mirror of
https://github.com/denoland/deno.git
synced 2025-01-22 06:09:25 -05:00
483 lines
13 KiB
Rust
483 lines
13 KiB
Rust
// Copyright 2018 the Deno authors. All rights reserved. MIT license.
|
|
|
|
// Do not use FlatBuffers in this module.
|
|
// TODO Currently this module uses Tokio, but it would be nice if they were
|
|
// decoupled.
|
|
|
|
use deno_dir;
|
|
use errors::DenoError;
|
|
use flags;
|
|
use libdeno;
|
|
|
|
use futures::Future;
|
|
use libc::c_void;
|
|
use std;
|
|
use std::ffi::CStr;
|
|
use std::ffi::CString;
|
|
use std::sync::mpsc;
|
|
use std::sync::Arc;
|
|
use std::sync::Mutex;
|
|
use std::time::Duration;
|
|
use std::time::Instant;
|
|
use tokio;
|
|
use tokio_util;
|
|
|
|
type DenoException<'a> = &'a str;
|
|
|
|
// Buf represents a byte array returned from a "Op".
|
|
// The message might be empty (which will be translated into a null object on
|
|
// the javascript side) or it is a heap allocated opaque sequence of bytes.
|
|
// Usually a flatbuffer message.
|
|
pub type Buf = Box<[u8]>;
|
|
|
|
// JS promises in Deno map onto a specific Future
|
|
// which yields either a DenoError or a byte array.
|
|
pub type Op = Future<Item = Buf, Error = DenoError> + Send;
|
|
|
|
// Returns (is_sync, op)
|
|
pub type Dispatch =
|
|
fn(isolate: &mut Isolate, buf: &[u8], data_buf: &'static mut [u8])
|
|
-> (bool, Box<Op>);
|
|
|
|
pub struct Isolate {
|
|
libdeno_isolate: *const libdeno::isolate,
|
|
dispatch: Dispatch,
|
|
rx: mpsc::Receiver<(i32, Buf)>,
|
|
ntasks: i32,
|
|
pub timeout_due: Option<Instant>,
|
|
pub state: Arc<IsolateState>,
|
|
}
|
|
|
|
// Isolate cannot be passed between threads but IsolateState can. So any state that
|
|
// needs to be accessed outside the main V8 thread should be inside IsolateState.
|
|
pub struct IsolateState {
|
|
pub dir: deno_dir::DenoDir,
|
|
pub argv: Vec<String>,
|
|
pub flags: flags::DenoFlags,
|
|
tx: Mutex<Option<mpsc::Sender<(i32, Buf)>>>,
|
|
pub metrics: Mutex<Metrics>,
|
|
}
|
|
|
|
impl IsolateState {
|
|
// Thread safe.
|
|
fn send_to_js(&self, req_id: i32, buf: Buf) {
|
|
let mut g = self.tx.lock().unwrap();
|
|
let maybe_tx = g.as_mut();
|
|
assert!(maybe_tx.is_some(), "Expected tx to not be deleted.");
|
|
let tx = maybe_tx.unwrap();
|
|
tx.send((req_id, buf)).expect("tx.send error");
|
|
}
|
|
|
|
fn metrics_op_dispatched(
|
|
&self,
|
|
bytes_sent_control: u64,
|
|
bytes_sent_data: u64,
|
|
) {
|
|
let mut metrics = self.metrics.lock().unwrap();
|
|
metrics.ops_dispatched += 1;
|
|
metrics.bytes_sent_control += bytes_sent_control;
|
|
metrics.bytes_sent_data += bytes_sent_data;
|
|
}
|
|
|
|
fn metrics_op_completed(&self, bytes_received: u64) {
|
|
let mut metrics = self.metrics.lock().unwrap();
|
|
metrics.ops_completed += 1;
|
|
metrics.bytes_received += bytes_received;
|
|
}
|
|
}
|
|
|
|
#[derive(Default)]
|
|
pub struct Metrics {
|
|
pub ops_dispatched: u64,
|
|
pub ops_completed: u64,
|
|
pub bytes_sent_control: u64,
|
|
pub bytes_sent_data: u64,
|
|
pub bytes_received: u64,
|
|
}
|
|
|
|
static DENO_INIT: std::sync::Once = std::sync::ONCE_INIT;
|
|
|
|
impl Isolate {
|
|
pub fn new(argv: Vec<String>, dispatch: Dispatch) -> Isolate {
|
|
DENO_INIT.call_once(|| {
|
|
unsafe { libdeno::deno_init() };
|
|
});
|
|
|
|
let (flags, argv_rest) = flags::set_flags(argv);
|
|
let libdeno_isolate = unsafe { libdeno::deno_new(pre_dispatch) };
|
|
// This channel handles sending async messages back to the runtime.
