1
0
Fork 0
mirror of https://github.com/denoland/deno.git synced 2025-01-22 15:10:44 -05:00
denoland-deno/core/modules.rs
2020-01-02 18:41:59 -05:00

1195 lines
34 KiB
Rust

// Copyright 2018-2020 the Deno authors. All rights reserved. MIT license.
// Implementation note: one could imagine combining this module with Isolate to
// provide a more intuitive high-level API. However, due to the complexity
// inherent in asynchronous module loading, we would like the Isolate to remain
// small and simple for users who do not use modules or if they do can load them
// synchronously. The isolate.rs module should never depend on this module.
use crate::any_error::ErrBox;
use crate::isolate::ImportStream;
use crate::isolate::Isolate;
use crate::isolate::RecursiveLoadEvent as Event;
use crate::isolate::SourceCodeInfo;
use crate::libdeno::deno_dyn_import_id;
use crate::libdeno::deno_mod;
use crate::module_specifier::ModuleSpecifier;
use futures::future::FutureExt;
use futures::stream::FuturesUnordered;
use futures::stream::Stream;
use futures::stream::TryStreamExt;
use std::collections::HashMap;
use std::collections::HashSet;
use std::fmt;
use std::future::Future;
use std::pin::Pin;
use std::sync::Arc;
use std::sync::Mutex;
use std::task::Context;
use std::task::Poll;
pub type SourceCodeInfoFuture =
dyn Future<Output = Result<SourceCodeInfo, ErrBox>> + Send;
pub trait Loader: Send + Sync {
/// Returns an absolute URL.
/// When implementing an spec-complaint VM, this should be exactly the
/// algorithm described here:
/// https://html.spec.whatwg.org/multipage/webappapis.html#resolve-a-module-specifier
fn resolve(
&self,
specifier: &str,
referrer: &str,
is_main: bool,
is_dyn_import: bool,
) -> Result<ModuleSpecifier, ErrBox>;
/// Given ModuleSpecifier, load its source code.
fn load(
&self,
module_specifier: &ModuleSpecifier,
maybe_referrer: Option<ModuleSpecifier>,
) -> Pin<Box<SourceCodeInfoFuture>>;
}
#[derive(Debug, Eq, PartialEq)]
enum Kind {
Main,
DynamicImport(deno_dyn_import_id),
}
#[derive(Debug, Eq, PartialEq)]
enum State {
ResolveMain(String, Option<String>), // specifier, maybe code
ResolveImport(String, String), // specifier, referrer
LoadingRoot,
LoadingImports(deno_mod),
Instantiated(deno_mod),
}
/// This future is used to implement parallel async module loading without
/// complicating the Isolate API.
/// TODO: RecursiveLoad desperately needs to be merged with Modules.
pub struct RecursiveLoad<L: Loader + Unpin> {
kind: Kind,
state: State,
loader: L,
modules: Arc<Mutex<Modules>>,
pending: FuturesUnordered<Pin<Box<SourceCodeInfoFuture>>>,
is_pending: HashSet<ModuleSpecifier>,
}
impl<L: Loader + Unpin> RecursiveLoad<L> {
/// Starts a new parallel load of the given URL of the main module.
pub fn main(
specifier: &str,
code: Option<String>,
loader: L,
modules: Arc<Mutex<Modules>>,
) -> Self {
let kind = Kind::Main;
let state = State::ResolveMain(specifier.to_owned(), code);
Self::new(kind, state, loader, modules)
}
pub fn dynamic_import(
id: deno_dyn_import_id,
specifier: &str,
referrer: &str,
loader: L,
modules: Arc<Mutex<Modules>>,
) -> Self {
let kind = Kind::DynamicImport(id);
let state = State::ResolveImport(specifier.to_owned(), referrer.to_owned());
Self::new(kind, state, loader, modules)
}
pub fn dyn_import_id(&self) -> Option<deno_dyn_import_id> {
match self.kind {
Kind::Main => None,
Kind::DynamicImport(id) => Some(id),
}
}
fn new(
kind: Kind,
state: State,
loader: L,
modules: Arc<Mutex<Modules>>,
) -> Self {
Self {
kind,
state,
loader,
modules,
pending: FuturesUnordered::new(),
is_pending: HashSet::new(),
}
}
fn add_root(&mut self) -> Result<(), ErrBox> {
let module_specifier = match self.state {
State::ResolveMain(ref specifier, _) => self.loader.resolve(
specifier,
".",
true,
self.dyn_import_id().is_some(),
)?,
State::ResolveImport(ref specifier, ref referrer) => self
.loader
.resolve(specifier, referrer, false, self.dyn_import_id().is_some())?,
_ => unreachable!(),
};
// We deliberately do not check if this module is already present in the
// module map. That's because the module map doesn't track whether a
// a module's dependencies have been loaded and whether it's been
// instantiated, so if we did find this module in the module map and used
// its id, this could lead to a crash.
