1
0
Fork 0
mirror of https://github.com/denoland/deno.git synced 2025-01-26 00:47:50 -05:00
denoland-deno/ext/node/crypto/mod.rs

631 lines
15 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2018-2023 the Deno authors. All rights reserved. MIT license.
use deno_core::error::generic_error;
use deno_core::error::type_error;
use deno_core::error::AnyError;
use deno_core::op;
use deno_core::serde_v8;
use deno_core::OpState;
use deno_core::ResourceId;
use deno_core::StringOrBuffer;
use deno_core::ZeroCopyBuf;
use hkdf::Hkdf;
use num_bigint::BigInt;
use rand::distributions::Distribution;
use rand::distributions::Uniform;
use rand::Rng;
use std::future::Future;
use std::rc::Rc;
use rsa::padding::PaddingScheme;
use rsa::pkcs8::DecodePrivateKey;
use rsa::pkcs8::DecodePublicKey;
use rsa::PublicKey;
use rsa::RsaPrivateKey;
use rsa::RsaPublicKey;
mod cipher;
mod digest;
mod primes;
pub mod x509;
#[op]
pub fn op_node_check_prime(num: serde_v8::BigInt, checks: usize) -> bool {
primes::is_probably_prime(&num, checks)
}
#[op]
pub fn op_node_check_prime_bytes(
bytes: &[u8],
checks: usize,
) -> Result<bool, AnyError> {
let candidate = BigInt::from_bytes_be(num_bigint::Sign::Plus, bytes);
Ok(primes::is_probably_prime(&candidate, checks))
}
#[op]
pub async fn op_node_check_prime_async(
num: serde_v8::BigInt,
checks: usize,
) -> Result<bool, AnyError> {
// TODO(@littledivy): use rayon for CPU-bound tasks
Ok(
tokio::task::spawn_blocking(move || {
primes::is_probably_prime(&num, checks)
})
.await?,
)
}
#[op]
pub fn op_node_check_prime_bytes_async(
bytes: &[u8],
checks: usize,
) -> Result<impl Future<Output = Result<bool, AnyError>> + 'static, AnyError> {
let candidate = BigInt::from_bytes_be(num_bigint::Sign::Plus, bytes);
// TODO(@littledivy): use rayon for CPU-bound tasks
Ok(async move {
Ok(
tokio::task::spawn_blocking(move || {
primes::is_probably_prime(&candidate, checks)
})
.await?,
)
})
}
#[op(fast)]
pub fn op_node_create_hash(state: &mut OpState, algorithm: &str) -> u32 {
state
.resource_table
.add(match digest::Context::new(algorithm) {
Ok(context) => context,
Err(_) => return 0,
})
}
#[op(fast)]
pub fn op_node_hash_update(state: &mut OpState, rid: u32, data: &[u8]) -> bool {
let context = match state.resource_table.get::<digest::Context>(rid) {
Ok(context) => context,
_ => return false,
};
context.update(data);
true
}
#[op(fast)]
pub fn op_node_hash_update_str(
state: &mut OpState,
rid: u32,
data: &str,
) -> bool {
let context = match state.resource_table.get::<digest::Context>(rid) {
Ok(context) => context,
_ => return false,
};
context.update(data.as_bytes());
true
}
#[op]
pub fn op_node_hash_digest(
state: &mut OpState,
rid: ResourceId,
) -> Result<ZeroCopyBuf, AnyError> {
let context = state.resource_table.take::<digest::Context>(rid)?;
let context = Rc::try_unwrap(context)
.map_err(|_| type_error("Hash context is already in use"))?;
Ok(context.digest()?.into())
}
#[op]
pub fn op_node_hash_digest_hex(
state: &mut OpState,
rid: ResourceId,
) -> Result<String, AnyError> {
let context = state.resource_table.take::<digest::Context>(rid)?;
let context = Rc::try_unwrap(context)
.map_err(|_| type_error("Hash context is already in use"))?;
let digest = context.digest()?;
Ok(hex::encode(digest))
}
#[op]
pub fn op_node_hash_clone(
state: &mut OpState,
rid: ResourceId,
) -> Result<ResourceId, AnyError> {
let context = state.resource_table.get::<digest::Context>(rid)?;
Ok(state.resource_table.add(context.as_ref().clone()))
}
#[op]
pub fn op_node_private_encrypt(
key: StringOrBuffer,
msg: StringOrBuffer,
padding: u32,
) -> Result<ZeroCopyBuf, AnyError> {
let key = RsaPrivateKey::from_pkcs8_pem((&key).try_into()?)?;
let mut rng = rand::thread_rng();
match padding {
1 => Ok(
key
.encrypt(&mut rng, PaddingScheme::new_pkcs1v15_encrypt(), &msg)?