|
|
let (tx, rx) = mpsc::channel::<(i32, Buf)>();
|
|
|
|
Isolate {
|
|
libdeno_isolate,
|
|
dispatch,
|
|
rx,
|
|
ntasks: 0,
|
|
timeout_due: None,
|
|
state: Arc::new(IsolateState {
|
|
dir: deno_dir::DenoDir::new(flags.reload, None).unwrap(),
|
|
argv: argv_rest,
|
|
flags,
|
|
tx: Mutex::new(Some(tx)),
|
|
metrics: Mutex::new(Metrics::default()),
|
|
}),
|
|
}
|
|
}
|
|
|
|
pub fn as_void_ptr(&mut self) -> *mut c_void {
|
|
self as *mut _ as *mut c_void
|
|
}
|
|
|
|
pub fn from_void_ptr<'a>(ptr: *mut c_void) -> &'a mut Isolate {
|
|
let ptr = ptr as *mut _;
|
|
unsafe { &mut *ptr }
|
|
}
|
|
|
|
pub fn execute(
|
|
&mut self,
|
|
js_filename: &str,
|
|
js_source: &str,
|
|
) -> Result<(), DenoException> {
|
|
let filename = CString::new(js_filename).unwrap();
|
|
let source = CString::new(js_source).unwrap();
|
|
let r = unsafe {
|
|
libdeno::deno_execute(
|
|
self.libdeno_isolate,
|
|
self.as_void_ptr(),
|
|
filename.as_ptr(),
|
|
source.as_ptr(),
|
|
)
|
|
};
|
|
if r == 0 {
|
|
let ptr = unsafe { libdeno::deno_last_exception(self.libdeno_isolate) };
|
|
let cstr = unsafe { CStr::from_ptr(ptr) };
|
|
return Err(cstr.to_str().unwrap());
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
pub fn respond(&mut self, req_id: i32, buf: Buf) {
|
|
self.state.metrics_op_completed(buf.len() as u64);
|
|
// TODO(zero-copy) Use Buf::leak(buf) to leak the heap allocated buf. And
|
|
// don't do the memcpy in ImportBuf() (in libdeno/binding.cc)
|
|
unsafe {
|
|
libdeno::deno_respond(
|
|
self.libdeno_isolate,
|
|
self.as_void_ptr(),
|
|
req_id,
|
|
buf.into(),
|
|
)
|
|
}
|
|
}
|
|
|
|
fn complete_op(&mut self, req_id: i32, buf: Buf) {
|
|
// Receiving a message on rx exactly corresponds to an async task
|
|
// completing.
|
|
self.ntasks_decrement();
|
|
// Call into JS with the buf.
|
|
self.respond(req_id, buf);
|
|
}
|
|
|
|
fn timeout(&mut self) {
|
|
let dummy_buf = libdeno::deno_buf {
|
|
alloc_ptr: 0 as *mut u8,
|
|
alloc_len: 0,
|
|
data_ptr: 0 as *mut u8,
|
|
data_len: 0,
|
|
};
|
|
unsafe {
|
|
libdeno::deno_respond(
|
|
self.libdeno_isolate,
|
|
self.as_void_ptr(),
|
|
-1,
|
|
dummy_buf,
|
|
)
|
|
}
|
|
}
|
|
|
|
// TODO Use Park abstraction? Note at time of writing Tokio default runtime
|
|
// does not have new_with_park().