//
// For the time being code and metadata for a module specifier is fetched
// multiple times, register() uses only the first result, and assigns the
// same module id to all instances.
//
// TODO: this is very ugly. The module map and recursive loader should be
// integrated into one thing.
self
.pending
.push(self.loader.load(&module_specifier, None).boxed());
self.state = State::LoadingRoot;
Ok(())
}
fn add_import(
&mut self,
specifier: &str,
referrer: &str,
parent_id: deno_mod,
) -> Result<(), ErrBox> {
let referrer_specifier = ModuleSpecifier::resolve_url(referrer)
.expect("Referrer should be a valid specifier");
let module_specifier = self.loader.resolve(
specifier,
referrer,
false,
self.dyn_import_id().is_some(),
)?;
let module_name = module_specifier.as_str();
let mut modules = self.modules.lock().unwrap();
modules.add_child(parent_id, module_name);
if !modules.is_registered(module_name)
&& !self.is_pending.contains(&module_specifier)
{
let fut = self
.loader
.load(&module_specifier, Some(referrer_specifier));
self.pending.push(fut.boxed());
self.is_pending.insert(module_specifier);
}
Ok(())
}
/// Returns a future that resolves to the final module id of the root module.
/// This future needs to take ownership of the isolate.
pub fn get_future(
self,
isolate: Arc<Mutex<Isolate>>,
) -> impl Future<Output = Result<deno_mod, ErrBox>> {
async move {
let mut load = self;
loop {
let event = load.try_next().await?;
match event.unwrap() {
Event::Fetch(info) => {
let mut isolate = isolate.lock().unwrap();
load.register(info, &mut isolate)?;
}
Event::Instantiate(id) => return Ok(id),
}
}
}
}
}
impl<L: Loader + Unpin> ImportStream for RecursiveLoad<L> {
// TODO: this should not be part of RecursiveLoad.
fn register(
&mut self,
source_code_info: SourceCodeInfo,
isolate: &mut Isolate,
) -> Result<(), ErrBox> {
// #A There are 3 cases to handle at this moment:
// 1. Source code resolved result have the same module name as requested
// and is not yet registered
// -> register
// 2. Source code resolved result have a different name as requested:
// 2a. The module with resolved module name has been registered
// -> alias
// 2b. The module with resolved module name has not yet been registerd
// -> register & alias
let SourceCodeInfo {
code,
module_url_specified,
module_url_found,
} = source_code_info;
let is_main = self.kind == Kind::Main && self.state == State::LoadingRoot;
let module_id = {
let mut modules = self.modules.lock().unwrap();
// If necessary, register an alias.
if module_url_specified != module_url_found {
modules.alias(&module_url_specified, &module_url_found);
}
match modules.get_id(&module_url_found) {
// Module has already been registered.
Some(id) => {
debug!(
"Already-registered module fetched again: {}",
module_url_found
);
id
}
// Module not registered yet, do it now.
None => {
let id = isolate.mod_new(is_main, &module_url_found, &code)?;
modules.register(id, &module_url_found);
id
}
}
};
// Now we must iterate over all imports of the module and load them.
let imports = isolate.mod_get_imports(module_id);
for import in imports {
self.add_import(&import, &module_url_found, module_id)?;
}
// If we just finished loading the root module, store the root module id.
match self.state {
State::LoadingRoot => self.state = State::LoadingImports(module_id),
State::LoadingImports(..) => {}
_ => unreachable!(),
};
// If all imports have been loaded, instantiate the root module.
if self.pending.is_empty() {
let root_id = match self.state {
State::LoadingImports(mod_id) => mod_id,
_ => unreachable!(),
};
let mut resolve_cb =
|specifier: &str, referrer_id: deno_mod| -> deno_mod {
let modules = self.modules.lock().unwrap();
let referrer = modules.get_name(referrer_id).unwrap();
match self.loader.resolve(
specifier,
&referrer,
is_main,
self.dyn_import_id().is_some(),
) {
Ok(specifier) => modules.get_id(specifier.as_str()).unwrap_or(0),
// We should have already resolved and Ready this module, so
// resolve() will not fail this time.
