0
0
Fork 0
mirror of https://github.com/denoland/deno.git synced 2025-02-12 16:59:32 -05:00
denoland-deno/cli/standalone/binary.rs
David Sherret 9aa02769c8
perf(compile): remove swc from denort (#27721)
This is achieved by storing CJS export analysis ahead of time in the
executable, which should also improve the performance of `denort` by
this never being done anymore (I'm too lazy atm to bench this, but it
will be significant for some programs).
2025-01-19 14:23:07 -05:00

1101 lines
36 KiB
Rust

// Copyright 2018-2025 the Deno authors. MIT license.
use std::borrow::Cow;
use std::collections::HashMap;
use std::collections::VecDeque;
use std::env;
use std::ffi::OsString;
use std::fs;
use std::fs::File;
use std::path::Component;
use std::path::Path;
use std::path::PathBuf;
use capacity_builder::BytesAppendable;
use deno_ast::MediaType;
use deno_ast::ModuleKind;
use deno_ast::ModuleSpecifier;
use deno_config::workspace::WorkspaceResolver;
use deno_core::anyhow::bail;
use deno_core::anyhow::Context;
use deno_core::error::AnyError;
use deno_core::serde_json;
use deno_core::url::Url;
use deno_graph::ModuleGraph;
use deno_lib::args::CaData;
use deno_lib::args::UnstableConfig;
use deno_lib::shared::ReleaseChannel;
use deno_lib::standalone::binary::CjsExportAnalysisEntry;
use deno_lib::standalone::binary::Metadata;
use deno_lib::standalone::binary::NodeModules;
use deno_lib::standalone::binary::RemoteModuleEntry;
use deno_lib::standalone::binary::SerializedResolverWorkspaceJsrPackage;
use deno_lib::standalone::binary::SerializedWorkspaceResolver;
use deno_lib::standalone::binary::SerializedWorkspaceResolverImportMap;
use deno_lib::standalone::binary::SpecifierDataStore;
use deno_lib::standalone::binary::SpecifierId;
use deno_lib::standalone::binary::MAGIC_BYTES;
use deno_lib::standalone::virtual_fs::BuiltVfs;
use deno_lib::standalone::virtual_fs::VfsBuilder;
use deno_lib::standalone::virtual_fs::VfsEntry;
use deno_lib::standalone::virtual_fs::VirtualDirectory;
use deno_lib::standalone::virtual_fs::VirtualDirectoryEntries;
use deno_lib::standalone::virtual_fs::WindowsSystemRootablePath;
use deno_lib::standalone::virtual_fs::DENO_COMPILE_GLOBAL_NODE_MODULES_DIR_NAME;
use deno_lib::util::hash::FastInsecureHasher;
use deno_lib::version::DENO_VERSION_INFO;
use deno_npm::resolution::SerializedNpmResolutionSnapshot;
use deno_npm::NpmSystemInfo;
use deno_path_util::url_from_directory_path;
use deno_path_util::url_to_file_path;
use indexmap::IndexMap;
use node_resolver::analyze::CjsAnalysis;
use node_resolver::analyze::CjsCodeAnalyzer;
use super::virtual_fs::output_vfs;
use crate::args::CliOptions;
use crate::args::CompileFlags;
use crate::cache::DenoDir;
use crate::emit::Emitter;
use crate::http_util::HttpClientProvider;
use crate::node::CliCjsCodeAnalyzer;
use crate::npm::CliNpmResolver;
use crate::resolver::CliCjsTracker;
use crate::util::archive;
use crate::util::progress_bar::ProgressBar;
use crate::util::progress_bar::ProgressBarStyle;
/// A URL that can be designated as the base for relative URLs.
///
/// After creation, this URL may be used to get the key for a
/// module in the binary.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum StandaloneRelativeFileBaseUrl<'a> {
WindowsSystemRoot,
Path(&'a Url),
}
impl<'a> StandaloneRelativeFileBaseUrl<'a> {
/// Gets the module map key of the provided specifier.
///
/// * Descendant file specifiers will be made relative to the base.
/// * Non-descendant file specifiers will stay as-is (absolute).