.into(),
),
4 => Ok(
key
.encrypt(&mut rng, PaddingScheme::new_oaep::<sha1::Sha1>(), &msg)?
.into(),
),
_ => Err(type_error("Unknown padding")),
}
}
#[op]
pub fn op_node_private_decrypt(
key: StringOrBuffer,
msg: StringOrBuffer,
padding: u32,
) -> Result<ZeroCopyBuf, AnyError> {
let key = RsaPrivateKey::from_pkcs8_pem((&key).try_into()?)?;
match padding {
1 => Ok(
key
.decrypt(PaddingScheme::new_pkcs1v15_encrypt(), &msg)?
.into(),
),
4 => Ok(
key
.decrypt(PaddingScheme::new_oaep::<sha1::Sha1>(), &msg)?
.into(),
),
_ => Err(type_error("Unknown padding")),
}
}
#[op]
pub fn op_node_public_encrypt(
key: StringOrBuffer,
msg: StringOrBuffer,
padding: u32,
) -> Result<ZeroCopyBuf, AnyError> {
let key = RsaPublicKey::from_public_key_pem((&key).try_into()?)?;
let mut rng = rand::thread_rng();
match padding {
1 => Ok(
key
.encrypt(&mut rng, PaddingScheme::new_pkcs1v15_encrypt(), &msg)?
.into(),
),
4 => Ok(
key
.encrypt(&mut rng, PaddingScheme::new_oaep::<sha1::Sha1>(), &msg)?
.into(),
),
_ => Err(type_error("Unknown padding")),
}
}
#[op(fast)]
pub fn op_node_create_cipheriv(
state: &mut OpState,
algorithm: &str,
key: &[u8],
iv: &[u8],
) -> u32 {
state.resource_table.add(
match cipher::CipherContext::new(algorithm, key, iv) {
Ok(context) => context,
Err(_) => return 0,
},
)
}
#[op(fast)]
pub fn op_node_cipheriv_encrypt(
state: &mut OpState,
rid: u32,
input: &[u8],
output: &mut [u8],
) -> bool {
let context = match state.resource_table.get::<cipher::CipherContext>(rid) {
Ok(context) => context,
Err(_) => return false,
};
context.encrypt(input, output);
true
}
#[op]
pub fn op_node_cipheriv_final(
state: &mut OpState,
rid: u32,
input: &[u8],
output: &mut [u8],
) -> Result<(), AnyError> {
let context = state.resource_table.take::<cipher::CipherContext>(rid)?;
let context = Rc::try_unwrap(context)
.map_err(|_| type_error("Cipher context is already in use"))?;
context.r#final(input, output)
}
#[op(fast)]
pub fn op_node_create_decipheriv(
state: &mut OpState,
algorithm: &str,
key: &[u8],
iv: &[u8],
) -> u32 {
state.resource_table.add(
match cipher::DecipherContext::new(algorithm, key, iv) {
Ok(context) => context,
Err(_) => return 0,
},
)
}
#[op(fast)]
pub fn op_node_decipheriv_decrypt(
state: &mut OpState,
rid: u32,
input: &[u8],
output: &mut [u8],
) -> bool {
let context = match state.resource_table.get::<cipher::DecipherContext>(rid) {
Ok(context) => context,
Err(_) => return false,
};
context.decrypt(input, output);
true
}
#[op]
pub fn op_node_decipheriv_final(
state: &mut OpState,
rid: u32,
input: &[u8],
output: &mut [u8],
) -> Result<(), AnyError> {
let context = state.resource_table.take::<cipher::DecipherContext>(rid)?;
let context = Rc::try_unwrap(context)
.map_err(|_| type_error("Cipher context is already in use"))?;
context.r#final(input, output)
}
#[op]
pub fn op_node_sign(
digest: &[u8],
digest_type: &str,
key: StringOrBuffer,
key_type: &str,
key_format: &str,
) -> Result<ZeroCopyBuf, AnyError> {
match key_type {
"rsa" => {
use rsa::pkcs1v15::SigningKey;
use signature::hazmat::PrehashSigner;
let key = match key_format {
"pem" => RsaPrivateKey::from_pkcs8_pem((&key).try_into()?)