Err(..) => unreachable!(),
}
};
isolate.mod_instantiate(root_id, &mut resolve_cb)?;
self.state = State::Instantiated(root_id);
}
Ok(())
}
}
impl<L: Loader + Unpin> Stream for RecursiveLoad<L> {
type Item = Result<Event, ErrBox>;
fn poll_next(
self: Pin<&mut Self>,
cx: &mut Context,
) -> Poll<Option<Self::Item>> {
let inner = self.get_mut();
match inner.state {
State::ResolveMain(ref specifier, Some(ref code)) => {
let module_specifier = inner.loader.resolve(
specifier,
".",
true,
inner.dyn_import_id().is_some(),
)?;
let info = SourceCodeInfo {
code: code.to_owned(),
module_url_specified: module_specifier.to_string(),
module_url_found: module_specifier.to_string(),
};
inner.state = State::LoadingRoot;
Poll::Ready(Some(Ok(Event::Fetch(info))))
}
State::ResolveMain(..) | State::ResolveImport(..) => {
if let Err(e) = inner.add_root() {
return Poll::Ready(Some(Err(e)));
}
inner.try_poll_next_unpin(cx)
}
State::LoadingRoot | State::LoadingImports(..) => {
match inner.pending.try_poll_next_unpin(cx)? {
Poll::Ready(None) => unreachable!(),
Poll::Ready(Some(info)) => Poll::Ready(Some(Ok(Event::Fetch(info)))),
Poll::Pending => Poll::Pending,
}
}
State::Instantiated(id) => Poll::Ready(Some(Ok(Event::Instantiate(id)))),
}
}
}
struct ModuleInfo {
name: String,
children: Vec<String>,
}
impl ModuleInfo {
fn has_child(&self, child_name: &str) -> bool {
for c in self.children.iter() {
if c == child_name {
return true;
}
}
false
}
}
/// A symbolic module entity.
enum SymbolicModule {
/// This module is an alias to another module.
/// This is useful such that multiple names could point to
/// the same underlying module (particularly due to redirects).
Alias(String),
/// This module associates with a V8 module by id.
Mod(deno_mod),
}
#[derive(Default)]
/// Alias-able module name map
struct ModuleNameMap {
inner: HashMap<String, SymbolicModule>,
}
impl ModuleNameMap {
pub fn new() -> Self {
ModuleNameMap {
inner: HashMap::new(),
}
}
/// Get the id of a module.
/// If this module is internally represented as an alias,
/// follow the alias chain to get the final module id.
pub fn get(&self, name: &str) -> Option<deno_mod> {
let mut mod_name = name;
loop {
let cond = self.inner.get(mod_name);
match cond {
Some(SymbolicModule::Alias(target)) => {
mod_name = target;
}
Some(SymbolicModule::Mod(mod_id)) => {
return Some(*mod_id);
}
_ => {
return None;
}
}
}
}
/// Insert a name assocated module id.
pub fn insert(&mut self, name: String, id: deno_mod) {
self.inner.insert(name, SymbolicModule::Mod(id));
}
/// Create an alias to another module.
pub fn alias(&mut self, name: String, target: String) {
self.inner.insert(name, SymbolicModule::Alias(target));
}
/// Check if a name is an alias to another module.
pub fn is_alias(&self, name: &str) -> bool {
let cond = self.inner.get(name);
match cond {
Some(SymbolicModule::Alias(_)) => true,
_ => false,
}
}
}
/// A collection of JS modules.