|
|
pub fn event_loop(&mut self) {
|
|
// Main thread event loop.
|
|
while !self.is_idle() {
|
|
match recv_deadline(&self.rx, self.timeout_due) {
|
|
Ok((req_id, buf)) => self.complete_op(req_id, buf),
|
|
Err(mpsc::RecvTimeoutError::Timeout) => self.timeout(),
|
|
Err(e) => panic!("recv_deadline() failed: {:?}", e),
|
|
}
|
|
}
|
|
}
|
|
|
|
fn ntasks_increment(&mut self) {
|
|
assert!(self.ntasks >= 0);
|
|
self.ntasks = self.ntasks + 1;
|
|
}
|
|
|
|
fn ntasks_decrement(&mut self) {
|
|
self.ntasks = self.ntasks - 1;
|
|
assert!(self.ntasks >= 0);
|
|
}
|
|
|
|
fn is_idle(&self) -> bool {
|
|
self.ntasks == 0 && self.timeout_due.is_none()
|
|
}
|
|
}
|
|
|
|
impl Drop for Isolate {
|
|
fn drop(&mut self) {
|
|
unsafe { libdeno::deno_delete(self.libdeno_isolate) }
|
|
}
|
|
}
|
|
|
|
/// Converts Rust Buf to libdeno deno_buf.
|
|
impl From<Buf> for libdeno::deno_buf {
|
|
fn from(x: Buf) -> libdeno::deno_buf {
|
|
let len = x.len();
|
|
let ptr = Box::into_raw(x);
|
|
libdeno::deno_buf {
|
|
alloc_ptr: 0 as *mut u8,
|
|
alloc_len: 0,
|
|
data_ptr: ptr as *mut u8,
|
|
data_len: len,
|
|
}
|
|
}
|
|
}
|
|
|
|
// Dereferences the C pointer into the Rust Isolate object.
|
|
extern "C" fn pre_dispatch(
|
|
user_data: *mut c_void,
|
|
req_id: i32,
|
|
control_buf: libdeno::deno_buf,
|
|
data_buf: libdeno::deno_buf,
|
|
) {
|
|
// for metrics
|
|
let bytes_sent_control = control_buf.data_len as u64;
|
|
let bytes_sent_data = data_buf.data_len as u64;
|
|
|
|
// control_buf is only valid for the lifetime of this call, thus is
|
|
// interpretted as a slice.
|
|
let control_slice = unsafe {
|
|
std::slice::from_raw_parts(control_buf.data_ptr, control_buf.data_len)
|
|
};
|
|
|
|
// data_buf is valid for the lifetime of the promise, thus a mutable buf with
|
|
// static lifetime.
|
|
let data_slice = unsafe {
|
|
std::slice::from_raw_parts_mut::<'static>(
|
|
data_buf.data_ptr,
|
|
data_buf.data_len,
|
|
)
|
|
};
|
|
|
|
let isolate = Isolate::from_void_ptr(user_data);
|
|
let dispatch = isolate.dispatch;
|
|
let (is_sync, op) = dispatch(isolate, control_slice, data_slice);
|
|
|
|
isolate
|
|
.state
|
|
.metrics_op_dispatched(bytes_sent_control, bytes_sent_data);
|
|
|
|
if is_sync {
|
|
// Execute op synchronously.
|
|
let buf = tokio_util::block_on(op).unwrap();
|
|
let buf_size = buf.len();
|
|
if buf_size != 0 {
|
|
// Set the synchronous response, the value returned from isolate.send().
|
|
isolate.respond(req_id, buf);
|
|
}
|
|
} else {
|
|
// Execute op asynchronously.