/// * Non-file specifiers will stay as-is.
pub fn specifier_key<'b>(&self, target: &'b Url) -> Cow<'b, str> {
if target.scheme() != "file" {
return Cow::Borrowed(target.as_str());
}
let base = match self {
Self::Path(base) => base,
Self::WindowsSystemRoot => return Cow::Borrowed(target.path()),
};
match base.make_relative(target) {
Some(relative) => {
// This is not a great scenario to have because it means that the
// specifier is outside the vfs and could cause the binary to act
// strangely. If you encounter this, the fix is to add more paths
// to the vfs builder by calling `add_possible_min_root_dir`.
debug_assert!(
!relative.starts_with("../"),
"{} -> {} ({})",
base.as_str(),
target.as_str(),
relative,
);
Cow::Owned(relative)
}
None => Cow::Borrowed(target.as_str()),
}
}
}
struct SpecifierStore<'a> {
data: IndexMap<&'a Url, SpecifierId>,
}
impl<'a> SpecifierStore<'a> {
pub fn with_capacity(capacity: usize) -> Self {
Self {
data: IndexMap::with_capacity(capacity),
}
}
pub fn get_or_add(&mut self, specifier: &'a Url) -> SpecifierId {
let len = self.data.len();
let entry = self.data.entry(specifier);
match entry {
indexmap::map::Entry::Occupied(occupied_entry) => *occupied_entry.get(),
indexmap::map::Entry::Vacant(vacant_entry) => {
let new_id = SpecifierId::new(len as u32);
vacant_entry.insert(new_id);
new_id
}
}
}
pub fn for_serialization(
self,
base_url: &StandaloneRelativeFileBaseUrl<'a>,
) -> SpecifierStoreForSerialization<'a> {
SpecifierStoreForSerialization {
data: self
.data
.into_iter()
.map(|(specifier, id)| (base_url.specifier_key(specifier), id))
.collect(),
}
}
}
struct SpecifierStoreForSerialization<'a> {
data: Vec<(Cow<'a, str>, SpecifierId)>,
}
impl<'a> BytesAppendable<'a> for &'a SpecifierStoreForSerialization<'a> {
fn append_to_builder<TBytes: capacity_builder::BytesType>(
self,
builder: &mut capacity_builder::BytesBuilder<'a, TBytes>,
) {
builder.append_le(self.data.len() as u32);
for (specifier_str, id) in &self.data {
builder.append_le(specifier_str.len() as u32);
builder.append(specifier_str.as_ref());
builder.append(*id);
}
}
}
pub fn is_standalone_binary(exe_path: &Path) -> bool {
let Ok(data) = std::fs::read(exe_path) else {
return false;
};
libsui::utils::is_elf(&data)
|| libsui::utils::is_pe(&data)
|| libsui::utils::is_macho(&data)
}
pub struct WriteBinOptions<'a> {
pub writer: File,
pub display_output_filename: &'a str,
pub graph: &'a ModuleGraph,
pub entrypoint: &'a ModuleSpecifier,
pub include_files: &'a [ModuleSpecifier],
pub compile_flags: &'a CompileFlags,
}
pub struct DenoCompileBinaryWriter<'a> {
cjs_code_analyzer: CliCjsCodeAnalyzer,
cjs_tracker: &'a CliCjsTracker,
cli_options: &'a CliOptions,
deno_dir: &'a DenoDir,
emitter: &'a Emitter,
http_client_provider: &'a HttpClientProvider,
npm_resolver: &'a CliNpmResolver,
workspace_resolver: &'a WorkspaceResolver,
npm_system_info: NpmSystemInfo,
}
impl<'a> DenoCompileBinaryWriter<'a> {
#[allow(clippy::too_many_arguments)]
pub fn new(
cjs_code_analyzer: CliCjsCodeAnalyzer,
cjs_tracker: &'a CliCjsTracker,
cli_options: &'a CliOptions,
deno_dir: &'a DenoDir,
emitter: &'a Emitter,
http_client_provider: &'a HttpClientProvider,
npm_resolver: &'a CliNpmResolver,
workspace_resolver: &'a WorkspaceResolver,
npm_system_info: NpmSystemInfo,
) -> Self {
Self {
cjs_code_analyzer,
cjs_tracker,
cli_options,
deno_dir,
emitter,
http_client_provider,
npm_resolver,
workspace_resolver,
npm_system_info,
}
}
pub async fn write_bin(
&self,
options: WriteBinOptions<'_>,
) -> Result<(), AnyError> {
// Select base binary based on target
let mut original_binary =
self.get_base_binary(options.compile_flags).await?;
if options.compile_flags.no_terminal {
let target = options.compile_flags.resolve_target();
if !target.contains("windows") {
bail!(
"The `--no-terminal` flag is only available when targeting Windows (current: {})",
target,
)
}
set_windows_binary_to_gui(&mut original_binary)
.context("Setting windows binary to GUI.")?;
}
if options.compile_flags.icon.is_some() {
let target = options.compile_flags.resolve_target();
if !target.contains("windows") {
bail!(
"The `--icon` flag is only available when targeting Windows (current: {})",
target,
)
}
}
self.write_standalone_binary(options, original_binary).await
}
async fn get_base_binary(
&self,
compile_flags: &CompileFlags,
) -> Result<Vec<u8>, AnyError> {
// Used for testing.