#[derive(Default)]
pub struct Modules {
info: HashMap<deno_mod, ModuleInfo>,
by_name: ModuleNameMap,
}
impl Modules {
pub fn new() -> Modules {
Self {
info: HashMap::new(),
by_name: ModuleNameMap::new(),
}
}
pub fn get_id(&self, name: &str) -> Option<deno_mod> {
self.by_name.get(name)
}
pub fn get_children(&self, id: deno_mod) -> Option<&Vec<String>> {
self.info.get(&id).map(|i| &i.children)
}
pub fn get_children2(&self, name: &str) -> Option<&Vec<String>> {
self.get_id(name).and_then(|id| self.get_children(id))
}
pub fn get_name(&self, id: deno_mod) -> Option<&String> {
self.info.get(&id).map(|i| &i.name)
}
pub fn is_registered(&self, name: &str) -> bool {
self.by_name.get(name).is_some()
}
pub fn add_child(&mut self, parent_id: deno_mod, child_name: &str) -> bool {
self
.info
.get_mut(&parent_id)
.map(move |i| {
if !i.has_child(&child_name) {
i.children.push(child_name.to_string());
}
})
.is_some()
}
pub fn register(&mut self, id: deno_mod, name: &str) {
let name = String::from(name);
debug!("register_complete {}", name);
self.by_name.insert(name.clone(), id);
self.info.insert(
id,
ModuleInfo {
name,
children: Vec::new(),
},
);
}
pub fn alias(&mut self, name: &str, target: &str) {
self.by_name.alias(name.to_owned(), target.to_owned());
}
pub fn is_alias(&self, name: &str) -> bool {
self.by_name.is_alias(name)
}
pub fn deps(&self, url: &str) -> Option<Deps> {
Deps::new(self, url)
}
}
/// This is a tree structure representing the dependencies of a given module.
/// Use Modules::deps to construct it. The 'deps' member is None if this module
/// was already seen elsewhere in the tree.
#[derive(Debug, PartialEq)]
pub struct Deps {
pub name: String,
pub deps: Option<Vec<Deps>>,
prefix: String,
is_last: bool,
}
impl Deps {
fn new(modules: &Modules, module_name: &str) -> Option<Deps> {
let mut seen = HashSet::new();
Self::helper(&mut seen, "".to_string(), true, modules, module_name)
}
fn helper(
seen: &mut HashSet<String>,
prefix: String,
is_last: bool,
modules: &Modules,
name: &str, // TODO(ry) rename url
) -> Option<Deps> {
if seen.contains(name) {
Some(Deps {
name: name.to_string(),
prefix,
deps: None,
is_last,
})
} else {
let children = modules.get_children2(name)?;
seen.insert(name.to_string());
let child_count = children.len();
let deps: Vec<Deps> = children
.iter()
.enumerate()
.map(|(index, dep_name)| {
let new_is_last = index == child_count - 1;
let mut new_prefix = prefix.clone();
new_prefix.push(if is_last { ' ' } else { '│' });
new_prefix.push(' ');
Self::helper(seen, new_prefix, new_is_last, modules, dep_name)
})
// If any of the children are missing, return None.
.collect::<Option<_>>()?;
Some(Deps {
name: name.to_string(),
prefix,
deps: Some(deps),
is_last,
})
}
}
pub fn to_json(&self) -> String {
let mut children = "[".to_string();
if let Some(ref deps) = self.deps {
for d in deps {
children.push_str(&d.to_json());
if !d.is_last {
children.push_str(",");
}
}
}
children.push_str("]");
format!("[\"{}\",{}]", self.name, children)
}
}
impl fmt::Display for Deps {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let mut has_children = false;
if let Some(ref deps) = self.deps {
has_children = !deps.is_empty();
}
write!(
f,
"{}{}─{} {}",
self.prefix,
if self.is_last { "" } else { "" },
if has_children { "" } else { "" },
self.name
)?;
if let Some(ref deps) = self.deps {
for d in deps {
write!(f, "\n{}", d)?;
}
}
Ok(())
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::isolate::js_check;
use crate::isolate::tests::*;
use futures::future::FutureExt;
use futures::stream::StreamExt;
use std::error::Error;
use std::fmt;
use std::future::Future;
struct MockLoader {
pub loads: Arc<Mutex<Vec<String>>>,
pub isolate: Arc<Mutex<Isolate>>,
pub modules: Arc<Mutex<Modules>>,
}
impl MockLoader {
fn new() -> Self {
let modules = Modules::new();
let (isolate, _dispatch_count) = setup(Mode::Async);
Self {
loads: Arc::new(Mutex::new(Vec::new())),
isolate: Arc::new(Mutex::new(isolate)),
modules: Arc::new(Mutex::new(modules)),
}
}
}
fn mock_source_code(url: &str) -> Option<(&'static str, &'static str)> {
// (code, real_module_name)