|
|
let state = Arc::clone(&isolate.state);
|
|
|
|
// TODO Ideally Tokio would could tell us how many tasks are executing, but
|
|
// it cannot currently. Therefore we track top-level promises/tasks
|
|
// manually.
|
|
isolate.ntasks_increment();
|
|
|
|
let task = op
|
|
.and_then(move |buf| {
|
|
state.send_to_js(req_id, buf);
|
|
Ok(())
|
|
}).map_err(|_| ());
|
|
tokio::spawn(task);
|
|
}
|
|
}
|
|
|
|
fn recv_deadline<T>(
|
|
rx: &mpsc::Receiver<T>,
|
|
maybe_due: Option<Instant>,
|
|
) -> Result<T, mpsc::RecvTimeoutError> {
|
|
match maybe_due {
|
|
None => rx.recv().map_err(|e| e.into()),
|
|
Some(due) => {
|
|
// Subtracting two Instants causes a panic if the resulting duration
|
|
// would become negative. Avoid this.
|
|
let now = Instant::now();
|
|
let timeout = if due > now {
|
|
due - now
|
|
} else {
|
|
Duration::new(0, 0)
|
|
};
|
|
// TODO: use recv_deadline() instead of recv_timeout() when this
|
|
// feature becomes stable/available.
|
|
rx.recv_timeout(timeout)
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::*;
|
|
use futures;
|
|
|
|
#[test]
|
|
fn test_dispatch_sync() {
|
|
let argv = vec![String::from("./deno"), String::from("hello.js")];
|
|
let mut isolate = Isolate::new(argv, dispatch_sync);
|
|
tokio_util::init(|| {
|
|
isolate
|
|
.execute(
|
|
"y.js",
|
|
r#"
|
|
const m = new Uint8Array([4, 5, 6]);
|
|
let n = libdeno.send(m);
|
|
if (!(n.byteLength === 3 &&
|
|
n[0] === 1 &&
|
|
n[1] === 2 &&
|
|
n[2] === 3)) {
|
|
throw Error("assert error");
|
|
}
|
|
"#,
|
|
)
|
|
.expect("execute error");
|
|
isolate.event_loop();
|
|
});
|
|
}
|
|
|
|
fn dispatch_sync(
|
|
_isolate: &mut Isolate,
|
|
control: &[u8],
|
|
data: &'static mut [u8],
|
|
) -> (bool, Box<Op>) {
|
|
assert_eq!(control[0], 4);
|
|
assert_eq!(control[1], 5);
|
|
assert_eq!(control[2], 6);
|
|
assert_eq!(data.len(), 0);
|
|
// Send back some sync response.
|
|
let vec: Vec<u8> = vec![1, 2, 3];
|
|
let control = vec.into_boxed_slice();
|
|
let op = Box::new(futures::future::ok(control));
|
|
(true, op)
|
|
}
|
|
|
|
#[test]
|
|
fn test_metrics_sync() {
|
|
let argv = vec![String::from("./deno"), String::from("hello.js")];
|
|
let mut isolate = Isolate::new(argv, metrics_dispatch_sync);
|
|
tokio_util::init(|| {
|
|
// Verify that metrics have been properly initialized.