//
// Phase 2 of the 'min sized' deno compile RFC talks
// about adding this as a flag.
if let Some(path) = get_dev_binary_path() {
return std::fs::read(&path).with_context(|| {
format!("Could not find denort at '{}'", path.to_string_lossy())
});
}
let target = compile_flags.resolve_target();
let binary_name = format!("denort-{target}.zip");
let binary_path_suffix = match DENO_VERSION_INFO.release_channel {
ReleaseChannel::Canary => {
format!("canary/{}/{}", DENO_VERSION_INFO.git_hash, binary_name)
}
_ => {
format!("release/v{}/{}", DENO_VERSION_INFO.deno, binary_name)
}
};
let download_directory = self.deno_dir.dl_folder_path();
let binary_path = download_directory.join(&binary_path_suffix);
if !binary_path.exists() {
self
.download_base_binary(&download_directory, &binary_path_suffix)
.await
.context("Setting up base binary.")?;
}
let read_file = |path: &Path| -> Result<Vec<u8>, AnyError> {
std::fs::read(path).with_context(|| format!("Reading {}", path.display()))
};
let archive_data = read_file(&binary_path)?;
let temp_dir = tempfile::TempDir::new()?;
let base_binary_path = archive::unpack_into_dir(archive::UnpackArgs {
exe_name: "denort",
archive_name: &binary_name,
archive_data: &archive_data,
is_windows: target.contains("windows"),
dest_path: temp_dir.path(),
})?;
let base_binary = read_file(&base_binary_path)?;
drop(temp_dir); // delete the temp dir
Ok(base_binary)
}
async fn download_base_binary(
&self,
output_directory: &Path,
binary_path_suffix: &str,
) -> Result<(), AnyError> {
let download_url = format!("https://dl.deno.land/{binary_path_suffix}");
let maybe_bytes = {
let progress_bars = ProgressBar::new(ProgressBarStyle::DownloadBars);
let progress = progress_bars.update(&download_url);
self
.http_client_provider
.get_or_create()?
.download_with_progress_and_retries(
download_url.parse()?,
None,
&progress,
)
.await?
};
let bytes = match maybe_bytes {
Some(bytes) => bytes,
None => {
bail!("Download could not be found, aborting");
}
};
let create_dir_all = |dir: &Path| {
std::fs::create_dir_all(dir)
.with_context(|| format!("Creating {}", dir.display()))
};
create_dir_all(output_directory)?;
let output_path = output_directory.join(binary_path_suffix);
create_dir_all(output_path.parent().unwrap())?;
std::fs::write(&output_path, bytes)
.with_context(|| format!("Writing {}", output_path.display()))?;
Ok(())
}
/// This functions creates a standalone deno binary by appending a bundle
/// and magic trailer to the currently executing binary.
#[allow(clippy::too_many_arguments)]
async fn write_standalone_binary(
&self,
options: WriteBinOptions<'_>,
original_bin: Vec<u8>,
) -> Result<(), AnyError> {
let WriteBinOptions {
writer,
display_output_filename,
graph,
entrypoint,
include_files,
compile_flags,
} = options;
let ca_data = match self.cli_options.ca_data() {
Some(CaData::File(ca_file)) => Some(
std::fs::read(ca_file).with_context(|| format!("Reading {ca_file}"))?,
),
Some(CaData::Bytes(bytes)) => Some(bytes.clone()),
None => None,
};
let mut vfs = VfsBuilder::new();
let npm_snapshot = match &self.npm_resolver {
CliNpmResolver::Managed(managed) => {
let snapshot = managed
.resolution()
.serialized_valid_snapshot_for_system(&self.npm_system_info);
if !snapshot.as_serialized().packages.is_empty() {
self.fill_npm_vfs(&mut vfs).context("Building npm vfs.")?;
Some(snapshot)
} else {
None
}
}
CliNpmResolver::Byonm(_) => {
self.fill_npm_vfs(&mut vfs)?;
None
}
};
for include_file in include_files {
let path = deno_path_util::url_to_file_path(include_file)?;
vfs
.add_file_at_path(&path)
.with_context(|| format!("Including {}", path.display()))?;
}
let specifiers_count = graph.specifiers_count();
let mut specifier_store = SpecifierStore::with_capacity(specifiers_count);
let mut remote_modules_store =
SpecifierDataStore::with_capacity(specifiers_count);
// todo(dsherret): transpile and analyze CJS in parallel
for module in graph.modules() {
if module.specifier().scheme() == "data" {
continue; // don't store data urls as an entry as they're in the code
}
let mut maybe_source_map = None;
let mut maybe_transpiled = None;
let mut maybe_cjs_analysis = None;
let (maybe_original_source, media_type) = match module {
deno_graph::Module::Js(m) => {
let specifier = &m.specifier;
let original_bytes = m.source.as_bytes();
