_write(&mut self, buf: &[u8]) -> Poll { let mut table = RESOURCE_TABLE.lock().unwrap(); let maybe_repr = table.get_mut(&self.rid); match maybe_repr { None => panic!("bad rid"), Some(repr) => match repr { Repr::FsFile(ref mut f) => f.poll_write(buf), Repr::Stdout(ref mut f) => f.poll_write(buf), Repr::Stderr(ref mut f) => f.poll_write(buf), Repr::TcpStream(ref mut f) => f.poll_write(buf), Repr::ChildStdin(ref mut f) => f.poll_write(buf), _ => panic!("Cannot write"), }, } } fn shutdown(&mut self) -> futures::Poll<(), std::io::Error> { unimplemented!() } } fn new_rid() -> ResourceId { let next_rid = NEXT_RID.fetch_add(1, Ordering::SeqCst); next_rid as ResourceId } pub fn add_fs_file(fs_file: tokio::fs::File) -> Resource { let rid = new_rid(); let mut tg = RESOURCE_TABLE.lock().unwrap(); match tg.insert(rid, Repr::FsFile(fs_file)) { Some(_) => panic!("There is already a file with that rid"), None => Resource { rid }, } } pub fn add_tcp_listener(listener: tokio::net::TcpListener) -> Resource { let rid = new_rid(); let mut tg = RESOURCE_TABLE.lock().unwrap(); let r = tg.insert(rid, Repr::TcpListener(listener)); assert!(r.is_none()); Resource { rid } } pub fn add_tcp_stream(stream: tokio::net::TcpStream) -> Resource { let rid = new_rid(); let mut tg = RESOURCE_TABLE.lock().unwrap(); let r = tg.insert(rid, Repr::TcpStream(stream)); assert!(r.is_none()); Resource { rid } } pub fn add_hyper_body(body: hyper::Body) -> Resource { let rid = new_rid(); let mut tg = RESOURCE_TABLE.lock().unwrap(); let body = HttpBody::from(body); let r = tg.insert(rid, Repr::HttpBody(body)); assert!(r.is_none()); Resource { rid } } pub fn add_repl(repl: Repl) -> Resource { let rid = new_rid(); let mut tg = RESOURCE_TABLE.lock().unwrap(); let r = tg.insert(rid, Repr::Repl(repl)); assert!(r.is_none()); Resource { rid } } pub fn add_worker(wc: WorkerChannels) -> Resource { let rid = new_rid(); let mut tg = RESOURCE_TABLE.lock().unwrap(); let r = tg.insert(rid, Repr::Worker(wc)); assert!(r.is_none()); Resource { rid } } pub fn worker_post_message( rid: ResourceId, buf: Buf, ) -> futures::sink::Send> { let mut table = RESOURCE_TABLE.lock().unwrap(); let maybe_repr = table.get_mut(&rid); match maybe_repr { Some(Repr::Worker(ref mut wc)) => { // unwrap here is incorrect, but doing it anyway wc.0.clone().send(buf) } _ => panic!("bad resource"), // futures::future::err(bad_resource()).into(), } } pub struct WorkerReceiver { rid: ResourceId, } // Invert the dumbness that tokio_process causes by making Child itself a future. impl Future for WorkerReceiver { type Item = Option; type Error = DenoError; fn poll(&mut self) -> Poll, DenoError> { let mut table = RESOURCE_TABLE.lock().unwrap(); let maybe_repr = table.get_mut(&self.rid); match maybe_repr { Some(Repr::Worker(ref mut wc)) => wc.1.poll().map_err(|()| { errors::new(errors::ErrorKind::Other, "recv msg error".to_string()) }), _ => Err(bad_resource()), } } } pub fn worker_recv_message(rid: ResourceId) -> WorkerReceiver { WorkerReceiver { rid } } #[cfg_attr(feature = "cargo-clippy", allow(stutter))] pub struct ChildResources { pub child_rid: ResourceId, pub stdin_rid: Option, pub stdout_rid: Option, pub stderr_rid: Option, } pub fn add_child(mut c: tokio_process::Child) -> ChildResources { let child_rid = new_rid(); let mut tg = RESOURCE_TABLE.lock().unwrap(); let mut resources = ChildResources { child_rid, stdin_rid: None, stdout_rid: None, stderr_rid: None, }; if c.stdin().is_some() { let stdin = c.stdin().take().unwrap(); let rid = new_rid(); let r = tg.insert(rid, Repr::ChildStdin(stdin)); assert!