|
|
{
|
|
let metrics = isolate.state.metrics.lock().unwrap();
|
|
assert_eq!(metrics.ops_dispatched, 0);
|
|
assert_eq!(metrics.ops_completed, 0);
|
|
assert_eq!(metrics.bytes_sent_control, 0);
|
|
assert_eq!(metrics.bytes_sent_data, 0);
|
|
assert_eq!(metrics.bytes_received, 0);
|
|
}
|
|
|
|
isolate
|
|
.execute(
|
|
"y.js",
|
|
r#"
|
|
const control = new Uint8Array([4, 5, 6]);
|
|
const data = new Uint8Array([42, 43, 44, 45, 46]);
|
|
libdeno.send(control, data);
|
|
"#,
|
|
)
|
|
.expect("execute error");
|
|
isolate.event_loop();
|
|
let metrics = isolate.state.metrics.lock().unwrap();
|
|
assert_eq!(metrics.ops_dispatched, 1);
|
|
assert_eq!(metrics.ops_completed, 1);
|
|
assert_eq!(metrics.bytes_sent_control, 3);
|
|
assert_eq!(metrics.bytes_sent_data, 5);
|
|
assert_eq!(metrics.bytes_received, 4);
|
|
});
|
|
}
|
|
|
|
#[test]
|
|
fn test_metrics_async() {
|
|
let argv = vec![String::from("./deno"), String::from("hello.js")];
|
|
let mut isolate = Isolate::new(argv, metrics_dispatch_async);
|
|
tokio_util::init(|| {
|
|
// Verify that metrics have been properly initialized.
|
|
{
|
|
let metrics = isolate.state.metrics.lock().unwrap();
|
|
assert_eq!(metrics.ops_dispatched, 0);
|
|
assert_eq!(metrics.ops_completed, 0);
|
|
assert_eq!(metrics.bytes_sent_control, 0);
|
|
assert_eq!(metrics.bytes_sent_data, 0);
|
|
assert_eq!(metrics.bytes_received, 0);
|
|
}
|
|
|
|
isolate
|
|
.execute(
|
|
"y.js",
|
|
r#"
|
|
const control = new Uint8Array([4, 5, 6]);
|
|
const data = new Uint8Array([42, 43, 44, 45, 46]);
|
|
let r = libdeno.send(control, data);
|
|
if (r != null) throw Error("expected null");
|
|
"#,
|
|
)
|
|
.expect("execute error");
|
|
|
|
// Make sure relevant metrics are updated before task is executed.
|
|
{
|
|
let metrics = isolate.state.metrics.lock().unwrap();
|
|
assert_eq!(metrics.ops_dispatched, 1);
|
|
assert_eq!(metrics.bytes_sent_control, 3);
|
|
assert_eq!(metrics.bytes_sent_data, 5);
|
|
// Note we cannot check ops_completed nor bytes_received because that
|
|
// would be a race condition. It might be nice to have use a oneshot
|
|
// with metrics_dispatch_async() to properly validate them.
|
|
}
|
|
|
|
isolate.event_loop();
|
|
|
|
// Make sure relevant metrics are updated after task is executed.
|
|
{
|
|
let metrics = isolate.state.metrics.lock().unwrap();
|
|
assert_eq!(metrics.ops_dispatched, 1);
|
|
assert_eq!(metrics.ops_completed, 1);
|
|
assert_eq!(metrics.bytes_sent_control, 3);
|
|
assert_eq!(metrics.bytes_sent_data, 5);
|
|
assert_eq!(metrics.bytes_received, 4);
|
|
}
|
|
});
|
|
}
|
|
|
|
fn metrics_dispatch_sync(
|
|
_isolate: &mut Isolate,
|
|
_control: &[u8],
|
|
_data: &'static mut [u8],
|
|
) -> (bool, Box<Op>) {
|
|
// Send back some sync response
|
|
let vec: Vec<u8> = vec![1, 2, 3, 4];
|
|
let control = vec.into_boxed_slice();
|
|
let op = Box::new(futures::future::ok(control));
|
|
(true, op)
|
|
}
|
|
|
|
fn metrics_dispatch_async(
|
|
_isolate: &mut Isolate,
|
|
_control: &[u8],
|
|
_data: &'static mut [u8],
|
|
) -> (bool, Box<Op>) {
|
|
// Send back some sync response
|
|
let vec: Vec<u8> = vec![1, 2, 3, 4];
|
|
let control = vec.into_boxed_slice();
|
|
let op = Box::new(futures::future::ok(control));
|
|
(false, op)
|
|
}
|
|
}
|