1
0
Fork 0
mirror of https://github.com/denoland/deno.git synced 2025-01-22 06:09:25 -05:00
denoland-deno/core/runtime.rs
Colin Ihrig 0f6a5c5fc2
feat(web): add beforeunload event (#14830)
This commit adds the 'beforeunload' event.

Co-authored-by: Bartek Iwańczuk <biwanczuk@gmail.com>
2022-06-28 10:49:30 -04:00

3493 lines
108 KiB
Rust

// Copyright 2018-2022 the Deno authors. All rights reserved. MIT license.
use crate::bindings;
use crate::error::generic_error;
use crate::error::to_v8_type_error;
use crate::error::JsError;
use crate::extensions::OpDecl;
use crate::extensions::OpEventLoopFn;
use crate::inspector::JsRuntimeInspector;
use crate::module_specifier::ModuleSpecifier;
use crate::modules::ModuleError;
use crate::modules::ModuleId;
use crate::modules::ModuleLoadId;
use crate::modules::ModuleLoader;
use crate::modules::ModuleMap;
use crate::modules::NoopModuleLoader;
use crate::op_void_async;
use crate::op_void_sync;
use crate::ops::*;
use crate::source_map::SourceMapCache;
use crate::source_map::SourceMapGetter;
use crate::Extension;
use crate::OpMiddlewareFn;
use crate::OpResult;
use crate::OpState;
use crate::PromiseId;
use anyhow::Error;
use futures::channel::oneshot;
use futures::future::poll_fn;
use futures::future::Future;
use futures::future::FutureExt;
use futures::stream::FuturesUnordered;
use futures::stream::StreamExt;
use futures::task::AtomicWaker;
use std::any::Any;
use std::cell::RefCell;
use std::collections::HashMap;
use std::collections::HashSet;
use std::ffi::c_void;
use std::mem::forget;
use std::option::Option;
use std::rc::Rc;
use std::sync::Arc;
use std::sync::Mutex;
use std::sync::Once;
use std::task::Context;
use std::task::Poll;
type PendingOpFuture = OpCall<(PromiseId, OpId, OpResult)>;
pub enum Snapshot {
Static(&'static [u8]),
JustCreated(v8::StartupData),
Boxed(Box<[u8]>),
}
pub type JsErrorCreateFn = dyn Fn(JsError) -> Error;
pub type GetErrorClassFn = &'static dyn for<'e> Fn(&'e Error) -> &'static str;
/// Objects that need to live as long as the isolate
#[derive(Default)]
struct IsolateAllocations {
near_heap_limit_callback_data:
Option<(Box<RefCell<dyn Any>>, v8::NearHeapLimitCallback)>,
}
/// A single execution context of JavaScript. Corresponds roughly to the "Web
/// Worker" concept in the DOM. A JsRuntime is a Future that can be used with
/// an event loop (Tokio, async_std).
////
/// The JsRuntime future completes when there is an error or when all
/// pending ops have completed.
///
/// Pending ops are created in JavaScript by calling Deno.core.opAsync(), and in Rust
/// by implementing an async function that takes a serde::Deserialize "control argument"
/// and an optional zero copy buffer, each async Op is tied to a Promise in JavaScript.
pub struct JsRuntime {
// This is an Option<OwnedIsolate> instead of just OwnedIsolate to workaround
// a safety issue with SnapshotCreator. See JsRuntime::drop.
v8_isolate: Option<v8::OwnedIsolate>,
// This is an Option<Box<JsRuntimeInspector> instead of just Box<JsRuntimeInspector>
// to workaround a safety issue. See JsRuntime::drop.
inspector: Option<Box<JsRuntimeInspector>>,
snapshot_creator: Option<v8::SnapshotCreator>,
has_snapshotted: bool,
built_from_snapshot: bool,
allocations: IsolateAllocations,
extensions: Vec<Extension>,
event_loop_middlewares: Vec<Box<OpEventLoopFn>>,
}
pub(crate) struct DynImportModEvaluate {
load_id: ModuleLoadId,
module_id: ModuleId,
promise: v8::Global<v8::Promise>,
module: v8::Global<v8::Module>,
}
pub(crate) struct ModEvaluate {
promise: v8::Global<v8::Promise>,
sender: oneshot::Sender<Result<(), Error>>,
}
pub struct CrossIsolateStore<T>(Arc<Mutex<CrossIsolateStoreInner<T>>>);
struct CrossIsolateStoreInner<T> {
map: HashMap<u32, T>,
last_id: u32,
}
impl<T> CrossIsolateStore<T> {
pub(crate) fn insert(&self, value: T) -> u32 {
let mut store = self.0.lock().unwrap();
let last_id = store.last_id;
store.map.insert(last_id, value);
store.last_id += 1;
last_id
}
pub(crate) fn take(&self, id: u32) -> Option<T> {
let mut store = self.0.lock().unwrap();
store.map.remove(&id)
}
}
impl<T> Default for CrossIsolateStore<T> {
fn default() -> Self {
CrossIsolateStore(Arc::new(Mutex::new(CrossIsolateStoreInner {
map: Default::default(),
last_id: 0,
})))
}
}
impl<T> Clone for CrossIsolateStore<T> {
fn clone(&self) -> Self {
Self(self.0.clone())
}
}
pub type SharedArrayBufferStore =
CrossIsolateStore<v8::SharedRef<v8::BackingStore>>;
pub type CompiledWasmModuleStore = CrossIsolateStore<v8::CompiledWasmModule>;
/// Internal state for JsRuntime which is stored in one of v8::Isolate's
/// embedder slots.
pub(crate) struct JsRuntimeState {
global_realm: Option<JsRealm>,
pub(crate) js_recv_cb: Option<v8::Global<v8::Function>>,
pub(crate) js_macrotask_cbs: Vec<v8::Global<v8::Function>>,
pub(crate) js_nexttick_cbs: Vec<v8::Global<v8::Function>>,
pub(crate) js_promise_reject_cb: Option<v8::Global<v8::Function>>,
pub(crate) js_uncaught_exception_cb: Option<v8::Global<v8::Function>>,
pub(crate) js_format_exception_cb: Option<v8::Global<v8::Function>>,
pub(crate) has_tick_scheduled: bool,
pub(crate) js_wasm_streaming_cb: Option<v8::Global<v8::Function>>,
pub(crate) pending_promise_exceptions:
HashMap<v8::Global<v8::Promise>, v8::Global<v8::Value>>,
pub(crate) pending_dyn_mod_evaluate: Vec<DynImportModEvaluate>,
pub(crate) pending_mod_evaluate: Option<ModEvaluate>,
/// A counter used to delay our dynamic import deadlock detection by one spin
/// of the event loop.
dyn_module_evaluate_idle_counter: u32,
pub(crate) source_map_getter: Option<Box<dyn SourceMapGetter>>,
pub(crate) source_map_cache: SourceMapCache,
pub(crate) pending_ops: FuturesUnordered<PendingOpFuture>,
pub(crate) unrefed_ops: HashSet<i32>,
pub(crate) have_unpolled_ops: bool,
pub(crate) op_state: Rc<RefCell<OpState>>,
#[allow(dead_code)]
// We don't explicitly re-read this prop but need the slice to live alongside the isolate
pub(crate) op_ctxs: Box<[OpCtx]>,
pub(crate) shared_array_buffer_store: Option<SharedArrayBufferStore>,
pub(crate) compiled_wasm_module_store: Option<CompiledWasmModuleStore>,
/// The error that was passed to an explicit `Deno.core.terminate` call.
/// It will be retrieved by `exception_to_err_result` and used as an error
/// instead of any other exceptions.
pub(crate) explicit_terminate_exception: Option<v8::Global<v8::Value>>,
waker: AtomicWaker,
}
impl Drop for JsRuntime {
fn drop(&mut self) {
// The Isolate object must outlive the Inspector object, but this is
// currently not enforced by the type system.
self.inspector.take();
if let Some(creator) = self.snapshot_creator.take() {
// TODO(ry): in rusty_v8, `SnapShotCreator::get_owned_isolate()` returns
// a `struct OwnedIsolate` which is not actually owned, hence the need
// here to leak the `OwnedIsolate` in order to avoid a double free and
// the segfault that it causes.
let v8_isolate = self.v8_isolate.take().unwrap();
forget(v8_isolate);
// TODO(ry) V8 has a strange assert which prevents a SnapshotCreator from
// being deallocated if it hasn't created a snapshot yet.
// https://github.com/v8/v8/blob/73212783fbd534fac76cc4b66aac899c13f71fc8/src/api.cc#L603
// If that assert is removed, this if guard could be removed.
// WARNING: There may be false positive LSAN errors here.
if self.has_snapshotted {
drop(creator);
}
}
}
}
fn v8_init(
v8_platform: Option<v8::SharedRef<v8::Platform>>,
predictable: bool,
) {
// Include 10MB ICU data file.
#[repr(C, align(16))]
struct IcuData([u8; 10454784]);
static ICU_DATA: IcuData = IcuData(*include_bytes!("icudtl.dat"));
v8::icu::set_common_data_71(&ICU_DATA.0).unwrap();
let v8_platform = v8_platform
.unwrap_or_else(|| v8::new_default_platform(0, false).make_shared());
v8::V8::initialize_platform(v8_platform);
v8::V8::initialize();
let flags = concat!(
" --experimental-wasm-threads",
" --wasm-test-streaming",
" --harmony-import-assertions",
" --no-validate-asm",
);
if predictable {
v8::V8::set_flags_from_string(&format!(
"{}{}",
flags, " --predictable --random-seed=42"
));
} else {
v8::V8::set_flags_from_string(flags);
}
}
#[derive(Default)]
pub struct RuntimeOptions {
/// Source map reference for errors.
pub source_map_getter: Option<Box<dyn SourceMapGetter>>,
/// Allows to map error type to a string "class" used to represent
/// error in JavaScript.
pub get_error_class_fn: Option<GetErrorClassFn>,
/// Implementation of `ModuleLoader` which will be
/// called when V8 requests to load ES modules.
///
/// If not provided runtime will error if code being
/// executed tries to load modules.
pub module_loader: Option<Rc<dyn ModuleLoader>>,
/// JsRuntime extensions, not to be confused with ES modules
/// these are sets of ops and other JS code to be initialized.
pub extensions: Vec<Extension>,
/// V8 snapshot that should be loaded on startup.
///
/// Currently can't be used with `will_snapshot`.
pub startup_snapshot: Option<Snapshot>,
/// Prepare runtime to take snapshot of loaded code.