if self.cjs_tracker.is_maybe_cjs(specifier, m.media_type)? {
if self.cjs_tracker.is_cjs_with_known_is_script(
specifier,
m.media_type,
m.is_script,
)? {
let cjs_analysis = self
.cjs_code_analyzer
.analyze_cjs(
module.specifier(),
Some(Cow::Borrowed(m.source.as_ref())),
)
.await?;
maybe_cjs_analysis = Some(match cjs_analysis {
CjsAnalysis::Esm(_) => CjsExportAnalysisEntry::Esm,
CjsAnalysis::Cjs(exports) => {
CjsExportAnalysisEntry::Cjs(exports)
}
});
} else {
maybe_cjs_analysis = Some(CjsExportAnalysisEntry::Esm);
}
}
if m.media_type.is_emittable() {
let module_kind = match maybe_cjs_analysis.as_ref() {
Some(CjsExportAnalysisEntry::Cjs(_)) => ModuleKind::Cjs,
_ => ModuleKind::Esm,
};
let (source, source_map) =
self.emitter.emit_parsed_source_for_deno_compile(
&m.specifier,
m.media_type,
module_kind,
&m.source,
)?;
if source != m.source.as_ref() {
maybe_source_map = Some(source_map.into_bytes());
maybe_transpiled = Some(source.into_bytes());
}
}
(Some(original_bytes), m.media_type)
}
deno_graph::Module::Json(m) => {
(Some(m.source.as_bytes()), m.media_type)
}
deno_graph::Module::Wasm(m) => {
(Some(m.source.as_ref()), MediaType::Wasm)
}
deno_graph::Module::Npm(_)
| deno_graph::Module::Node(_)
| deno_graph::Module::External(_) => (None, MediaType::Unknown),
};
if let Some(original_source) = maybe_original_source {
let maybe_cjs_export_analysis = maybe_cjs_analysis
.as_ref()
.map(bincode::serialize)
.transpose()?;
if module.specifier().scheme() == "file" {
let file_path = deno_path_util::url_to_file_path(module.specifier())?;
vfs
.add_file_with_data(
&file_path,
deno_lib::standalone::virtual_fs::AddFileDataOptions {
data: original_source.to_vec(),
maybe_transpiled,
maybe_source_map,
maybe_cjs_export_analysis,
},
)
.with_context(|| {
format!("Failed adding '{}'", file_path.display())
})?;
} else {
let specifier_id = specifier_store.get_or_add(module.specifier());
remote_modules_store.add(
specifier_id,
RemoteModuleEntry {
media_type,
data: Cow::Borrowed(original_source),
maybe_transpiled: maybe_transpiled.map(Cow::Owned),
maybe_source_map: maybe_source_map.map(Cow::Owned),
maybe_cjs_export_analysis: maybe_cjs_export_analysis
.map(Cow::Owned),
},
);
}
}
}
let mut redirects_store =
SpecifierDataStore::with_capacity(graph.redirects.len());
for (from, to) in &graph.redirects {
redirects_store.add(
specifier_store.get_or_add(from),
specifier_store.get_or_add(to),
);
}
if let Some(import_map) = self.workspace_resolver.maybe_import_map() {
if let Ok(file_path) = url_to_file_path(import_map.base_url()) {
if let Some(import_map_parent_dir) = file_path.parent() {
// tell the vfs about the import map's parent directory in case it
// falls outside what the root of where the VFS will be based
vfs.add_possible_min_root_dir(import_map_parent_dir);
}
}
}
if let Some(node_modules_dir) = self.npm_resolver.root_node_modules_path() {
// ensure the vfs doesn't go below the node_modules directory's parent
if let Some(parent) = node_modules_dir.parent() {
vfs.add_possible_min_root_dir(parent);
}
}
// do CJS export analysis on all the files in the VFS
// todo(dsherret): analyze cjs in parallel
let mut to_add = Vec::new();
for (file_path, file) in vfs.iter_files() {
if file.cjs_export_analysis_offset.is_some() {
continue; // already analyzed
}
let specifier = deno_path_util::url_from_file_path(&file_path)?;
let media_type = MediaType::from_specifier(&specifier);
if self.cjs_tracker.is_maybe_cjs(&specifier, media_type)? {
let maybe_source = vfs
.file_bytes(file.offset)
.map(|text| String::from_utf8_lossy(text));
let cjs_analysis_result = self
.cjs_code_analyzer
.analyze_cjs(&specifier, maybe_source)
.await;
let maybe_analysis = match cjs_analysis_result {
Ok(CjsAnalysis::Esm(_)) => Some(CjsExportAnalysisEntry::Esm),
Ok(CjsAnalysis::Cjs(exports)) => {
Some(CjsExportAnalysisEntry::Cjs(exports))
}
Err(err) => {
log::debug!(
"Ignoring cjs export analysis for '{}': {}",
specifier,
err
);
None
}
};
if let Some(analysis) = &maybe_analysis {
to_add.push((file_path, bincode::serialize(analysis)?));
}
}
}
for (file_path, analysis) in to_add {
vfs.add_cjs_export_analysis(&file_path, analysis);
}
let vfs = self.build_vfs_consolidating_global_npm_cache(vfs);
let root_dir_url = match &vfs.root_path {
WindowsSystemRootablePath::Path(dir) => {
Some(url_from_directory_path(dir)?)