(r.is_none()); resources.stdin_rid = Some(rid); } if c.stdout().is_some() { let stdout = c.stdout().take().unwrap(); let rid = new_rid(); let r = tg.insert(rid, Repr::ChildStdout(stdout)); assert!(r.is_none()); resources.stdout_rid = Some(rid); } if c.stderr().is_some() { let stderr = c.stderr().take().unwrap(); let rid = new_rid(); let r = tg.insert(rid, Repr::ChildStderr(stderr)); assert!(r.is_none()); resources.stderr_rid = Some(rid); } let r = tg.insert(child_rid, Repr::Child(Box::new(c))); assert!(r.is_none()); resources } pub struct ChildStatus { rid: ResourceId, } // Invert the dumbness that tokio_process causes by making Child itself a future. impl Future for ChildStatus { type Item = ExitStatus; type Error = DenoError; fn poll(&mut self) -> Poll { let mut table = RESOURCE_TABLE.lock().unwrap(); let maybe_repr = table.get_mut(&self.rid); match maybe_repr { Some(Repr::Child(ref mut child)) => child.poll().map_err(DenoError::from), _ => Err(bad_resource()), } } } pub fn child_status(rid: ResourceId) -> DenoResult { let mut table = RESOURCE_TABLE.lock().unwrap(); let maybe_repr = table.get_mut(&rid); match maybe_repr { Some(Repr::Child(ref mut _child)) => Ok(ChildStatus { rid }), _ => Err(bad_resource()), } } pub fn readline(rid: ResourceId, prompt: &str) -> DenoResult { let mut table = RESOURCE_TABLE.lock().unwrap(); let maybe_repr = table.get_mut(&rid); match maybe_repr { Some(Repr::Repl(ref mut r)) => { let line = r.readline(&prompt)?; Ok(line) } _ => Err(bad_resource()), } } pub fn lookup(rid: ResourceId) -> Option { debug!("resource lookup {}", rid); let table = RESOURCE_TABLE.lock().unwrap(); table.get(&rid).map(|_| Resource { rid }) } pub type EagerRead = Either, FutureResult<(R, T, usize), std::io::Error>>; pub type EagerWrite = Either, FutureResult<(R, T, usize), std::io::Error>>; pub type EagerAccept = Either< tokio_util::Accept, FutureResult<(tokio::net::TcpStream, std::net::SocketAddr), std::io::Error>, >; #[cfg(not(unix))] #[allow(unused_mut)] pub fn eager_read>( resource: Resource, mut buf: T, ) -> EagerRead { Either::A(tokio_io::io::read(resource, buf)).into() } #[cfg(not(unix))] pub fn eager_write>( resource: Resource, buf: T, ) -> EagerWrite { Either::A(tokio_write::write(resource, buf)).into() } #[cfg(not(unix))] pub fn eager_accept(resource: Resource) -> EagerAccept { Either::A(tokio_util::accept(resource)).into() } // This is an optimization that Tokio should do. // Attempt to call read() on the main thread. #[cfg(unix)] pub fn eager_read>( resource: Resource, buf: T, ) -> EagerRead { let mut table = RESOURCE_TABLE.lock().unwrap(); let maybe_repr = table.get_mut(&resource.rid); match maybe_repr { None => panic!("bad rid"), Some(repr) => match repr { Repr::TcpStream(ref mut tcp_stream) => { eager::tcp_read(tcp_stream, resource, buf) } _ => Either::A(tokio_io::io::read(resource, buf)), }, } } // This is an optimization that Tokio should do. // Attempt to call write() on the main thread. #[cfg(unix)] pub fn eager_write>( resource: Resource, buf: T, ) -> EagerWrite { let mut table = RESOURCE_TABLE.lock().unwrap(); let maybe_repr = table.get_mut(&resource.rid); match maybe_repr { None => panic!("bad rid"), Some(repr) => match repr { Repr::TcpStream(ref mut tcp_stream) => { eager::tcp_write(tcp_stream, resource, buf) } _ => Either::A(tokio_write::write(resource, buf)), }, } } #[cfg(unix)] pub fn eager_accept(resource: Resource) -> EagerAccept { let mut table = RESOURCE_TABLE.lock().unwrap(); let maybe_repr = table.get_mut(&resource.rid); match maybe_repr { None => panic!("bad rid"), Some(repr) => match repr { Repr::TcpListener(ref mut tcp_listener) => { eager::tcp_accept(tcp_listener, resource) } _ => Either::A(tokio_util::accept(resource)), }, } }