/// The snapshot is determinstic and uses predictable random numbers.
///
/// Currently can't be used with `startup_snapshot`.
pub will_snapshot: bool,
/// Isolate creation parameters.
pub create_params: Option<v8::CreateParams>,
/// V8 platform instance to use. Used when Deno initializes V8
/// (which it only does once), otherwise it's silenty dropped.
pub v8_platform: Option<v8::SharedRef<v8::Platform>>,
/// The store to use for transferring SharedArrayBuffers between isolates.
/// If multiple isolates should have the possibility of sharing
/// SharedArrayBuffers, they should use the same [SharedArrayBufferStore]. If
/// no [SharedArrayBufferStore] is specified, SharedArrayBuffer can not be
/// serialized.
pub shared_array_buffer_store: Option<SharedArrayBufferStore>,
/// The store to use for transferring `WebAssembly.Module` objects between
/// isolates.
/// If multiple isolates should have the possibility of sharing
/// `WebAssembly.Module` objects, they should use the same
/// [CompiledWasmModuleStore]. If no [CompiledWasmModuleStore] is specified,
/// `WebAssembly.Module` objects cannot be serialized.
pub compiled_wasm_module_store: Option<CompiledWasmModuleStore>,
}
impl JsRuntime {
/// Only constructor, configuration is done through `options`.
pub fn new(mut options: RuntimeOptions) -> Self {
let v8_platform = options.v8_platform.take();
static DENO_INIT: Once = Once::new();
DENO_INIT.call_once(move || v8_init(v8_platform, options.will_snapshot));
let has_startup_snapshot = options.startup_snapshot.is_some();
// Add builtins extension
options
.extensions
.insert(0, crate::ops_builtin::init_builtins());
let ops = Self::collect_ops(&mut options.extensions);
let mut op_state = OpState::new(ops.len());
if let Some(get_error_class_fn) = options.get_error_class_fn {
op_state.get_error_class_fn = get_error_class_fn;
}
let op_state = Rc::new(RefCell::new(op_state));
let op_ctxs = ops
.into_iter()
.enumerate()
.map(|(id, decl)| OpCtx {
id,
state: op_state.clone(),
decl,
})
.collect::<Vec<_>>()
.into_boxed_slice();
let global_context;
let (mut isolate, maybe_snapshot_creator) = if options.will_snapshot {
// TODO(ry) Support loading snapshots before snapshotting.
assert!(options.startup_snapshot.is_none());
let mut creator =
v8::SnapshotCreator::new(Some(&bindings::EXTERNAL_REFERENCES));
// SAFETY: `get_owned_isolate` is unsafe because it may only be called
// once. This is the only place we call this function, so this call is
// safe.
let isolate = unsafe { creator.get_owned_isolate() };
let mut isolate = JsRuntime::setup_isolate(isolate);
{
let scope = &mut v8::HandleScope::new(&mut isolate);
let context = bindings::initialize_context(scope, &op_ctxs, false);
global_context = v8::Global::new(scope, context);
creator.set_default_context(context);
}
(isolate, Some(creator))
} else {
let mut params = options
.create_params
.take()
.unwrap_or_else(v8::Isolate::create_params)
.external_references(&**bindings::EXTERNAL_REFERENCES);
let snapshot_loaded = if let Some(snapshot) = options.startup_snapshot {
params = match snapshot {
Snapshot::Static(data) => params.snapshot_blob(data),
Snapshot::JustCreated(data) => params.snapshot_blob(data),
Snapshot::Boxed(data) => params.snapshot_blob(data),
};
true
} else {
false
};
let isolate = v8::Isolate::new(params);
let mut isolate = JsRuntime::setup_isolate(isolate);
{
let scope = &mut v8::HandleScope::new(&mut isolate);
let context =
bindings::initialize_context(scope, &op_ctxs, snapshot_loaded);
global_context = v8::Global::new(scope, context);
}
(isolate, None)
};
let inspector =
JsRuntimeInspector::new(&mut isolate, global_context.clone());
let loader = options
.module_loader
.unwrap_or_else(|| Rc::new(NoopModuleLoader));
isolate.set_slot(Rc::new(RefCell::new(JsRuntimeState {
global_realm: Some(JsRealm(global_context)),
pending_promise_exceptions: HashMap::new(),
pending_dyn_mod_evaluate: vec![],
pending_mod_evaluate: None,
dyn_module_evaluate_idle_counter: 0,
js_recv_cb: None,
js_macrotask_cbs: vec![],
js_nexttick_cbs: vec![],
js_promise_reject_cb: None,
js_uncaught_exception_cb: None,
js_format_exception_cb: None,
has_tick_scheduled: false,
js_wasm_streaming_cb: None,
source_map_getter: options.source_map_getter,
source_map_cache: Default::default(),
pending_ops: FuturesUnordered::new(),
unrefed_ops: HashSet::new(),
shared_array_buffer_store: options.shared_array_buffer_store,
compiled_wasm_module_store: options.compiled_wasm_module_store,
op_state: op_state.clone(),
op_ctxs,
have_unpolled_ops: false,
explicit_terminate_exception: None,
waker: AtomicWaker::new(),
})));
let module_map = ModuleMap::new(loader, op_state);
isolate.set_slot(Rc::new(RefCell::new(module_map)));
let mut js_runtime = Self {
v8_isolate: Some(isolate),
inspector: Some(inspector),
snapshot_creator: maybe_snapshot_creator,
has_snapshotted: false,
built_from_snapshot: has_startup_snapshot,
allocations: IsolateAllocations::default(),
event_loop_middlewares: Vec::with_capacity(options.extensions.len()),
extensions: options.extensions,
};
// TODO(@AaronO): diff extensions inited in snapshot and those provided
// for now we assume that snapshot and extensions always match
if !has_startup_snapshot {
let realm = js_runtime.global_realm();
js_runtime.init_extension_js(&realm).unwrap();
}
// Init extension ops
js_runtime.init_extension_ops().unwrap();
// Init callbacks (opresolve)
js_runtime.init_cbs();
js_runtime
}
pub fn global_context(&mut self) -> v8::Global<v8::Context> {
self.global_realm().0
}
pub fn v8_isolate(&mut self) -> &mut v8::OwnedIsolate {
self.v8_isolate.as_mut().unwrap()
}
pub fn inspector(&mut self) -> &mut Box<JsRuntimeInspector> {
self.inspector.as_mut().unwrap()
}
pub fn global_realm(&mut self) -> JsRealm {
let state = Self::state(self.v8_isolate());
let state = state.borrow();
state.global_realm.clone().unwrap()
}
pub fn create_realm(&mut self) -> Result<JsRealm, Error> {
let realm = {
// SAFETY: Having the scope tied to self's lifetime makes it impossible to
// reference self.ops while the scope is alive. Here we turn it into an
// unbound lifetime, which is sound because 1. it only lives until the end
// of this block, and 2. the HandleScope only has access to the isolate,
// and nothing else we're accessing from self does.
let scope = &mut v8::HandleScope::new(unsafe {
&mut *(self.v8_isolate() as *mut v8::OwnedIsolate)
});
let context = bindings::initialize_context(
scope,
&Self::state(self.v8_isolate()).borrow().op_ctxs,
self.built_from_snapshot,
);
JsRealm::new(v8::Global::new(scope, context))
};
if !self.built_from_snapshot {
self.init_extension_js(&realm)?;
}
Ok(realm)
}
pub fn handle_scope(&mut self) -> v8::HandleScope {
self.global_realm().handle_scope(self)
}
fn setup_isolate(mut isolate: v8::OwnedIsolate) -> v8::OwnedIsolate {
isolate.set_capture_stack_trace_for_uncaught_exceptions(true, 10);
isolate.set_promise_reject_callback(bindings::promise_reject_callback);
isolate.set_host_initialize_import_meta_object_callback(
bindings::host_initialize_import_meta_object_callback,
);
isolate.set_host_import_module_dynamically_callback(
bindings::host_import_module_dynamically_callback,
);
isolate
}
pub(crate) fn state(isolate: &v8::Isolate) -> Rc<RefCell<JsRuntimeState>> {
let s = isolate.get_slot::<Rc<RefCell<JsRuntimeState>>>().unwrap();
s.clone()
}
pub(crate) fn module_map(isolate: &v8::Isolate) -> Rc<RefCell<ModuleMap>> {
let module_map = isolate.get_slot::<Rc<RefCell<ModuleMap>>>().unwrap();
module_map.clone()
}
/// Initializes JS of provided Extensions in the given realm
fn init_extension_js(&mut self, realm: &JsRealm) -> Result<(), Error> {
// Take extensions to avoid double-borrow
let mut extensions: Vec<Extension> = std::mem::take(&mut self.extensions);
for m in extensions.iter_mut() {
let js_files = m.init_js();
for (filename, source) in js_files {
// TODO(@AaronO): use JsRuntime::execute_static() here to move src off heap
realm.execute_script(self, filename, source)?;
}
}
// Restore extensions
self.extensions = extensions;
Ok(())
}
/// Collects ops from extensions & applies middleware
fn collect_ops(extensions: &mut [Extension]) -> Vec<OpDecl> {
// Middleware
let middleware: Vec<Box<OpMiddlewareFn>> = extensions
.iter_mut()
.filter_map(|e| e.init_middleware())
.collect();
// macroware wraps an opfn in all the middleware
let macroware = move |d| middleware.iter().fold(d, |d, m| m(d));
// Flatten ops, apply middlware & override disabled ops
extensions
.iter_mut()
.filter_map(|e| e.init_ops())
.flatten()
.map(|d| OpDecl {
name: d.name,
..macroware(d)
})
.map(|op| match op.enabled {
true => op,
false => OpDecl {
v8_fn_ptr: match op.is_async {
true => op_void_async::v8_fn_ptr(),
false => op_void_sync::v8_fn_ptr(),
},
..op
},
})
.collect()
}
/// Initializes ops of provided Extensions
fn init_extension_ops(&mut self) -> Result<(), Error> {
let op_state = self.op_state();
// Take extensions to avoid double-borrow
let mut extensions: Vec<Extension> = std::mem::take(&mut self.extensions);
// Setup state
for e in extensions.iter_mut() {
// ops are already registered during in bindings::initialize_context();
e.init_state(&mut op_state.borrow_mut())?;
// Setup event-loop middleware
if let Some(middleware) = e.init_event_loop_middleware() {
self.event_loop_middlewares.push(middleware);
}
}
// Restore extensions
self.extensions = extensions;
Ok(())
}
/// Grab a Global handle to a v8 value returned by the expression
pub(crate) fn grab<'s, T>(
scope: &mut v8::HandleScope<'s>,
root: v8::Local<'s, v8::Value>,
path: &str,
) -> Option<v8::Local<'s, T>>
where
v8::Local<'s, T>: TryFrom<v8::Local<'s, v8::Value>, Error = v8::DataError>,
{
path
.split('.')