}
WindowsSystemRootablePath::WindowSystemRoot => None,
};
let root_dir_url = match &root_dir_url {
Some(url) => StandaloneRelativeFileBaseUrl::Path(url),
None => StandaloneRelativeFileBaseUrl::WindowsSystemRoot,
};
let code_cache_key = if self.cli_options.code_cache_enabled() {
let mut hasher = FastInsecureHasher::new_deno_versioned();
for module in graph.modules() {
if let Some(source) = module.source() {
hasher
.write(root_dir_url.specifier_key(module.specifier()).as_bytes());
hasher.write(source.as_bytes());
}
}
Some(hasher.finish())
} else {
None
};
let node_modules = match &self.npm_resolver {
CliNpmResolver::Managed(_) => {
npm_snapshot.as_ref().map(|_| NodeModules::Managed {
node_modules_dir: self.npm_resolver.root_node_modules_path().map(
|path| {
root_dir_url
.specifier_key(
&ModuleSpecifier::from_directory_path(path).unwrap(),
)
.into_owned()
},
),
})
}
CliNpmResolver::Byonm(resolver) => Some(NodeModules::Byonm {
root_node_modules_dir: resolver.root_node_modules_path().map(
|node_modules_dir| {
root_dir_url
.specifier_key(
&ModuleSpecifier::from_directory_path(node_modules_dir)
.unwrap(),
)
.into_owned()
},
),
}),
};
let env_vars_from_env_file = match self.cli_options.env_file_name() {
Some(env_filenames) => {
let mut aggregated_env_vars = IndexMap::new();
for env_filename in env_filenames.iter().rev() {
log::info!("{} Environment variables from the file \"{}\" were embedded in the generated executable file", crate::colors::yellow("Warning"), env_filename);
let env_vars = get_file_env_vars(env_filename.to_string())?;
aggregated_env_vars.extend(env_vars);
}
aggregated_env_vars
}
None => Default::default(),
};
output_vfs(&vfs, display_output_filename);
let metadata = Metadata {
argv: compile_flags.args.clone(),
seed: self.cli_options.seed(),
code_cache_key,
location: self.cli_options.location_flag().clone(),
permissions: self.cli_options.permissions_options(),
v8_flags: self.cli_options.v8_flags().clone(),
unsafely_ignore_certificate_errors: self
.cli_options
.unsafely_ignore_certificate_errors()
.clone(),
log_level: self.cli_options.log_level(),
ca_stores: self.cli_options.ca_stores().clone(),
ca_data,
env_vars_from_env_file,
entrypoint_key: root_dir_url.specifier_key(entrypoint).into_owned(),
workspace_resolver: SerializedWorkspaceResolver {
import_map: self.workspace_resolver.maybe_import_map().map(|i| {
SerializedWorkspaceResolverImportMap {
specifier: if i.base_url().scheme() == "file" {
root_dir_url.specifier_key(i.base_url()).into_owned()
} else {
// just make a remote url local
"deno.json".to_string()
},
json: i.to_json(),
}
}),
jsr_pkgs: self
.workspace_resolver
.jsr_packages()
.map(|pkg| SerializedResolverWorkspaceJsrPackage {
relative_base: root_dir_url.specifier_key(&pkg.base).into_owned(),
name: pkg.name.clone(),
version: pkg.version.clone(),
exports: pkg.exports.clone(),
})
.collect(),
package_jsons: self
.workspace_resolver
.package_jsons()
.map(|pkg_json| {
(
root_dir_url
.specifier_key(&pkg_json.specifier())
.into_owned(),
serde_json::to_value(pkg_json).unwrap(),
)
})
.collect(),
pkg_json_resolution: self.workspace_resolver.pkg_json_dep_resolution(),
},
node_modules,
unstable_config: UnstableConfig {
legacy_flag_enabled: false,
bare_node_builtins: self.cli_options.unstable_bare_node_builtins(),
detect_cjs: self.cli_options.unstable_detect_cjs(),
sloppy_imports: self.cli_options.unstable_sloppy_imports(),
features: self.cli_options.unstable_features(),
npm_lazy_caching: self.cli_options.unstable_npm_lazy_caching(),
},
otel_config: self.cli_options.otel_config(),
vfs_case_sensitivity: vfs.case_sensitivity,
};
let data_section_bytes = serialize_binary_data_section(
&metadata,
npm_snapshot.map(|s| s.into_serialized()),
&specifier_store.for_serialization(&root_dir_url),
&redirects_store,
&remote_modules_store,
&vfs,
)
.context("Serializing binary data section.")?;
write_binary_bytes(writer, original_bin, data_section_bytes, compile_flags)