.map_err(|_| type_error("Invalid RSA private key"))?,
// TODO(kt3k): Support der and jwk formats
_ => {
return Err(type_error(format!(
"Unsupported key format: {}",
key_format
)))
}
};
Ok(
match digest_type {
"sha224" => {
let signing_key = SigningKey::<sha2::Sha224>::new_with_prefix(key);
signing_key.sign_prehash(digest)?.to_vec()
}
"sha256" => {
let signing_key = SigningKey::<sha2::Sha256>::new_with_prefix(key);
signing_key.sign_prehash(digest)?.to_vec()
}
"sha384" => {
let signing_key = SigningKey::<sha2::Sha384>::new_with_prefix(key);
signing_key.sign_prehash(digest)?.to_vec()
}
"sha512" => {
let signing_key = SigningKey::<sha2::Sha512>::new_with_prefix(key);
signing_key.sign_prehash(digest)?.to_vec()
}
_ => {
return Err(type_error(format!(
"Unknown digest algorithm: {}",
digest_type
)))
}
}
.into(),
)
}
_ => Err(type_error(format!(
"Signing with {} keys is not supported yet",
key_type
))),
}
}
#[op]
fn op_node_verify(
digest: &[u8],
digest_type: &str,
key: StringOrBuffer,
key_type: &str,
key_format: &str,
signature: &[u8],
) -> Result<bool, AnyError> {
match key_type {
"rsa" => {
use rsa::pkcs1v15::VerifyingKey;
use signature::hazmat::PrehashVerifier;
let key = match key_format {
"pem" => RsaPublicKey::from_public_key_pem((&key).try_into()?)
.map_err(|_| type_error("Invalid RSA public key"))?,
// TODO(kt3k): Support der and jwk formats
_ => {
return Err(type_error(format!(
"Unsupported key format: {}",
key_format
)))
}
};
Ok(match digest_type {
"sha224" => VerifyingKey::<sha2::Sha224>::new_with_prefix(key)
.verify_prehash(digest, &signature.to_vec().try_into()?)
.is_ok(),
"sha256" => VerifyingKey::<sha2::Sha256>::new_with_prefix(key)
.verify_prehash(digest, &signature.to_vec().try_into()?)
.is_ok(),
"sha384" => VerifyingKey::<sha2::Sha384>::new_with_prefix(key)
.verify_prehash(digest, &signature.to_vec().try_into()?)
.is_ok(),
"sha512" => VerifyingKey::<sha2::Sha512>::new_with_prefix(key)
.verify_prehash(digest, &signature.to_vec().try_into()?)
.is_ok(),
_ => {
return Err(type_error(format!(
"Unknown digest algorithm: {}",
digest_type
)))
}
})
}
_ => Err(type_error(format!(
"Verifying with {} keys is not supported yet",
key_type
))),
}
}
fn pbkdf2_sync(
password: &[u8],
salt: &[u8],
iterations: u32,
digest: &str,
derived_key: &mut [u8],
) -> Result<(), AnyError> {
macro_rules! pbkdf2_hmac {
($digest:ty) => {{
pbkdf2::pbkdf2_hmac::<$digest>(password, salt, iterations, derived_key)
}};
}
match digest {
"md4" => pbkdf2_hmac!(md4::Md4),
"md5" => pbkdf2_hmac!(md5::Md5),
"ripemd160" => pbkdf2_hmac!(ripemd::Ripemd160),
"sha1" => pbkdf2_hmac!(sha1::Sha1),
"sha224" => pbkdf2_hmac!(sha2::Sha224),
"sha256" => pbkdf2_hmac!(sha2::Sha256),
"sha384" => pbkdf2_hmac!(sha2::Sha384),
"sha512" => pbkdf2_hmac!(sha2::Sha512),
_ => return Err(type_error("Unknown digest")),
}
Ok(())
}
#[op]
pub fn op_node_pbkdf2(
password: StringOrBuffer,
salt: StringOrBuffer,
iterations: u32,
digest: &str,
derived_key: &mut [u8],
) -> bool {
pbkdf2_sync(&password, &salt, iterations, digest, derived_key).is_ok()
}
#[op]
pub async fn op_node_pbkdf2_async(
password: StringOrBuffer,
salt: StringOrBuffer,
iterations: u32,
digest: String,
keylen: usize,
) -> Result<ZeroCopyBuf, AnyError> {
tokio::task::spawn_blocking(move || {
let mut derived_key = vec![0; keylen];
pbkdf2_sync(&password, &salt, iterations, &digest, &mut derived_key)
.map(|_| derived_key.into())
})
.await?