.fold(Some(root), |p, k| {
let p = v8::Local::<v8::Object>::try_from(p?).ok()?;
let k = v8::String::new(scope, k)?;
p.get(scope, k.into())
})?
.try_into()
.ok()
}
pub(crate) fn grab_global<'s, T>(
scope: &mut v8::HandleScope<'s>,
path: &str,
) -> Option<v8::Local<'s, T>>
where
v8::Local<'s, T>: TryFrom<v8::Local<'s, v8::Value>, Error = v8::DataError>,
{
let context = scope.get_current_context();
let global = context.global(scope);
Self::grab(scope, global.into(), path)
}
pub(crate) fn ensure_objs<'s>(
scope: &mut v8::HandleScope<'s>,
root: v8::Local<'s, v8::Object>,
path: &str,
) -> Option<v8::Local<'s, v8::Object>> {
path.split('.').fold(Some(root), |p, k| {
let k = v8::String::new(scope, k)?.into();
match p?.get(scope, k) {
Some(v) if !v.is_null_or_undefined() => v.try_into().ok(),
_ => {
let o = v8::Object::new(scope);
p?.set(scope, k, o.into());
Some(o)
}
}
})
}
/// Grabs a reference to core.js' opresolve & syncOpsCache()
fn init_cbs(&mut self) {
let scope = &mut self.handle_scope();
let recv_cb =
Self::grab_global::<v8::Function>(scope, "Deno.core.opresolve").unwrap();
let recv_cb = v8::Global::new(scope, recv_cb);
// Put global handles in state
let state_rc = JsRuntime::state(scope);
let mut state = state_rc.borrow_mut();
state.js_recv_cb.replace(recv_cb);
}
/// Returns the runtime's op state, which can be used to maintain ops
/// and access resources between op calls.
pub fn op_state(&mut self) -> Rc<RefCell<OpState>> {
let state_rc = Self::state(self.v8_isolate());
let state = state_rc.borrow();
state.op_state.clone()
}
/// Executes traditional JavaScript code (traditional = not ES modules).
///
/// The execution takes place on the current global context, so it is possible
/// to maintain local JS state and invoke this method multiple times.
///
/// `name` can be a filepath or any other string, eg.
///
/// - "/some/file/path.js"
/// - "<anon>"
/// - "[native code]"
///
/// The same `name` value can be used for multiple executions.
///
/// `Error` can usually be downcast to `JsError`.
pub fn execute_script(
&mut self,
name: &str,
source_code: &str,
) -> Result<v8::Global<v8::Value>, Error> {
self.global_realm().execute_script(self, name, source_code)
}
/// Takes a snapshot. The isolate should have been created with will_snapshot
/// set to true.
///
/// `Error` can usually be downcast to `JsError`.
pub fn snapshot(&mut self) -> v8::StartupData {
assert!(self.snapshot_creator.is_some());
// Nuke Deno.core.ops.* to avoid ExternalReference snapshotting issues
// TODO(@AaronO): make ops stable across snapshots
{
let scope = &mut self.handle_scope();
let o = Self::grab_global::<v8::Object>(scope, "Deno.core.ops").unwrap();
let names = o.get_own_property_names(scope).unwrap();
for i in 0..names.length() {
let key = names.get_index(scope, i).unwrap();
o.delete(scope, key);
}
}
let state = Self::state(self.v8_isolate());
state.borrow_mut().global_realm.take();
self.inspector.take();
// Overwrite existing ModuleMap to drop v8::Global handles
self
.v8_isolate()
.set_slot(Rc::new(RefCell::new(ModuleMap::new(
Rc::new(NoopModuleLoader),
state.borrow().op_state.clone(),
))));
// Drop other v8::Global handles before snapshotting
std::mem::take(&mut state.borrow_mut().js_recv_cb);
let snapshot_creator = self.snapshot_creator.as_mut().unwrap();
let snapshot = snapshot_creator
.create_blob(v8::FunctionCodeHandling::Keep)
.unwrap();
self.has_snapshotted = true;
snapshot
}
/// Returns the namespace object of a module.
///
/// This is only available after module evaluation has completed.
/// This function panics if module has not been instantiated.
pub fn get_module_namespace(
&mut self,
module_id: ModuleId,
) -> Result<v8::Global<v8::Object>, Error> {
let module_map_rc = Self::module_map(self.v8_isolate());
let module_handle = module_map_rc
.borrow()
.get_handle(module_id)
.expect("ModuleInfo not found");
let scope = &mut self.handle_scope();
let module = module_handle.open(scope);
if module.get_status() == v8::ModuleStatus::Errored {
let exception = module.get_exception();
return exception_to_err_result(scope, exception, false);
}
assert!(matches!(
module.get_status(),
v8::ModuleStatus::Instantiated | v8::ModuleStatus::Evaluated
));
let module_namespace: v8::Local<v8::Object> =
v8::Local::try_from(module.get_module_namespace())
.map_err(|err: v8::DataError| generic_error(err.to_string()))?;
Ok(v8::Global::new(scope, module_namespace))
}
/// Registers a callback on the isolate when the memory limits are approached.
/// Use this to prevent V8 from crashing the process when reaching the limit.
///
/// Calls the closure with the current heap limit and the initial heap limit.
/// The return value of the closure is set as the new limit.
pub fn add_near_heap_limit_callback<C>(&mut self, cb: C)
where
C: FnMut(usize, usize) -> usize + 'static,
{
let boxed_cb = Box::new(RefCell::new(cb));
let data = boxed_cb.as_ptr() as *mut c_void;
let prev = self
.allocations
.near_heap_limit_callback_data
.replace((boxed_cb, near_heap_limit_callback::<C>));
if let Some((_, prev_cb)) = prev {
self
.v8_isolate()
.remove_near_heap_limit_callback(prev_cb, 0);
}
self
.v8_isolate()
.add_near_heap_limit_callback(near_heap_limit_callback::<C>, data);
}
pub fn remove_near_heap_limit_callback(&mut self, heap_limit: usize) {
if let Some((_, cb)) = self.allocations.near_heap_limit_callback_data.take()
{
self
.v8_isolate()
.remove_near_heap_limit_callback(cb, heap_limit);
}
}
fn pump_v8_message_loop(&mut self) {
let scope = &mut self.handle_scope();
while v8::Platform::pump_message_loop(
&v8::V8::get_current_platform(),
scope,
false, // don't block if there are no tasks
) {
// do nothing
}
scope.perform_microtask_checkpoint();
}
pub fn poll_value(
&mut self,
global: &v8::Global<v8::Value>,
cx: &mut Context,
) -> Poll<Result<v8::Global<v8::Value>, Error>> {
let state = self.poll_event_loop(cx, false);
let mut scope = self.handle_scope();
let local = v8::Local::<v8::Value>::new(&mut scope, global);
if let Ok(promise) = v8::Local::<v8::Promise>::try_from(local) {
match promise.state() {
v8::PromiseState::Pending => match state {
Poll::Ready(Ok(_)) => {
let msg = "Promise resolution is still pending but the event loop has already resolved.";
Poll::Ready(Err(generic_error(msg)))
}
Poll::Ready(Err(e)) => Poll::Ready(Err(e)),
Poll::Pending => Poll::Pending,
},
v8::PromiseState::Fulfilled => {
let value = promise.result(&mut scope);
let value_handle = v8::Global::new(&mut scope, value);
Poll::Ready(Ok(value_handle))
}
v8::PromiseState::Rejected => {
let exception = promise.result(&mut scope);
Poll::Ready(exception_to_err_result(&mut scope, exception, false))
}
}
} else {
let value_handle = v8::Global::new(&mut scope, local);
Poll::Ready(Ok(value_handle))
}
}
/// Waits for the given value to resolve while polling the event loop.
///
/// This future resolves when either the value is resolved or the event loop runs to
/// completion.
pub async fn resolve_value(
&mut self,
global: v8::Global<v8::Value>,
) -> Result<v8::Global<v8::Value>, Error> {
poll_fn(|cx| self.poll_value(&global, cx)).await
}
/// Runs event loop to completion
///
/// This future resolves when:
/// - there are no more pending dynamic imports
/// - there are no more pending ops
/// - there are no more active inspector sessions (only if `wait_for_inspector` is set to true)
pub async fn run_event_loop(
&mut self,
wait_for_inspector: bool,
) -> Result<(), Error> {
poll_fn(|cx| self.poll_event_loop(cx, wait_for_inspector)).await
}
/// Runs a single tick of event loop
///
/// If `wait_for_inspector` is set to true event loop
/// will return `Poll::Pending` if there are active inspector sessions.
pub fn poll_event_loop(
&mut self,
cx: &mut Context,
wait_for_inspector: bool,
) -> Poll<Result<(), Error>> {
// We always poll the inspector first
let _ = self.inspector().poll_unpin(cx);
let state_rc = Self::state(self.v8_isolate());
let module_map_rc = Self::module_map(self.v8_isolate());
{
let state = state_rc.borrow();
state.waker.register(cx.waker());
}
self.pump_v8_message_loop();
// Ops
{
self.resolve_async_ops(cx)?;
self.drain_nexttick()?;
self.drain_macrotasks()?;
self.check_promise_exceptions()?;
}
// Dynamic module loading - ie. modules loaded using "import()"
{
// Run in a loop so that dynamic imports that only depend on another
// dynamic import can be resolved in this event loop iteration.
//
// For example, a dynamically imported module like the following can be
// immediately resolved after `dependency.ts` is fully evaluated, but it
// wouldn't if not for this loop.