.context("Writing binary bytes")
}
fn fill_npm_vfs(&self, builder: &mut VfsBuilder) -> Result<(), AnyError> {
fn maybe_warn_different_system(system_info: &NpmSystemInfo) {
if system_info != &NpmSystemInfo::default() {
log::warn!("{} The node_modules directory may be incompatible with the target system.", crate::colors::yellow("Warning"));
}
}
match &self.npm_resolver {
CliNpmResolver::Managed(npm_resolver) => {
if let Some(node_modules_path) = npm_resolver.root_node_modules_path() {
maybe_warn_different_system(&self.npm_system_info);
builder.add_dir_recursive(node_modules_path)?;
Ok(())
} else {
// we'll flatten to remove any custom registries later
let mut packages = npm_resolver
.resolution()
.all_system_packages(&self.npm_system_info);
packages.sort_by(|a, b| a.id.cmp(&b.id)); // determinism
for package in packages {
let folder =
npm_resolver.resolve_pkg_folder_from_pkg_id(&package.id)?;
builder.add_dir_recursive(&folder)?;
}
Ok(())
}
}
CliNpmResolver::Byonm(_) => {
maybe_warn_different_system(&self.npm_system_info);
for pkg_json in self.cli_options.workspace().package_jsons() {
builder.add_file_at_path(&pkg_json.path)?;
}
// traverse and add all the node_modules directories in the workspace
let mut pending_dirs = VecDeque::new();
pending_dirs.push_back(
self
.cli_options
.workspace()
.root_dir()
.to_file_path()
.unwrap(),
);
while let Some(pending_dir) = pending_dirs.pop_front() {
let mut entries = fs::read_dir(&pending_dir)
.with_context(|| {
format!("Failed reading: {}", pending_dir.display())
})?
.collect::<Result<Vec<_>, _>>()?;
entries.sort_by_cached_key(|entry| entry.file_name()); // determinism
for entry in entries {
let path = entry.path();
if !path.is_dir() {
continue;
}
if path.ends_with("node_modules") {
builder.add_dir_recursive(&path)?;
} else {
pending_dirs.push_back(path);
}
}
}
Ok(())
}
}
}
fn build_vfs_consolidating_global_npm_cache(
&self,
mut vfs: VfsBuilder,
) -> BuiltVfs {
match &self.npm_resolver {
CliNpmResolver::Managed(npm_resolver) => {
if npm_resolver.root_node_modules_path().is_some() {
return vfs.build();
}
let global_cache_root_path = npm_resolver.global_cache_root_path();
// Flatten all the registries folders into a single ".deno_compile_node_modules/localhost" folder
// that will be used by denort when loading the npm cache. This avoids us exposing
// the user's private registry information and means we don't have to bother
// serializing all the different registry config into the binary.
let Some(root_dir) = vfs.get_dir_mut(global_cache_root_path) else {
return vfs.build();
};
root_dir.name = DENO_COMPILE_GLOBAL_NODE_MODULES_DIR_NAME.to_string();
let mut new_entries = Vec::with_capacity(root_dir.entries.len());
let mut localhost_entries = IndexMap::new();
for entry in root_dir.entries.take_inner() {
match entry {
VfsEntry::Dir(mut dir) => {
for entry in dir.entries.take_inner() {
log::debug!("Flattening {} into node_modules", entry.name());
if let Some(existing) =
localhost_entries.insert(entry.name().to_string(), entry)
{
panic!(
"Unhandled scenario where a duplicate entry was found: {:?}",
existing
);
}
}
}
VfsEntry::File(_) | VfsEntry::Symlink(_) => {
new_entries.push(entry);
}
}
}
new_entries.push(VfsEntry::Dir(VirtualDirectory {
name: "localhost".to_string(),
entries: VirtualDirectoryEntries::new(
localhost_entries.into_iter().map(|(_, v)| v).collect(),
),
}));
root_dir.entries = VirtualDirectoryEntries::new(new_entries);
// it's better to not expose the user's cache directory, so take it out
// of there
let case_sensitivity = vfs.case_sensitivity();
let parent = global_cache_root_path.parent().unwrap();
let parent_dir = vfs.get_dir_mut(parent).unwrap();
let index = parent_dir
.entries
.binary_search(
DENO_COMPILE_GLOBAL_NODE_MODULES_DIR_NAME,
case_sensitivity,
)
.unwrap();
let npm_global_cache_dir_entry = parent_dir.entries.remove(index);
// go up from the ancestors removing empty directories...