let spec: Vec<&str> = url.split("file://").collect();
match spec[1] {
"/a.js" => Some((A_SRC, "file:///a.js")),
"/b.js" => Some((B_SRC, "file:///b.js")),
"/c.js" => Some((C_SRC, "file:///c.js")),
"/d.js" => Some((D_SRC, "file:///d.js")),
"/circular1.js" => Some((CIRCULAR1_SRC, "file:///circular1.js")),
"/circular2.js" => Some((CIRCULAR2_SRC, "file:///circular2.js")),
"/circular3.js" => Some((CIRCULAR3_SRC, "file:///circular3.js")),
"/redirect1.js" => Some((REDIRECT1_SRC, "file:///redirect1.js")),
// pretend redirect - real module name is different than one requested
"/redirect2.js" => Some((REDIRECT2_SRC, "file:///dir/redirect2.js")),
"/dir/redirect3.js" => Some((REDIRECT3_SRC, "file:///redirect3.js")),
"/slow.js" => Some((SLOW_SRC, "file:///slow.js")),
"/never_ready.js" => {
Some(("should never be Ready", "file:///never_ready.js"))
}
"/main.js" => Some((MAIN_SRC, "file:///main.js")),
"/bad_import.js" => Some((BAD_IMPORT_SRC, "file:///bad_import.js")),
// deliberately empty code.
"/main_with_code.js" => Some(("", "file:///main_with_code.js")),
_ => None,
}
}
#[derive(Debug, PartialEq)]
enum MockError {
ResolveErr,
LoadErr,
}
impl fmt::Display for MockError {
fn fmt(&self, _f: &mut fmt::Formatter) -> fmt::Result {
unimplemented!()
}
}
impl Error for MockError {
fn cause(&self) -> Option<&dyn Error> {
unimplemented!()
}
}
struct DelayedSourceCodeFuture {
url: String,
counter: u32,
}
impl Future for DelayedSourceCodeFuture {
type Output = Result<SourceCodeInfo, ErrBox>;
fn poll(self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
let inner = self.get_mut();
inner.counter += 1;
if inner.url == "file:///never_ready.js" {
return Poll::Pending;
}
if inner.url == "file:///slow.js" && inner.counter < 2 {
// TODO(ry) Hopefully in the future we can remove current task
// notification. See comment above run_in_task.
cx.waker().wake_by_ref();
return Poll::Pending;
}
match mock_source_code(&inner.url) {
Some(src) => Poll::Ready(Ok(SourceCodeInfo {
code: src.0.to_owned(),
module_url_specified: inner.url.clone(),
module_url_found: src.1.to_owned(),
})),
None => Poll::Ready(Err(MockError::LoadErr.into())),
}
}
}
impl Loader for MockLoader {
fn resolve(
&self,
specifier: &str,
referrer: &str,
_is_root: bool,
_is_dyn_import: bool,
) -> Result<ModuleSpecifier, ErrBox> {
let referrer = if referrer == "." {
"file:///"
} else {
referrer
};
eprintln!(">> RESOLVING, S: {}, R: {}", specifier, referrer);
let output_specifier =
match ModuleSpecifier::resolve_import(specifier, referrer) {
Ok(specifier) => specifier,
Err(..) => return Err(MockError::ResolveErr.into()),
};
if mock_source_code(&output_specifier.to_string()).is_some() {
Ok(output_specifier)
} else {
Err(MockError::ResolveErr.into())
}
}
fn load(
&self,
module_specifier: &ModuleSpecifier,
_maybe_referrer: Option<ModuleSpecifier>,
) -> Pin<Box<SourceCodeInfoFuture>> {
let mut loads = self.loads.lock().unwrap();
loads.push(module_specifier.to_string());
let url = module_specifier.to_string();
DelayedSourceCodeFuture { url, counter: 0 }.boxed()
}
}
const A_SRC: &str = r#"
import { b } from "/b.js";
import { c } from "/c.js";
if (b() != 'b') throw Error();
if (c() != 'c') throw Error();
if (!import.meta.main) throw Error();
if (import.meta.url != 'file:///a.js') throw Error();
"#;
const B_SRC: &str = r#"
import { c } from "/c.js";
if (c() != 'c') throw Error();
export function b() { return 'b'; }
if (import.meta.main) throw Error();
if (import.meta.url != 'file:///b.js') throw Error();
"#;
const C_SRC: &str = r#"
import { d } from "/d.js";
export function c() { return 'c'; }
if (d() != 'd') throw Error();
if (import.meta.main) throw Error();
if (import.meta.url != 'file:///c.js') throw Error();
"#;
const D_SRC: &str = r#"
export function d() { return 'd'; }
if (import.meta.main) throw Error();
if (import.meta.url != 'file:///d.js') throw Error();
"#;
// TODO(ry) Sadly FuturesUnordered requires the current task to be set. So
// even though we are only using poll() in these tests and not Tokio, we must
// nevertheless run it in the tokio executor. Ideally run_in_task can be
// removed in the future.