//
// await delay(1000);
// await import("./dependency.ts");
// console.log("test")
//
loop {
let poll_imports = self.prepare_dyn_imports(cx)?;
assert!(poll_imports.is_ready());
let poll_imports = self.poll_dyn_imports(cx)?;
assert!(poll_imports.is_ready());
if !self.evaluate_dyn_imports() {
break;
}
}
self.check_promise_exceptions()?;
}
// Event loop middlewares
let mut maybe_scheduling = false;
{
let state = state_rc.borrow();
let op_state = state.op_state.clone();
for f in &self.event_loop_middlewares {
if f(op_state.clone(), cx) {
maybe_scheduling = true;
}
}
}
// Top level module
self.evaluate_pending_module();
let mut state = state_rc.borrow_mut();
let module_map = module_map_rc.borrow();
let has_pending_refed_ops =
state.pending_ops.len() > state.unrefed_ops.len();
let has_pending_dyn_imports = module_map.has_pending_dynamic_imports();
let has_pending_dyn_module_evaluation =
!state.pending_dyn_mod_evaluate.is_empty();
let has_pending_module_evaluation = state.pending_mod_evaluate.is_some();
let has_pending_background_tasks =
self.v8_isolate().has_pending_background_tasks();
let has_tick_scheduled = state.has_tick_scheduled;
let inspector_has_active_sessions = self
.inspector
.as_ref()
.map(|i| i.has_active_sessions())
.unwrap_or(false);
if !has_pending_refed_ops
&& !has_pending_dyn_imports
&& !has_pending_dyn_module_evaluation
&& !has_pending_module_evaluation
&& !has_pending_background_tasks
&& !has_tick_scheduled
&& !maybe_scheduling
{
if wait_for_inspector && inspector_has_active_sessions {
return Poll::Pending;
}
return Poll::Ready(Ok(()));
}
// Check if more async ops have been dispatched
// during this turn of event loop.
// If there are any pending background tasks, we also wake the runtime to
// make sure we don't miss them.
// TODO(andreubotella) The event loop will spin as long as there are pending
// background tasks. We should look into having V8 notify us when a
// background task is done.
if state.have_unpolled_ops
|| has_pending_background_tasks
|| has_tick_scheduled
|| maybe_scheduling
{
state.waker.wake();
}
if has_pending_module_evaluation {
if has_pending_refed_ops
|| has_pending_dyn_imports
|| has_pending_dyn_module_evaluation
|| has_pending_background_tasks
|| has_tick_scheduled
|| maybe_scheduling
{
// pass, will be polled again
} else {
let msg = "Module evaluation is still pending but there are no pending ops or dynamic imports. This situation is often caused by unresolved promises.";
return Poll::Ready(Err(generic_error(msg)));
}
}
if has_pending_dyn_module_evaluation {
if has_pending_refed_ops
|| has_pending_dyn_imports
|| has_pending_background_tasks
|| has_tick_scheduled
{
// pass, will be polled again
} else if state.dyn_module_evaluate_idle_counter >= 1 {
let mut msg = "Dynamically imported module evaluation is still pending but there are no pending ops. This situation is often caused by unresolved promises.
Pending dynamic modules:\n".to_string();
for pending_evaluate in &state.pending_dyn_mod_evaluate {
let module_info = module_map
.get_info_by_id(&pending_evaluate.module_id)
.unwrap();
msg.push_str(&format!("- {}", module_info.name.as_str()));
}
return Poll::Ready(Err(generic_error(msg)));
} else {
// Delay the above error by one spin of the event loop. A dynamic import
// evaluation may complete during this, in which case the counter will
// reset.
state.dyn_module_evaluate_idle_counter += 1;
state.waker.wake();
}
}
Poll::Pending
}
pub fn event_loop_has_work(&mut self) -> bool {
let state_rc = Self::state(self.v8_isolate());
let module_map_rc = Self::module_map(self.v8_isolate());
let state = state_rc.borrow_mut();
let module_map = module_map_rc.borrow();
let has_pending_refed_ops =
state.pending_ops.len() > state.unrefed_ops.len();
let has_pending_dyn_imports = module_map.has_pending_dynamic_imports();
let has_pending_dyn_module_evaluation =
!state.pending_dyn_mod_evaluate.is_empty();
let has_pending_module_evaluation = state.pending_mod_evaluate.is_some();
let has_pending_background_tasks =
self.v8_isolate().has_pending_background_tasks();
let has_tick_scheduled = state.has_tick_scheduled;
has_pending_refed_ops
|| has_pending_dyn_imports
|| has_pending_dyn_module_evaluation
|| has_pending_module_evaluation
|| has_pending_background_tasks
|| has_tick_scheduled
}
}
extern "C" fn near_heap_limit_callback<F>(
data: *mut c_void,
current_heap_limit: usize,
initial_heap_limit: usize,
) -> usize
where
F: FnMut(usize, usize) -> usize,
{
// SAFETY: The data is a pointer to the Rust callback function. It is stored
// in `JsRuntime::allocations` and thus is guaranteed to outlive the isolate.
let callback = unsafe { &mut *(data as *mut F) };
callback(current_heap_limit, initial_heap_limit)
}
impl JsRuntimeState {
/// Called by `bindings::host_import_module_dynamically_callback`
/// after initiating new dynamic import load.
pub fn notify_new_dynamic_import(&mut self) {
// Notify event loop to poll again soon.
self.waker.wake();
}
}
pub(crate) fn exception_to_err_result<'s, T>(
scope: &mut v8::HandleScope<'s>,
exception: v8::Local<v8::Value>,
in_promise: bool,
) -> Result<T, Error> {
let state_rc = JsRuntime::state(scope);
let is_terminating_exception = scope.is_execution_terminating();
let mut exception = exception;
if is_terminating_exception {
// TerminateExecution was called. Cancel isolate termination so that the
// exception can be created..
scope.cancel_terminate_execution();
// If the termination is the result of a `Deno.core.terminate` call, we want
// to use the exception that was passed to it rather than the exception that
// was passed to this function.
let mut state = state_rc.borrow_mut();
exception = state
.explicit_terminate_exception
.take()
.map(|exception| v8::Local::new(scope, exception))
.unwrap_or_else(|| {
// Maybe make a new exception object.
if exception.is_null_or_undefined() {
let message = v8::String::new(scope, "execution terminated").unwrap();
v8::Exception::error(scope, message)
} else {
exception
}
});
}
let mut js_error = JsError::from_v8_exception(scope, exception);
if in_promise {
js_error.exception_message = format!(
"Uncaught (in promise) {}",
js_error.exception_message.trim_start_matches("Uncaught ")
);
}
if is_terminating_exception {
// Re-enable exception termination.
scope.terminate_execution();
}
Err(js_error.into())
}
// Related to module loading
impl JsRuntime {
pub(crate) fn instantiate_module(
&mut self,
id: ModuleId,
) -> Result<(), v8::Global<v8::Value>> {
let module_map_rc = Self::module_map(self.v8_isolate());
let scope = &mut self.handle_scope();
let tc_scope = &mut v8::TryCatch::new(scope);
let module = module_map_rc
.borrow()
.get_handle(id)
.map(|handle| v8::Local::new(tc_scope, handle))
.expect("ModuleInfo not found");
if module.get_status() == v8::ModuleStatus::Errored {
return Err(v8::Global::new(tc_scope, module.get_exception()));
}
// IMPORTANT: No borrows to `ModuleMap` can be held at this point because
// `module_resolve_callback` will be calling into `ModuleMap` from within
// the isolate.
let instantiate_result =
module.instantiate_module(tc_scope, bindings::module_resolve_callback);
if instantiate_result.is_none() {
let exception = tc_scope.exception().unwrap();
return Err(v8::Global::new(tc_scope, exception));
}
Ok(())
}
fn dynamic_import_module_evaluate(
&mut self,
load_id: ModuleLoadId,
id: ModuleId,
) -> Result<(), Error> {
let state_rc = Self::state(self.v8_isolate());
let module_map_rc = Self::module_map(self.v8_isolate());
let module_handle = module_map_rc
.borrow()
.get_handle(id)
.expect("ModuleInfo not found");
let status = {
let scope = &mut self.handle_scope();
let module = module_handle.open(scope);
module.get_status()
};
match status {
v8::ModuleStatus::Instantiated | v8::ModuleStatus::Evaluated => {}
_ => return Ok(()),
}
// IMPORTANT: Top-level-await is enabled, which means that return value
// of module evaluation is a promise.
//
// This promise is internal, and not the same one that gets returned to
// the user. We add an empty `.catch()` handler so that it does not result
// in an exception if it rejects. That will instead happen for the other
// promise if not handled by the user.
//
// For more details see:
// https://github.com/denoland/deno/issues/4908
// https://v8.dev/features/top-level-await#module-execution-order
let scope = &mut self.handle_scope();
let tc_scope = &mut v8::TryCatch::new(scope);
let module = v8::Local::new(tc_scope, &module_handle);
let maybe_value = module.evaluate(tc_scope);
// Update status after evaluating.
let status = module.get_status();
if let Some(value) = maybe_value {
assert!(
status == v8::ModuleStatus::Evaluated
|| status == v8::ModuleStatus::Errored
);
let promise = v8::Local::<v8::Promise>::try_from(value)
.expect("Expected to get promise as module evaluation result");
let empty_fn = |_scope: &mut v8::HandleScope,
_args: v8::FunctionCallbackArguments,
_rv: v8::ReturnValue| {};
let empty_fn = v8::FunctionTemplate::new(tc_scope, empty_fn);
let empty_fn = empty_fn.get_function(tc_scope).unwrap();
promise.catch(tc_scope, empty_fn);
let mut state = state_rc.borrow_mut();
let promise_global = v8::Global::new(tc_scope, promise);
let module_global = v8::Global::new(tc_scope, module);
let dyn_import_mod_evaluate = DynImportModEvaluate {
load_id,
module_id: id,
promise: promise_global,
module: module_global,
};
state.pending_dyn_mod_evaluate.push(dyn_import_mod_evaluate);
} else if tc_scope.has_terminated() || tc_scope.is_execution_terminating() {
return Err(
generic_error("Cannot evaluate dynamically imported module, because JavaScript execution has been terminated.")
);
} else {
assert!(status == v8::ModuleStatus::Errored);
}
Ok(())
}
// TODO(bartlomieju): make it return `ModuleEvaluationFuture`?
/// Evaluates an already instantiated ES module.
///
/// Returns a receiver handle that resolves when module promise resolves.
/// Implementors must manually call [`JsRuntime::run_event_loop`] to drive
/// module evaluation future.
///
/// `Error` can usually be downcast to `JsError` and should be awaited and
/// checked after [`JsRuntime::run_event_loop`] completion.