// this is not as optimized as it could be
let mut last_name =
Cow::Borrowed(DENO_COMPILE_GLOBAL_NODE_MODULES_DIR_NAME);
for ancestor in
parent.ancestors().map(Some).chain(std::iter::once(None))
{
let dir = if let Some(ancestor) = ancestor {
vfs.get_dir_mut(ancestor).unwrap()
} else if cfg!(windows) {
vfs.get_system_root_dir_mut()
} else {
break;
};
if let Ok(index) =
dir.entries.binary_search(&last_name, case_sensitivity)
{
dir.entries.remove(index);
}
last_name = Cow::Owned(dir.name.clone());
if !dir.entries.is_empty() {
break;
}
}
// now build the vfs and add the global cache dir entry there
let mut built_vfs = vfs.build();
built_vfs
.entries
.insert(npm_global_cache_dir_entry, case_sensitivity);
built_vfs
}
CliNpmResolver::Byonm(_) => vfs.build(),
}
}
}
#[allow(clippy::too_many_arguments)]
fn write_binary_bytes(
mut file_writer: File,
original_bin: Vec<u8>,
data_section_bytes: Vec<u8>,
compile_flags: &CompileFlags,
) -> Result<(), AnyError> {
let target = compile_flags.resolve_target();
if target.contains("linux") {
libsui::Elf::new(&original_bin).append(
"d3n0l4nd",
&data_section_bytes,
&mut file_writer,
)?;
} else if target.contains("windows") {
let mut pe = libsui::PortableExecutable::from(&original_bin)?;
if let Some(icon) = compile_flags.icon.as_ref() {
let icon = std::fs::read(icon)?;
pe = pe.set_icon(&icon)?;
}
pe.write_resource("d3n0l4nd", data_section_bytes)?
.build(&mut file_writer)?;
} else if target.contains("darwin") {
libsui::Macho::from(original_bin)?
.write_section("d3n0l4nd", data_section_bytes)?
.build_and_sign(&mut file_writer)?;
}
Ok(())
}
/// Binary format:
/// * d3n0l4nd
/// * <metadata_len><metadata>
/// * <npm_snapshot_len><npm_snapshot>
/// * <specifiers>
/// * <redirects>
/// * <remote_modules>
/// * <vfs_headers_len><vfs_headers>
/// * <vfs_file_data_len><vfs_file_data>
/// * d3n0l4nd
#[allow(clippy::too_many_arguments)]
fn serialize_binary_data_section(
metadata: &Metadata,
npm_snapshot: Option<SerializedNpmResolutionSnapshot>,
specifiers: &SpecifierStoreForSerialization,
redirects: &SpecifierDataStore<SpecifierId>,
remote_modules: &SpecifierDataStore<RemoteModuleEntry<'_>>,
vfs: &BuiltVfs,
) -> Result<Vec<u8>, AnyError> {
let metadata = serde_json::to_string(metadata)?;
let npm_snapshot =
npm_snapshot.map(serialize_npm_snapshot).unwrap_or_default();
let serialized_vfs = serde_json::to_string(&vfs.entries)?;
let bytes = capacity_builder::BytesBuilder::build(|builder| {
builder.append(MAGIC_BYTES);
// 1. Metadata
{
builder.append_le(metadata.len() as u64);
builder.append(&metadata);
}
// 2. Npm snapshot
{
builder.append_le(npm_snapshot.len() as u64);
builder.append(&npm_snapshot);
}
// 3. Specifiers
builder.append(specifiers);
// 4. Redirects
redirects.serialize(builder);
// 5. Remote modules
remote_modules.serialize(builder);
// 6. VFS
{
builder.append_le(serialized_vfs.len() as u64);
builder.append(&serialized_vfs);
let vfs_bytes_len = vfs.files.iter().map(|f| f.len() as u64).sum::<u64>();
builder.append_le(vfs_bytes_len);
for file in &vfs.files {
builder.append(file);
}
}
// write the magic bytes at the end so we can use it
// to make sure we've deserialized correctly
builder.append(MAGIC_BYTES);
})?;
Ok(bytes)
}
fn serialize_npm_snapshot(
mut snapshot: SerializedNpmResolutionSnapshot,
) -> Vec<u8> {
fn append_string(bytes: &mut Vec<u8>, string: &str) {
let len = string.len() as u32;
bytes.extend_from_slice(&len.to_le_bytes());
bytes.extend_from_slice(string.as_bytes());
}
snapshot.packages.sort_by(|a, b| a.id.cmp(&b.id)); // determinism
let ids_to_stored_ids = snapshot
.packages