}
#[op]
pub fn op_node_generate_secret(buf: &mut [u8]) {
rand::thread_rng().fill(buf);
}
#[op]
pub async fn op_node_generate_secret_async(len: i32) -> ZeroCopyBuf {
tokio::task::spawn_blocking(move || {
let mut buf = vec![0u8; len as usize];
rand::thread_rng().fill(&mut buf[..]);
buf.into()
})
.await
.unwrap()
}
fn hkdf_sync(
hash: &str,
ikm: &[u8],
salt: &[u8],
info: &[u8],
okm: &mut [u8],
) -> Result<(), AnyError> {
macro_rules! hkdf {
($hash:ty) => {{
let hk = Hkdf::<$hash>::new(Some(salt), ikm);
hk.expand(info, okm)
.map_err(|_| type_error("HKDF-Expand failed"))?;
}};
}
match hash {
"md4" => hkdf!(md4::Md4),
"md5" => hkdf!(md5::Md5),
"ripemd160" => hkdf!(ripemd::Ripemd160),
"sha1" => hkdf!(sha1::Sha1),
"sha224" => hkdf!(sha2::Sha224),
"sha256" => hkdf!(sha2::Sha256),
"sha384" => hkdf!(sha2::Sha384),
"sha512" => hkdf!(sha2::Sha512),
_ => return Err(type_error("Unknown digest")),
}
Ok(())
}
#[op]
pub fn op_node_hkdf(
hash: &str,
ikm: &[u8],
salt: &[u8],
info: &[u8],
okm: &mut [u8],
) -> Result<(), AnyError> {
hkdf_sync(hash, ikm, salt, info, okm)
}
#[op]
pub async fn op_node_hkdf_async(
hash: String,
ikm: ZeroCopyBuf,
salt: ZeroCopyBuf,
info: ZeroCopyBuf,
okm_len: usize,
) -> Result<ZeroCopyBuf, AnyError> {
tokio::task::spawn_blocking(move || {
let mut okm = vec![0u8; okm_len];
hkdf_sync(&hash, &ikm, &salt, &info, &mut okm)?;
Ok(okm.into())
})
.await?
}
#[op]
pub fn op_node_random_int(min: i32, max: i32) -> Result<i32, AnyError> {
let mut rng = rand::thread_rng();
// Uniform distribution is required to avoid Modulo Bias
// https://en.wikipedia.org/wiki/FisherYates_shuffle#Modulo_bias
let dist = Uniform::from(min..max);
Ok(dist.sample(&mut rng))
}
#[allow(clippy::too_many_arguments)]
fn scrypt(
password: StringOrBuffer,
salt: StringOrBuffer,
keylen: u32,
cost: u32,
block_size: u32,
parallelization: u32,
_maxmem: u32,
output_buffer: &mut [u8],
) -> Result<(), AnyError> {
// Construct Params
let params = scrypt::Params::new(
cost as u8,
block_size,
parallelization,
keylen as usize,
)
.unwrap();
// Call into scrypt
let res = scrypt::scrypt(&password, &salt, &params, output_buffer);
if res.is_ok() {
Ok(())
} else {
// TODO(lev): key derivation failed, so what?
Err(generic_error("scrypt key derivation failed"))
}
}
#[op]
pub fn op_node_scrypt_sync(
password: StringOrBuffer,
salt: StringOrBuffer,
keylen: u32,
cost: u32,
block_size: u32,
parallelization: u32,
maxmem: u32,
output_buffer: &mut [u8],
) -> Result<(), AnyError> {
scrypt(
password,
salt,
keylen,
cost,
block_size,
parallelization,
maxmem,
output_buffer,
)
}
#[op]
pub async fn op_node_scrypt_async(
password: StringOrBuffer,
salt: StringOrBuffer,
keylen: u32,
cost: u32,
block_size: u32,
parallelization: u32,
maxmem: u32,
) -> Result<ZeroCopyBuf, AnyError> {
tokio::task::spawn_blocking(move || {
let mut output_buffer = vec![0u8; keylen as usize];
let res = scrypt(
password,
salt,
keylen,
cost,
block_size,
parallelization,
maxmem,
&mut output_buffer,
);
if res.is_ok() {
Ok(output_buffer.into())
} else {
// TODO(lev): rethrow the error?
Err(generic_error("scrypt failure"))
}
})
.await?
}