///
/// This function panics if module has not been instantiated.
pub fn mod_evaluate(
&mut self,
id: ModuleId,
) -> oneshot::Receiver<Result<(), Error>> {
let state_rc = Self::state(self.v8_isolate());
let module_map_rc = Self::module_map(self.v8_isolate());
let scope = &mut self.handle_scope();
let tc_scope = &mut v8::TryCatch::new(scope);
let module = module_map_rc
.borrow()
.get_handle(id)
.map(|handle| v8::Local::new(tc_scope, handle))
.expect("ModuleInfo not found");
let mut status = module.get_status();
assert_eq!(status, v8::ModuleStatus::Instantiated);
let (sender, receiver) = oneshot::channel();
// IMPORTANT: Top-level-await is enabled, which means that return value
// of module evaluation is a promise.
//
// Because that promise is created internally by V8, when error occurs during
// module evaluation the promise is rejected, and since the promise has no rejection
// handler it will result in call to `bindings::promise_reject_callback` adding
// the promise to pending promise rejection table - meaning JsRuntime will return
// error on next poll().
//
// This situation is not desirable as we want to manually return error at the
// end of this function to handle it further. It means we need to manually
// remove this promise from pending promise rejection table.
//
// For more details see:
// https://github.com/denoland/deno/issues/4908
// https://v8.dev/features/top-level-await#module-execution-order
let maybe_value = module.evaluate(tc_scope);
// Update status after evaluating.
status = module.get_status();
let explicit_terminate_exception =
state_rc.borrow_mut().explicit_terminate_exception.take();
if let Some(exception) = explicit_terminate_exception {
let exception = v8::Local::new(tc_scope, exception);
sender
.send(exception_to_err_result(tc_scope, exception, false))
.expect("Failed to send module evaluation error.");
} else if let Some(value) = maybe_value {
assert!(
status == v8::ModuleStatus::Evaluated
|| status == v8::ModuleStatus::Errored
);
let promise = v8::Local::<v8::Promise>::try_from(value)
.expect("Expected to get promise as module evaluation result");
let promise_global = v8::Global::new(tc_scope, promise);
let mut state = state_rc.borrow_mut();
state.pending_promise_exceptions.remove(&promise_global);
let promise_global = v8::Global::new(tc_scope, promise);
assert!(
state.pending_mod_evaluate.is_none(),
"There is already pending top level module evaluation"
);
state.pending_mod_evaluate = Some(ModEvaluate {
promise: promise_global,
sender,
});
tc_scope.perform_microtask_checkpoint();
} else if tc_scope.has_terminated() || tc_scope.is_execution_terminating() {
sender.send(Err(
generic_error("Cannot evaluate module, because JavaScript execution has been terminated.")
)).expect("Failed to send module evaluation error.");
} else {
assert!(status == v8::ModuleStatus::Errored);
}
receiver
}
fn dynamic_import_reject(
&mut self,
id: ModuleLoadId,
exception: v8::Global<v8::Value>,
) {
let module_map_rc = Self::module_map(self.v8_isolate());
let scope = &mut self.handle_scope();
let resolver_handle = module_map_rc
.borrow_mut()
.dynamic_import_map
.remove(&id)
.expect("Invalid dynamic import id");
let resolver = resolver_handle.open(scope);
// IMPORTANT: No borrows to `ModuleMap` can be held at this point because
// rejecting the promise might initiate another `import()` which will
// in turn call `bindings::host_import_module_dynamically_callback` which
// will reach into `ModuleMap` from within the isolate.
let exception = v8::Local::new(scope, exception);
resolver.reject(scope, exception).unwrap();
scope.perform_microtask_checkpoint();
}
fn dynamic_import_resolve(&mut self, id: ModuleLoadId, mod_id: ModuleId) {
let state_rc = Self::state(self.v8_isolate());
let module_map_rc = Self::module_map(self.v8_isolate());
let scope = &mut self.handle_scope();
let resolver_handle = module_map_rc
.borrow_mut()
.dynamic_import_map
.remove(&id)
.expect("Invalid dynamic import id");
let resolver = resolver_handle.open(scope);
let module = {
module_map_rc
.borrow()
.get_handle(mod_id)
.map(|handle| v8::Local::new(scope, handle))
.expect("Dyn import module info not found")
};
// Resolution success
assert_eq!(module.get_status(), v8::ModuleStatus::Evaluated);
// IMPORTANT: No borrows to `ModuleMap` can be held at this point because
// resolving the promise might initiate another `import()` which will
// in turn call `bindings::host_import_module_dynamically_callback` which
// will reach into `ModuleMap` from within the isolate.
let module_namespace = module.get_module_namespace();
resolver.resolve(scope, module_namespace).unwrap();
state_rc.borrow_mut().dyn_module_evaluate_idle_counter = 0;
scope.perform_microtask_checkpoint();
}
fn prepare_dyn_imports(
&mut self,
cx: &mut Context,
) -> Poll<Result<(), Error>> {
let module_map_rc = Self::module_map(self.v8_isolate());
if module_map_rc.borrow().preparing_dynamic_imports.is_empty() {
return Poll::Ready(Ok(()));
}
loop {
let poll_result = module_map_rc
.borrow_mut()
.preparing_dynamic_imports
.poll_next_unpin(cx);
if let Poll::Ready(Some(prepare_poll)) = poll_result {
let dyn_import_id = prepare_poll.0;
let prepare_result = prepare_poll.1;
match prepare_result {
Ok(load) => {
module_map_rc
.borrow_mut()
.pending_dynamic_imports
.push(load.into_future());
}
Err(err) => {
let exception = to_v8_type_error(&mut self.handle_scope(), err);
self.dynamic_import_reject(dyn_import_id, exception);
}
}
// Continue polling for more prepared dynamic imports.
continue;
}
// There are no active dynamic import loads, or none are ready.
return Poll::Ready(Ok(()));
}
}
fn poll_dyn_imports(&mut self, cx: &mut Context) -> Poll<Result<(), Error>> {
let module_map_rc = Self::module_map(self.v8_isolate());
if module_map_rc.borrow().pending_dynamic_imports.is_empty() {
return Poll::Ready(Ok(()));
}
loop {
let poll_result = module_map_rc
.borrow_mut()
.pending_dynamic_imports
.poll_next_unpin(cx);
if let Poll::Ready(Some(load_stream_poll)) = poll_result {
let maybe_result = load_stream_poll.0;
let mut load = load_stream_poll.1;
let dyn_import_id = load.id;
if let Some(load_stream_result) = maybe_result {
match load_stream_result {
Ok((request, info)) => {
// A module (not necessarily the one dynamically imported) has been
// fetched. Create and register it, and if successful, poll for the
// next recursive-load event related to this dynamic import.
let register_result = load.register_and_recurse(
&mut self.handle_scope(),
&request,
&info,
);
match register_result {
Ok(()) => {
// Keep importing until it's fully drained
module_map_rc
.borrow_mut()
.pending_dynamic_imports
.push(load.into_future());
}
Err(err) => {
let exception = match err {
ModuleError::Exception(e) => e,
ModuleError::Other(e) => {
to_v8_type_error(&mut self.handle_scope(), e)
}
};
self.dynamic_import_reject(dyn_import_id, exception)
}
}
}
Err(err) => {
// A non-javascript error occurred; this could be due to a an invalid
// module specifier, or a problem with the source map, or a failure
// to fetch the module source code.
let exception = to_v8_type_error(&mut self.handle_scope(), err);
self.dynamic_import_reject(dyn_import_id, exception);
}
}
} else {
// The top-level module from a dynamic import has been instantiated.
// Load is done.
let module_id =
load.root_module_id.expect("Root module should be loaded");
let result = self.instantiate_module(module_id);
if let Err(exception) = result {
self.dynamic_import_reject(dyn_import_id, exception);
}
self.dynamic_import_module_evaluate(dyn_import_id, module_id)?;
}
// Continue polling for more ready dynamic imports.
continue;
}
// There are no active dynamic import loads, or none are ready.
return Poll::Ready(Ok(()));
}
}
/// "deno_core" runs V8 with Top Level Await enabled. It means that each
/// module evaluation returns a promise from V8.
/// Feature docs: https://v8.dev/features/top-level-await
///
/// This promise resolves after all dependent modules have also
/// resolved. Each dependent module may perform calls to "import()" and APIs
/// using async ops will add futures to the runtime's event loop.
/// It means that the promise returned from module evaluation will
/// resolve only after all futures in the event loop are done.
///
/// Thus during turn of event loop we need to check if V8 has
/// resolved or rejected the promise. If the promise is still pending
/// then another turn of event loop must be performed.
fn evaluate_pending_module(&mut self) {
let state_rc = Self::state(self.v8_isolate());
let maybe_module_evaluation =
state_rc.borrow_mut().pending_mod_evaluate.take();
if maybe_module_evaluation.is_none() {
return;
}
let module_evaluation = maybe_module_evaluation.unwrap();
let scope = &mut self.handle_scope();
let promise = module_evaluation.promise.open(scope);
let promise_state = promise.state();
match promise_state {
v8::PromiseState::Pending => {
// NOTE: `poll_event_loop` will decide if
// runtime would be woken soon
state_rc.borrow_mut().pending_mod_evaluate = Some(module_evaluation);
}
v8::PromiseState::Fulfilled => {
scope.perform_microtask_checkpoint();
// Receiver end might have been already dropped, ignore the result
let _ = module_evaluation.sender.send(Ok(()));
}
v8::PromiseState::Rejected => {
let exception = promise.result(scope);
scope.perform_microtask_checkpoint();
// Receiver end might have been already dropped, ignore the result
let _ = module_evaluation
.sender
.send(exception_to_err_result(scope, exception, false));
}
}
}
// Returns true if some dynamic import was resolved.
fn evaluate_dyn_imports(&mut self) -> bool {
let mut resolved_any = false;
let state_rc = Self::state(self.v8_isolate());
let mut still_pending = vec![];
let pending =
std::mem::take(&mut state_rc.borrow_mut().pending_dyn_mod_evaluate);
for pending_dyn_evaluate in pending {
let maybe_result = {
let scope = &mut self.handle_scope();
let module_id = pending_dyn_evaluate.module_id;
let promise = pending_dyn_evaluate.promise.open(scope);
let _module = pending_dyn_evaluate.module.open(scope);
let promise_state = promise.state();
match promise_state {
v8::PromiseState::Pending => {
still_pending.push(pending_dyn_evaluate);
None
}
v8::PromiseState::Fulfilled => {
Some(Ok((pending_dyn_evaluate.load_id, module_id)))
}
v8::PromiseState::Rejected => {
let exception = promise.result(scope);
let exception = v8::Global::new(scope, exception);
Some(Err((pending_dyn_evaluate.load_id, exception)))
}
}
};
if let Some(result) = maybe_result {
resolved_any = true;
match result {
Ok((dyn_import_id, module_id)) => {
self.dynamic_import_resolve(dyn_import_id, module_id);
}
Err((dyn_import_id, exception)) => {
self.dynamic_import_reject(dyn_import_id, exception);
}
}
}
}
state_rc.borrow_mut().pending_dyn_mod_evaluate = still_pending;
resolved_any
}
/// Asynchronously load specified module and all of its dependencies.