use crate::isolate::tests::run_in_task;
#[test]
fn test_recursive_load() {
run_in_task(|mut cx| {
let loader = MockLoader::new();
let modules = loader.modules.clone();
let modules_ = modules.clone();
let isolate = loader.isolate.clone();
let isolate_ = isolate.clone();
let loads = loader.loads.clone();
let mut recursive_load =
RecursiveLoad::main("/a.js", None, loader, modules);
let a_id = loop {
match recursive_load.try_poll_next_unpin(&mut cx) {
Poll::Ready(Some(Ok(Event::Fetch(info)))) => {
let mut isolate = isolate.lock().unwrap();
recursive_load.register(info, &mut isolate).unwrap();
}
Poll::Ready(Some(Ok(Event::Instantiate(id)))) => break id,
_ => panic!("unexpected result"),
};
};
let mut isolate = isolate_.lock().unwrap();
js_check(isolate.mod_evaluate(a_id));
let l = loads.lock().unwrap();
assert_eq!(
l.to_vec(),
vec![
"file:///a.js",
"file:///b.js",
"file:///c.js",
"file:///d.js"
]
);
let modules = modules_.lock().unwrap();
assert_eq!(modules.get_id("file:///a.js"), Some(a_id));
let b_id = modules.get_id("file:///b.js").unwrap();
let c_id = modules.get_id("file:///c.js").unwrap();
let d_id = modules.get_id("file:///d.js").unwrap();
assert_eq!(
modules.get_children(a_id),
Some(&vec![
"file:///b.js".to_string(),
"file:///c.js".to_string()
])
);
assert_eq!(
modules.get_children(b_id),
Some(&vec!["file:///c.js".to_string()])
);
assert_eq!(
modules.get_children(c_id),
Some(&vec!["file:///d.js".to_string()])
);
assert_eq!(modules.get_children(d_id), Some(&vec![]));
})
}
const CIRCULAR1_SRC: &str = r#"
import "/circular2.js";
Deno.core.print("circular1");
"#;
const CIRCULAR2_SRC: &str = r#"
import "/circular3.js";
Deno.core.print("circular2");
"#;
const CIRCULAR3_SRC: &str = r#"
import "/circular1.js";
import "/circular2.js";
Deno.core.print("circular3");
"#;
#[test]
fn test_circular_load() {
run_in_task(|mut cx| {
let loader = MockLoader::new();
let isolate = loader.isolate.clone();
let isolate_ = isolate.clone();
let modules = loader.modules.clone();
let modules_ = modules.clone();
let loads = loader.loads.clone();
let recursive_load =
RecursiveLoad::main("/circular1.js", None, loader, modules);
let mut load_fut = recursive_load.get_future(isolate).boxed();
let result = Pin::new(&mut load_fut).poll(&mut cx);
assert!(result.is_ready());
if let Poll::Ready(Ok(circular1_id)) = result {
let mut isolate = isolate_.lock().unwrap();
js_check(isolate.mod_evaluate(circular1_id));
let l = loads.lock().unwrap();
assert_eq!(
l.to_vec(),
vec![
"file:///circular1.js",
"file:///circular2.js",
"file:///circular3.js"
]
);
let modules = modules_.lock().unwrap();
assert_eq!(modules.get_id("file:///circular1.js"), Some(circular1_id));
let circular2_id = modules.get_id("file:///circular2.js").unwrap();
assert_eq!(
modules.get_children(circular1_id),
Some(&vec!["file:///circular2.js".to_string()])
);
assert_eq!(
modules.get_children(circular2_id),
Some(&vec!["file:///circular3.js".to_string()])
);
assert!(modules.get_id("file:///circular3.js").is_some());