.iter()
.enumerate()
.map(|(i, pkg)| (&pkg.id, i as u32))
.collect::<HashMap<_, _>>();
let mut root_packages: Vec<_> = snapshot.root_packages.iter().collect();
root_packages.sort();
let mut bytes = Vec::new();
bytes.extend_from_slice(&(snapshot.packages.len() as u32).to_le_bytes());
for pkg in &snapshot.packages {
append_string(&mut bytes, &pkg.id.as_serialized());
}
bytes.extend_from_slice(&(root_packages.len() as u32).to_le_bytes());
for (req, id) in root_packages {
append_string(&mut bytes, &req.to_string());
let id = ids_to_stored_ids.get(&id).unwrap();
bytes.extend_from_slice(&id.to_le_bytes());
}
for pkg in &snapshot.packages {
let deps_len = pkg.dependencies.len() as u32;
bytes.extend_from_slice(&deps_len.to_le_bytes());
let mut deps: Vec<_> = pkg.dependencies.iter().collect();
deps.sort();
for (req, id) in deps {
append_string(&mut bytes, req);
let id = ids_to_stored_ids.get(&id).unwrap();
bytes.extend_from_slice(&id.to_le_bytes());
}
}
bytes
}
fn get_denort_path(deno_exe: PathBuf) -> Option<OsString> {
let mut denort = deno_exe;
denort.set_file_name(if cfg!(windows) {
"denort.exe"
} else {
"denort"
});
denort.exists().then(|| denort.into_os_string())
}
fn get_dev_binary_path() -> Option<OsString> {
env::var_os("DENORT_BIN").or_else(|| {
env::current_exe().ok().and_then(|exec_path| {
if exec_path
.components()
.any(|component| component == Component::Normal("target".as_ref()))
{
get_denort_path(exec_path)
} else {
None
}
})
})
}
/// This function returns the environment variables specified
/// in the passed environment file.
fn get_file_env_vars(
filename: String,
) -> Result<IndexMap<String, String>, dotenvy::Error> {
let mut file_env_vars = IndexMap::new();
for item in dotenvy::from_filename_iter(filename)? {
let Ok((key, val)) = item else {
continue; // this failure will be warned about on load
};
file_env_vars.insert(key, val);
}
Ok(file_env_vars)
}
/// This function sets the subsystem field in the PE header to 2 (GUI subsystem)
/// For more information about the PE header: https://learn.microsoft.com/en-us/windows/win32/debug/pe-format
fn set_windows_binary_to_gui(bin: &mut [u8]) -> Result<(), AnyError> {
// Get the PE header offset located in an i32 found at offset 60
// See: https://learn.microsoft.com/en-us/windows/win32/debug/pe-format#ms-dos-stub-image-only
let start_pe = u32::from_le_bytes((bin[60..64]).try_into()?);
// Get image type (PE32 or PE32+) indicates whether the binary is 32 or 64 bit
// The used offset and size values can be found here:
// https://learn.microsoft.com/en-us/windows/win32/debug/pe-format#optional-header-image-only
let start_32 = start_pe as usize + 28;
let magic_32 =
u16::from_le_bytes(bin[(start_32)..(start_32 + 2)].try_into()?);
let start_64 = start_pe as usize + 24;
let magic_64 =
u16::from_le_bytes(bin[(start_64)..(start_64 + 2)].try_into()?);
// Take the standard fields size for the current architecture (32 or 64 bit)
// This is the ofset for the Windows-Specific fields
let standard_fields_size = if magic_32 == 0x10b {
28
} else if magic_64 == 0x20b {
24
} else {
bail!("Could not find a matching magic field in the PE header")
};
// Set the subsystem field (offset 68) to 2 (GUI subsystem)
// For all possible options, see: https://learn.microsoft.com/en-us/windows/win32/debug/pe-format#optional-header-windows-specific-fields-image-only
let subsystem_offset = 68;
let subsystem_start =
start_pe as usize + standard_fields_size + subsystem_offset;
let subsystem: u16 = 2;
bin[(subsystem_start)..(subsystem_start + 2)]
.copy_from_slice(&subsystem.to_le_bytes());
Ok(())
}