///
/// The module will be marked as "main", and because of that
/// "import.meta.main" will return true when checked inside that module.
///
/// User must call [`JsRuntime::mod_evaluate`] with returned `ModuleId`
/// manually after load is finished.
pub async fn load_main_module(
&mut self,
specifier: &ModuleSpecifier,
code: Option<String>,
) -> Result<ModuleId, Error> {
let module_map_rc = Self::module_map(self.v8_isolate());
if let Some(code) = code {
let scope = &mut self.handle_scope();
module_map_rc
.borrow_mut()
.new_es_module(
scope,
// main module
true,
specifier.as_str(),
code.as_bytes(),
)
.map_err(|e| match e {
ModuleError::Exception(exception) => {
let exception = v8::Local::new(scope, exception);
exception_to_err_result::<()>(scope, exception, false).unwrap_err()
}
ModuleError::Other(error) => error,
})?;
}
let mut load =
ModuleMap::load_main(module_map_rc.clone(), specifier.as_str()).await?;
while let Some(load_result) = load.next().await {
let (request, info) = load_result?;
let scope = &mut self.handle_scope();
load.register_and_recurse(scope, &request, &info).map_err(
|e| match e {
ModuleError::Exception(exception) => {
let exception = v8::Local::new(scope, exception);
exception_to_err_result::<()>(scope, exception, false).unwrap_err()
}
ModuleError::Other(error) => error,
},
)?;
}
let root_id = load.root_module_id.expect("Root module should be loaded");
self.instantiate_module(root_id).map_err(|e| {
let scope = &mut self.handle_scope();
let exception = v8::Local::new(scope, e);
exception_to_err_result::<()>(scope, exception, false).unwrap_err()
})?;
Ok(root_id)
}
/// Asynchronously load specified ES module and all of its dependencies.
///
/// This method is meant to be used when loading some utility code that
/// might be later imported by the main module (ie. an entry point module).
///
/// User must call [`JsRuntime::mod_evaluate`] with returned `ModuleId`
/// manually after load is finished.
pub async fn load_side_module(
&mut self,
specifier: &ModuleSpecifier,
code: Option<String>,
) -> Result<ModuleId, Error> {
let module_map_rc = Self::module_map(self.v8_isolate());
if let Some(code) = code {
let scope = &mut self.handle_scope();
module_map_rc
.borrow_mut()
.new_es_module(
scope,
// not main module
false,
specifier.as_str(),
code.as_bytes(),
)
.map_err(|e| match e {
ModuleError::Exception(exception) => {
let exception = v8::Local::new(scope, exception);
exception_to_err_result::<()>(scope, exception, false).unwrap_err()
}
ModuleError::Other(error) => error,
})?;
}
let mut load =
ModuleMap::load_side(module_map_rc.clone(), specifier.as_str()).await?;
while let Some(load_result) = load.next().await {
let (request, info) = load_result?;
let scope = &mut self.handle_scope();
load.register_and_recurse(scope, &request, &info).map_err(
|e| match e {
ModuleError::Exception(exception) => {
let exception = v8::Local::new(scope, exception);
exception_to_err_result::<()>(scope, exception, false).unwrap_err()
}
ModuleError::Other(error) => error,
},
)?;
}
let root_id = load.root_module_id.expect("Root module should be loaded");
self.instantiate_module(root_id).map_err(|e| {
let scope = &mut self.handle_scope();
let exception = v8::Local::new(scope, e);
exception_to_err_result::<()>(scope, exception, false).unwrap_err()
})?;
Ok(root_id)
}
fn check_promise_exceptions(&mut self) -> Result<(), Error> {
let state_rc = Self::state(self.v8_isolate());
let mut state = state_rc.borrow_mut();
if state.pending_promise_exceptions.is_empty() {
return Ok(());
}
let key = {
state
.pending_promise_exceptions
.keys()
.next()
.unwrap()
.clone()
};
let handle = state.pending_promise_exceptions.remove(&key).unwrap();
drop(state);
let scope = &mut self.handle_scope();
let exception = v8::Local::new(scope, handle);
exception_to_err_result(scope, exception, true)
}
// Send finished responses to JS
fn resolve_async_ops(&mut self, cx: &mut Context) -> Result<(), Error> {
let state_rc = Self::state(self.v8_isolate());
let js_recv_cb_handle = state_rc.borrow().js_recv_cb.clone().unwrap();
let scope = &mut self.handle_scope();
// We return async responses to JS in unbounded batches (may change),
// each batch is a flat vector of tuples:
// `[promise_id1, op_result1, promise_id2, op_result2, ...]`
// promise_id is a simple integer, op_result is an ops::OpResult
// which contains a value OR an error, encoded as a tuple.
// This batch is received in JS via the special `arguments` variable
// and then each tuple is used to resolve or reject promises
let mut args: Vec<v8::Local<v8::Value>> = vec![];
// Now handle actual ops.
{
let mut state = state_rc.borrow_mut();
state.have_unpolled_ops = false;
while let Poll::Ready(Some(item)) = state.pending_ops.poll_next_unpin(cx)
{
let (promise_id, op_id, resp) = item;
state.unrefed_ops.remove(&promise_id);
state.op_state.borrow().tracker.track_async_completed(op_id);
args.push(v8::Integer::new(scope, promise_id as i32).into());
args.push(resp.to_v8(scope).unwrap());
}
}
if args.is_empty() {
return Ok(());
}
let tc_scope = &mut v8::TryCatch::new(scope);
let js_recv_cb = js_recv_cb_handle.open(tc_scope);
let this = v8::undefined(tc_scope).into();
js_recv_cb.call(tc_scope, this, args.as_slice());
match tc_scope.exception() {
None => Ok(()),
Some(exception) => exception_to_err_result(tc_scope, exception, false),
}
}
fn drain_macrotasks(&mut self) -> Result<(), Error> {
let state = Self::state(self.v8_isolate());
if state.borrow().js_macrotask_cbs.is_empty() {
return Ok(());
}
let js_macrotask_cb_handles = state.borrow().js_macrotask_cbs.clone();
let scope = &mut self.handle_scope();
for js_macrotask_cb_handle in js_macrotask_cb_handles {
let js_macrotask_cb = js_macrotask_cb_handle.open(scope);
// Repeatedly invoke macrotask callback until it returns true (done),
// such that ready microtasks would be automatically run before
// next macrotask is processed.
let tc_scope = &mut v8::TryCatch::new(scope);
let this = v8::undefined(tc_scope).into();
loop {
let is_done = js_macrotask_cb.call(tc_scope, this, &[]);
if let Some(exception) = tc_scope.exception() {
return exception_to_err_result(tc_scope, exception, false);
}
if tc_scope.has_terminated() || tc_scope.is_execution_terminating() {
return Ok(());
}
let is_done = is_done.unwrap();
if is_done.is_true() {
break;
}
}
}
Ok(())
}
fn drain_nexttick(&mut self) -> Result<(), Error> {
let state = Self::state(self.v8_isolate());
if state.borrow().js_nexttick_cbs.is_empty() {
return Ok(());
}
if !state.borrow().has_tick_scheduled {
let scope = &mut self.handle_scope();
scope.perform_microtask_checkpoint();
}
// TODO(bartlomieju): Node also checks for absence of "rejection_to_warn"
if !state.borrow().has_tick_scheduled {
return Ok(());
}
let js_nexttick_cb_handles = state.borrow().js_nexttick_cbs.clone();
let scope = &mut self.handle_scope();
for js_nexttick_cb_handle in js_nexttick_cb_handles {
let js_nexttick_cb = js_nexttick_cb_handle.open(scope);
let tc_scope = &mut v8::TryCatch::new(scope);
let this = v8::undefined(tc_scope).into();
js_nexttick_cb.call(tc_scope, this, &[]);
if let Some(exception) = tc_scope.exception() {
return exception_to_err_result(tc_scope, exception, false);
}
}
Ok(())
}
}
/// A representation of a JavaScript realm tied to a [`JsRuntime`], that allows
/// execution in the realm's context.
///
/// A [`JsRealm`] instance does not hold ownership of its corresponding realm,
/// so they can be created and dropped as needed. And since every operation on
/// them requires passing a mutable reference to the [`JsRuntime`], multiple
/// [`JsRealm`] instances won't overlap.
///
/// # Panics
///
/// Every method of [`JsRealm`] will panic if you call if with a reference to a
/// [`JsRuntime`] other than the one that corresponds to the current context.
///
/// # Lifetime of the realm
///
/// A [`JsRealm`] instance will keep the underlying V8 context alive even if it
/// would have otherwise been garbage collected.
#[derive(Clone)]
pub struct JsRealm(v8::Global<v8::Context>);
impl JsRealm {
pub fn new(context: v8::Global<v8::Context>) -> Self {
JsRealm(context)
}
pub fn context(&self) -> &v8::Global<v8::Context> {
&self.0
}
pub fn handle_scope<'s>(
&self,
runtime: &'s mut JsRuntime,
) -> v8::HandleScope<'s> {
v8::HandleScope::with_context(runtime.v8_isolate(), &self.0)
}
pub fn global_object<'s>(
&self,
runtime: &'s mut JsRuntime,
) -> v8::Local<'s, v8::Object> {
let scope = &mut self.handle_scope(runtime);
self.0.open(scope).global(scope)
}
/// Executes traditional JavaScript code (traditional = not ES modules) in the
/// realm's context.
///
/// `name` can be a filepath or any other string, eg.
///
/// - "/some/file/path.js"
/// - "<anon>"
/// - "[native code]"
///
/// The same `name` value can be used for multiple executions.