let circular3_id = modules.get_id("file:///circular3.js").unwrap();
assert_eq!(
modules.get_children(circular3_id),
Some(&vec![
"file:///circular1.js".to_string(),
"file:///circular2.js".to_string()
])
);
} else {
unreachable!();
}
})
}
const REDIRECT1_SRC: &str = r#"
import "./redirect2.js";
Deno.core.print("redirect1");
"#;
const REDIRECT2_SRC: &str = r#"
import "./redirect3.js";
Deno.core.print("redirect2");
"#;
const REDIRECT3_SRC: &str = r#"
Deno.core.print("redirect3");
"#;
#[test]
fn test_redirect_load() {
run_in_task(|mut cx| {
let loader = MockLoader::new();
let isolate = loader.isolate.clone();
let isolate_ = isolate.clone();
let modules = loader.modules.clone();
let modules_ = modules.clone();
let loads = loader.loads.clone();
let recursive_load =
RecursiveLoad::main("/redirect1.js", None, loader, modules);
let mut load_fut = recursive_load.get_future(isolate).boxed();
let result = Pin::new(&mut load_fut).poll(&mut cx);
println!(">> result {:?}", result);
assert!(result.is_ready());
if let Poll::Ready(Ok(redirect1_id)) = result {
let mut isolate = isolate_.lock().unwrap();
js_check(isolate.mod_evaluate(redirect1_id));
let l = loads.lock().unwrap();
assert_eq!(
l.to_vec(),
vec![
"file:///redirect1.js",
"file:///redirect2.js",
"file:///dir/redirect3.js"
]
);
let modules = modules_.lock().unwrap();
assert_eq!(modules.get_id("file:///redirect1.js"), Some(redirect1_id));
let redirect2_id = modules.get_id("file:///dir/redirect2.js").unwrap();
assert!(modules.is_alias("file:///redirect2.js"));
assert!(!modules.is_alias("file:///dir/redirect2.js"));
assert_eq!(modules.get_id("file:///redirect2.js"), Some(redirect2_id));
let redirect3_id = modules.get_id("file:///redirect3.js").unwrap();
assert!(modules.is_alias("file:///dir/redirect3.js"));
assert!(!modules.is_alias("file:///redirect3.js"));
assert_eq!(
modules.get_id("file:///dir/redirect3.js"),
Some(redirect3_id)
);
} else {
unreachable!();
}
})
}
// main.js
const MAIN_SRC: &str = r#"
// never_ready.js never loads.
import "/never_ready.js";
// slow.js resolves after one tick.
import "/slow.js";
"#;
// slow.js
const SLOW_SRC: &str = r#"
// Circular import of never_ready.js
// Does this trigger two Loader calls? It shouldn't.
import "/never_ready.js";
import "/a.js";
"#;
#[test]
fn slow_never_ready_modules() {
run_in_task(|mut cx| {
let loader = MockLoader::new();
let isolate = loader.isolate.clone();
let modules = loader.modules.clone();
let loads = loader.loads.clone();
let mut recursive_load =
RecursiveLoad::main("/main.js", None, loader, modules)
.get_future(isolate)
.boxed();
let result = recursive_load.poll_unpin(&mut cx);
assert!(result.is_pending());
// TODO(ry) Arguably the first time we poll only the following modules
// should be loaded:
// "file:///main.js",
// "file:///never_ready.js",
// "file:///slow.js"
// But due to current task notification in DelayedSourceCodeFuture they
// all get loaded in a single poll. Also see the comment above
// run_in_task.