///
/// `Error` can usually be downcast to `JsError`.
pub fn execute_script(
&self,
runtime: &mut JsRuntime,
name: &str,
source_code: &str,
) -> Result<v8::Global<v8::Value>, Error> {
let scope = &mut self.handle_scope(runtime);
let source = v8::String::new(scope, source_code).unwrap();
let name = v8::String::new(scope, name).unwrap();
let origin = bindings::script_origin(scope, name);
let tc_scope = &mut v8::TryCatch::new(scope);
let script = match v8::Script::compile(tc_scope, source, Some(&origin)) {
Some(script) => script,
None => {
let exception = tc_scope.exception().unwrap();
return exception_to_err_result(tc_scope, exception, false);
}
};
match script.run(tc_scope) {
Some(value) => {
let value_handle = v8::Global::new(tc_scope, value);
Ok(value_handle)
}
None => {
assert!(tc_scope.has_caught());
let exception = tc_scope.exception().unwrap();
exception_to_err_result(tc_scope, exception, false)
}
}
}
// TODO(andreubotella): `mod_evaluate`, `load_main_module`, `load_side_module`
}
#[inline]
pub fn queue_async_op(
scope: &v8::Isolate,
op: impl Future<Output = (PromiseId, OpId, OpResult)> + 'static,
) {
let state_rc = JsRuntime::state(scope);
let mut state = state_rc.borrow_mut();
state.pending_ops.push(OpCall::eager(op));
state.have_unpolled_ops = true;
}
#[cfg(test)]
pub mod tests {
use super::*;
use crate::error::custom_error;
use crate::error::AnyError;
use crate::modules::ModuleSource;
use crate::modules::ModuleSourceFuture;
use crate::modules::ModuleType;
use crate::ZeroCopyBuf;
use deno_ops::op;
use futures::future::lazy;
use std::ops::FnOnce;
use std::pin::Pin;
use std::rc::Rc;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::sync::Arc;
// deno_ops macros generate code assuming deno_core in scope.
mod deno_core {
pub use crate::*;
}
pub fn run_in_task<F>(f: F)
where
F: FnOnce(&mut Context) + Send + 'static,
{
futures::executor::block_on(lazy(move |cx| f(cx)));
}
#[derive(Copy, Clone)]
enum Mode {
Async,
AsyncZeroCopy(bool),
}
struct TestState {
mode: Mode,
dispatch_count: Arc<AtomicUsize>,
}
#[op]
async fn op_test(
rc_op_state: Rc<RefCell<OpState>>,
control: u8,
buf: Option<ZeroCopyBuf>,
) -> Result<u8, AnyError> {
let op_state_ = rc_op_state.borrow();
let test_state = op_state_.borrow::<TestState>();
test_state.dispatch_count.fetch_add(1, Ordering::Relaxed);
match test_state.mode {
Mode::Async => {
assert_eq!(control, 42);
Ok(43)
}
Mode::AsyncZeroCopy(has_buffer) => {
assert_eq!(buf.is_some(), has_buffer);
if let Some(buf) = buf {
assert_eq!(buf.len(), 1);
}
Ok(43)
}
}
}
fn setup(mode: Mode) -> (JsRuntime, Arc<AtomicUsize>) {
let dispatch_count = Arc::new(AtomicUsize::new(0));
let dispatch_count2 = dispatch_count.clone();
let ext = Extension::builder()
.ops(vec![op_test::decl()])
.state(move |state| {
state.put(TestState {
mode,
dispatch_count: dispatch_count2.clone(),
});
Ok(())
})
.build();
let mut runtime = JsRuntime::new(RuntimeOptions {
extensions: vec![ext],
get_error_class_fn: Some(&|error| {
crate::error::get_custom_error_class(error).unwrap()
}),
..Default::default()
});
runtime
.execute_script(
"setup.js",
r#"
function assert(cond) {
if (!cond) {
throw Error("assert");
}
}
"#,
)
.unwrap();
assert_eq!(dispatch_count.load(Ordering::Relaxed), 0);
(runtime, dispatch_count)
}
#[test]
fn test_dispatch() {
let (mut runtime, dispatch_count) = setup(Mode::Async);
runtime
.execute_script(
"filename.js",
r#"
let control = 42;
Deno.core.opAsync("op_test", control);
async function main() {
Deno.core.opAsync("op_test", control);
}
main();
"#,
)
.unwrap();
assert_eq!(dispatch_count.load(Ordering::Relaxed), 2);
}
#[test]
fn test_op_async_promise_id() {
let (mut runtime, _dispatch_count) = setup(Mode::Async);
runtime
.execute_script(
"filename.js",
r#"
const p = Deno.core.opAsync("op_test", 42);
if (p[Symbol.for("Deno.core.internalPromiseId")] == undefined) {
throw new Error("missing id on returned promise");
}
"#,
)
.unwrap();
}
#[test]
fn test_ref_unref_ops() {
let (mut runtime, _dispatch_count) = setup(Mode::Async);
runtime
.execute_script(
"filename.js",
r#"
var promiseIdSymbol = Symbol.for("Deno.core.internalPromiseId");
var p1 = Deno.core.opAsync("op_test", 42);
var p2 = Deno.core.opAsync("op_test", 42);
"#,
)
.unwrap();
{
let isolate = runtime.v8_isolate();
let state_rc = JsRuntime::state(isolate);
let state = state_rc.borrow();
assert_eq!(state.pending_ops.len(), 2);
assert_eq!(state.unrefed_ops.len(), 0);
}
runtime
.execute_script(
"filename.js",
r#"
Deno.core.opSync("op_unref_op", p1[promiseIdSymbol]);
Deno.core.opSync("op_unref_op", p2[promiseIdSymbol]);
"#,
)
.unwrap();
{
let isolate = runtime.v8_isolate();
let state_rc = JsRuntime::state(isolate);
let state = state_rc.borrow();
assert_eq!(state.pending_ops.len(), 2);
assert_eq!(state.unrefed_ops.len(), 2);
}
runtime
.execute_script(
"filename.js",
r#"
Deno.core.opSync("op_ref_op", p1[promiseIdSymbol]);
Deno.core.opSync("op_ref_op", p2[promiseIdSymbol]);
"#,
)
.unwrap();
{
let isolate = runtime.v8_isolate();
let state_rc = JsRuntime::state(isolate);
let state = state_rc.borrow();
assert_eq!(state.pending_ops.len(), 2);
assert_eq!(state.unrefed_ops.len(), 0);
}
}
#[test]
fn test_dispatch_no_zero_copy_buf() {
let (mut runtime, dispatch_count) = setup(Mode::AsyncZeroCopy(false));
runtime
.execute_script(
"filename.js",
r#"
Deno.core.opAsync("op_test");
"#,
)
.unwrap();
assert_eq!(dispatch_count.load(Ordering::Relaxed), 1);
}
#[test]
fn test_dispatch_stack_zero_copy_bufs() {
let (mut runtime, dispatch_count) = setup(Mode::AsyncZeroCopy(true));
runtime
.execute_script(
"filename.js",
r#"
let zero_copy_a = new Uint8Array([0]);
Deno.core.opAsync("op_test", null, zero_copy_a);
"#,
)
.unwrap();
assert_eq!(dispatch_count.load(Ordering::Relaxed), 1);
}
#[test]
fn test_execute_script_return_value() {
let mut runtime = JsRuntime::new(Default::default());
let value_global = runtime.execute_script("a.js", "a = 1 + 2").unwrap();
{
let scope = &mut runtime.handle_scope();
let value = value_global.open(scope);
assert_eq!(value.integer_value(scope).unwrap(), 3);
}
let value_global = runtime.execute_script("b.js", "b = 'foobar'").unwrap();
{
let scope = &mut runtime.handle_scope();
let value = value_global.open(scope);
assert!(value.is_string());
assert_eq!(
value.to_string(scope).unwrap().to_rust_string_lossy(scope),
"foobar"
);
}
}
#[tokio::test]
async fn test_poll_value() {
run_in_task(|cx| {
let mut runtime = JsRuntime::new(Default::default());
let value_global = runtime
.execute_script("a.js", "Promise.resolve(1 + 2)")
.unwrap();
let v = runtime.poll_value(&value_global, cx);
{
let scope = &mut runtime.handle_scope();
assert!(
matches!(v, Poll::Ready(Ok(v)) if v.open(scope).integer_value(scope).unwrap() == 3)
);
}
let value_global = runtime
.execute_script(
"a.js",
"Promise.resolve(new Promise(resolve => resolve(2 + 2)))",
)
.unwrap();
let v = runtime.poll_value(&value_global, cx);
{
let scope = &mut runtime.handle_scope();
assert!(
matches!(v, Poll::Ready(Ok(v)) if v.open(scope).integer_value(scope).unwrap() == 4)
);
}
let value_global = runtime
.execute_script("a.js", "Promise.reject(new Error('fail'))")
.unwrap();
let v = runtime.poll_value(&value_global, cx);
assert!(
matches!(v, Poll::Ready(Err(e)) if e.downcast_ref::<JsError>().unwrap().exception_message == "Uncaught Error: fail")
);
let value_global = runtime
.execute_script("a.js", "new Promise(resolve => {})")
.unwrap();
let v = runtime.poll_value(&value_global, cx);
matches!(v, Poll::Ready(Err(e)) if e.to_string() == "Promise resolution is still pending but the event loop has already resolved.");
});
}
#[tokio::test]
async fn test_resolve_value() {
let mut runtime = JsRuntime::new(Default::default());
let value_global = runtime
.execute_script("a.js", "Promise.resolve(1 + 2)")
.unwrap();
let result_global = runtime.resolve_value(value_global).await.unwrap();
{
let scope = &mut runtime.handle_scope();
let value = result_global.open(scope);
assert_eq!(value.integer_value(scope).unwrap(), 3);
}
let value_global = runtime
.execute_script(
"a.js",
"Promise.resolve(new Promise(resolve => resolve(2 + 2)))",
)
.unwrap();
let result_global = runtime.resolve_value(value_global).await.unwrap();
{
let scope = &mut runtime.handle_scope();
let value = result_global.open(scope);
assert_eq!(value.integer_value(scope).unwrap(), 4);
}
let value_global = runtime
.execute_script("a.js", "Promise.reject(new Error('fail'))")
.unwrap();
let err = runtime.resolve_value(value_global).await.unwrap_err();
assert_eq!(
"Uncaught Error: fail",
err.downcast::<JsError>().unwrap().exception_message
);
let value_global = runtime
.execute_script("a.js", "new Promise(resolve => {})")
.unwrap();
let error_string = runtime
.resolve_value(value_global)
.await
.unwrap_err()
.to_string();
assert_eq!(
"Promise resolution is still pending but the event loop has already resolved.",
error_string,
);
}
#[test]
fn terminate_execution() {
let (mut isolate, _dispatch_count) = setup(Mode::Async);
let v8_isolate_handle = isolate.v8_isolate().thread_safe_handle();
let terminator_thread = std::thread::spawn(move || {
// allow deno to boot and run
std::thread::sleep(std::time::Duration::from_millis(100));
// terminate execution
let ok = v8_isolate_handle.terminate_execution();
assert!(ok);
});
// Rn an infinite loop, which should be terminated.