for _ in 0..10 {
let result = recursive_load.poll_unpin(&mut cx);
assert!(result.is_pending());
let l = loads.lock().unwrap();
assert_eq!(
l.to_vec(),
vec![
"file:///main.js",
"file:///never_ready.js",
"file:///slow.js",
"file:///a.js",
"file:///b.js",
"file:///c.js",
"file:///d.js"
]
);
}
})
}
// bad_import.js
const BAD_IMPORT_SRC: &str = r#"
import "foo";
"#;
#[test]
fn loader_disappears_after_error() {
run_in_task(|mut cx| {
let loader = MockLoader::new();
let isolate = loader.isolate.clone();
let modules = loader.modules.clone();
let recursive_load =
RecursiveLoad::main("/bad_import.js", None, loader, modules);
let mut load_fut = recursive_load.get_future(isolate).boxed();
let result = load_fut.poll_unpin(&mut cx);
if let Poll::Ready(Err(err)) = result {
assert_eq!(
err.downcast_ref::<MockError>().unwrap(),
&MockError::ResolveErr
);
} else {
unreachable!();
}
})
}
const MAIN_WITH_CODE_SRC: &str = r#"
import { b } from "/b.js";
import { c } from "/c.js";
if (b() != 'b') throw Error();
if (c() != 'c') throw Error();
if (!import.meta.main) throw Error();
if (import.meta.url != 'file:///main_with_code.js') throw Error();
"#;
#[test]
fn recursive_load_main_with_code() {
run_in_task(|mut cx| {
let loader = MockLoader::new();
let modules = loader.modules.clone();
let modules_ = modules.clone();
let isolate = loader.isolate.clone();
let isolate_ = isolate.clone();
let loads = loader.loads.clone();
// In default resolution code should be empty.
// Instead we explicitly pass in our own code.
// The behavior should be very similar to /a.js.
let mut recursive_load = RecursiveLoad::main(
"/main_with_code.js",
Some(MAIN_WITH_CODE_SRC.to_owned()),
loader,
modules,
);
let main_id = loop {
match recursive_load.poll_next_unpin(&mut cx) {
Poll::Ready(Some(Ok(Event::Fetch(info)))) => {
let mut isolate = isolate.lock().unwrap();
recursive_load.register(info, &mut isolate).unwrap();
}
Poll::Ready(Some(Ok(Event::Instantiate(id)))) => break id,
_ => panic!("unexpected result"),
};
};
let mut isolate = isolate_.lock().unwrap();
js_check(isolate.mod_evaluate(main_id));
let l = loads.lock().unwrap();
assert_eq!(
l.to_vec(),
vec!["file:///b.js", "file:///c.js", "file:///d.js"]
);
let modules = modules_.lock().unwrap();
assert_eq!(modules.get_id("file:///main_with_code.js"), Some(main_id));
let b_id = modules.get_id("file:///b.js").unwrap();
let c_id = modules.get_id("file:///c.js").unwrap();
let d_id = modules.get_id("file:///d.js").unwrap();
assert_eq!(
modules.get_children(main_id),
Some(&vec![
"file:///b.js".to_string(),
"file:///c.js".to_string()
])
);
assert_eq!(
modules.get_children(b_id),
Some(&vec!["file:///c.js".to_string()])
);
assert_eq!(
modules.get_children(c_id),
Some(&vec!["file:///d.js".to_string()])
);
assert_eq!(modules.get_children(d_id), Some(&vec![]));
})
}
#[test]
fn empty_deps() {
let modules = Modules::new();
assert!(modules.deps("foo").is_none());
}
#[test]
fn deps() {
// "foo" -> "bar"
let mut modules = Modules::new();
modules.register(1, "foo");
modules.register(2, "bar");
modules.add_child(1, "bar");
let maybe_deps = modules.deps("foo");
assert!(maybe_deps.is_some());
let mut foo_deps = maybe_deps.unwrap();
assert_eq!(foo_deps.name, "foo");
assert!(foo_deps.deps.is_some());
let foo_children = foo_deps.deps.take().unwrap();
assert_eq!(foo_children.len(), 1);
let bar_deps = &foo_children[0];
assert_eq!(bar_deps.name, "bar");
assert_eq!(bar_deps.deps, Some(vec![]));
}
#[test]
fn test_deps_to_json() {
let mut modules = Modules::new();
modules.register(1, "foo");
modules.register(2, "bar");
modules.register(3, "baz");
modules.register(4, "zuh");
modules.add_child(1, "bar");
modules.add_child(1, "baz");
modules.add_child(3, "zuh");
let maybe_deps = modules.deps("foo");
assert!(maybe_deps.is_some());
assert_eq!(
"[\"foo\",[[\"bar\",[]],[\"baz\",[[\"zuh\",[]]]]]]",
maybe_deps.unwrap().to_json()
);
}
}