match isolate.execute_script("infinite_loop.js", "for(;;) {}") {
Ok(_) => panic!("execution should be terminated"),
Err(e) => {
assert_eq!(e.to_string(), "Uncaught Error: execution terminated")
}
};
// Cancel the execution-terminating exception in order to allow script
// execution again.
let ok = isolate.v8_isolate().cancel_terminate_execution();
assert!(ok);
// Verify that the isolate usable again.
isolate
.execute_script("simple.js", "1 + 1")
.expect("execution should be possible again");
terminator_thread.join().unwrap();
}
#[test]
fn dangling_shared_isolate() {
let v8_isolate_handle = {
// isolate is dropped at the end of this block
let (mut runtime, _dispatch_count) = setup(Mode::Async);
runtime.v8_isolate().thread_safe_handle()
};
// this should not SEGFAULT
v8_isolate_handle.terminate_execution();
}
#[test]
fn syntax_error() {
let mut runtime = JsRuntime::new(Default::default());
let src = "hocuspocus(";
let r = runtime.execute_script("i.js", src);
let e = r.unwrap_err();
let js_error = e.downcast::<JsError>().unwrap();
let frame = js_error.frames.first().unwrap();
assert_eq!(frame.column_number, Some(12));
}
#[test]
fn test_encode_decode() {
run_in_task(|cx| {
let (mut runtime, _dispatch_count) = setup(Mode::Async);
runtime
.execute_script(
"encode_decode_test.js",
include_str!("encode_decode_test.js"),
)
.unwrap();
if let Poll::Ready(Err(_)) = runtime.poll_event_loop(cx, false) {
unreachable!();
}
});
}
#[test]
fn test_serialize_deserialize() {
run_in_task(|cx| {
let (mut runtime, _dispatch_count) = setup(Mode::Async);
runtime
.execute_script(
"serialize_deserialize_test.js",
include_str!("serialize_deserialize_test.js"),
)
.unwrap();
if let Poll::Ready(Err(_)) = runtime.poll_event_loop(cx, false) {
unreachable!();
}
});
}
#[test]
fn test_error_builder() {
#[op]
fn op_err() -> Result<(), Error> {
Err(custom_error("DOMExceptionOperationError", "abc"))
}
pub fn get_error_class_name(_: &Error) -> &'static str {
"DOMExceptionOperationError"
}
run_in_task(|cx| {
let ext = Extension::builder().ops(vec![op_err::decl()]).build();
let mut runtime = JsRuntime::new(RuntimeOptions {
extensions: vec![ext],
get_error_class_fn: Some(&get_error_class_name),
..Default::default()
});
runtime
.execute_script(
"error_builder_test.js",
include_str!("error_builder_test.js"),
)
.unwrap();
if let Poll::Ready(Err(_)) = runtime.poll_event_loop(cx, false) {
unreachable!();
}
});
}
#[test]
fn will_snapshot() {
let snapshot = {
let mut runtime = JsRuntime::new(RuntimeOptions {
will_snapshot: true,
..Default::default()
});
runtime.execute_script("a.js", "a = 1 + 2").unwrap();
runtime.snapshot()
};
let snapshot = Snapshot::JustCreated(snapshot);
let mut runtime2 = JsRuntime::new(RuntimeOptions {
startup_snapshot: Some(snapshot),
..Default::default()
});
runtime2
.execute_script("check.js", "if (a != 3) throw Error('x')")
.unwrap();
}
#[test]
fn test_from_boxed_snapshot() {
let snapshot = {
let mut runtime = JsRuntime::new(RuntimeOptions {
will_snapshot: true,
..Default::default()
});
runtime.execute_script("a.js", "a = 1 + 2").unwrap();
let snap: &[u8] = &*runtime.snapshot();
Vec::from(snap).into_boxed_slice()
};
let snapshot = Snapshot::Boxed(snapshot);
let mut runtime2 = JsRuntime::new(RuntimeOptions {
startup_snapshot: Some(snapshot),
..Default::default()
});
runtime2
.execute_script("check.js", "if (a != 3) throw Error('x')")
.unwrap();
}
#[test]
fn test_get_module_namespace() {
#[derive(Default)]
struct ModsLoader;
impl ModuleLoader for ModsLoader {
fn resolve(
&self,
specifier: &str,
referrer: &str,
_is_main: bool,
) -> Result<ModuleSpecifier, Error> {
assert_eq!(specifier, "file:///main.js");
assert_eq!(referrer, ".");
let s = crate::resolve_import(specifier, referrer).unwrap();
Ok(s)
}
fn load(
&self,
_module_specifier: &ModuleSpecifier,
_maybe_referrer: Option<ModuleSpecifier>,
_is_dyn_import: bool,
) -> Pin<Box<ModuleSourceFuture>> {
async { Err(generic_error("Module loading is not supported")) }
.boxed_local()
}
}
let loader = std::rc::Rc::new(ModsLoader::default());
let mut runtime = JsRuntime::new(RuntimeOptions {
module_loader: Some(loader),
..Default::default()
});
let specifier = crate::resolve_url("file:///main.js").unwrap();
let source_code = r#"
export const a = "b";
export default 1 + 2;
"#
.to_string();
let module_id = futures::executor::block_on(
runtime.load_main_module(&specifier, Some(source_code)),
)
.unwrap();
let _ = runtime.mod_evaluate(module_id);
let module_namespace = runtime.get_module_namespace(module_id).unwrap();
let scope = &mut runtime.handle_scope();
let module_namespace =
v8::Local::<v8::Object>::new(scope, module_namespace);
assert!(module_namespace.is_module_namespace_object());
let unknown_export_name = v8::String::new(scope, "none").unwrap();
let binding = module_namespace.get(scope, unknown_export_name.into());
assert!(binding.is_some());
assert!(binding.unwrap().is_undefined());
let empty_export_name = v8::String::new(scope, "").unwrap();
let binding = module_namespace.get(scope, empty_export_name.into());
assert!(binding.is_some());
assert!(binding.unwrap().is_undefined());
let a_export_name = v8::String::new(scope, "a").unwrap();
let binding = module_namespace.get(scope, a_export_name.into());
assert!(binding.unwrap().is_string());
assert_eq!(binding.unwrap(), v8::String::new(scope, "b").unwrap());
let default_export_name = v8::String::new(scope, "default").unwrap();
let binding = module_namespace.get(scope, default_export_name.into());
assert!(binding.unwrap().is_number());
assert_eq!(binding.unwrap(), v8::Number::new(scope, 3_f64));
}
#[test]
fn test_heap_limits() {
let create_params =
v8::Isolate::create_params().heap_limits(0, 3 * 1024 * 1024);
let mut runtime = JsRuntime::new(RuntimeOptions {
create_params: Some(create_params),
..Default::default()
});
let cb_handle = runtime.v8_isolate().thread_safe_handle();
let callback_invoke_count = Rc::new(AtomicUsize::new(0));
let inner_invoke_count = Rc::clone(&callback_invoke_count);
runtime.add_near_heap_limit_callback(
move |current_limit, _initial_limit| {
inner_invoke_count.fetch_add(1, Ordering::SeqCst);
cb_handle.terminate_execution();
current_limit * 2
},
);
let err = runtime
.execute_script(
"script name",
r#"let s = ""; while(true) { s += "Hello"; }"#,
)
.expect_err("script should fail");
assert_eq!(
"Uncaught Error: execution terminated",
err.downcast::<JsError>().unwrap().exception_message
);
assert!(callback_invoke_count.load(Ordering::SeqCst) > 0)
}
#[test]
fn test_heap_limit_cb_remove() {
let mut runtime = JsRuntime::new(Default::default());
runtime.add_near_heap_limit_callback(|current_limit, _initial_limit| {
current_limit * 2
});
runtime.remove_near_heap_limit_callback(3 * 1024 * 1024);
assert!(runtime.allocations.near_heap_limit_callback_data.is_none());
}
#[test]
fn test_heap_limit_cb_multiple() {
let create_params =
v8::Isolate::create_params().heap_limits(0, 3 * 1024 * 1024);
let mut runtime = JsRuntime::new(RuntimeOptions {
create_params: Some(create_params),
..Default::default()
});
let cb_handle = runtime.v8_isolate().thread_safe_handle();
let callback_invoke_count_first = Rc::new(AtomicUsize::new(0));
let inner_invoke_count_first = Rc::clone(&callback_invoke_count_first);
runtime.add_near_heap_limit_callback(
move |current_limit, _initial_limit| {
inner_invoke_count_first.fetch_add(1, Ordering::SeqCst);
current_limit * 2
},
);
let callback_invoke_count_second = Rc::new(AtomicUsize::new(0));
let inner_invoke_count_second = Rc::clone(&callback_invoke_count_second);
runtime.add_near_heap_limit_callback(
move |current_limit, _initial_limit| {
inner_invoke_count_second.fetch_add(1, Ordering::SeqCst);
cb_handle.terminate_execution();
current_limit * 2
},
);
let err = runtime
.execute_script(
"script name",
r#"let s = ""; while(true) { s += "Hello"; }"#,
)
.expect_err("script should fail");
assert_eq!(
"Uncaught Error: execution terminated",
err.downcast::<JsError>().unwrap().exception_message
);
assert_eq!(0, callback_invoke_count_first.load(Ordering::SeqCst));
assert!(callback_invoke_count_second.load(Ordering::SeqCst) > 0);
}
#[test]
fn es_snapshot() {
#[derive(Default)]
struct ModsLoader;
impl ModuleLoader for ModsLoader {
fn resolve(
&self,
specifier: &str,
referrer: &str,
_is_main: bool,
) -> Result<ModuleSpecifier, Error> {
assert_eq!(specifier, "file:///main.js");
assert_eq!(referrer, ".");
let s = crate::resolve_import(specifier, referrer).unwrap();
Ok(s)
}
fn load(
&self,
_module_specifier: &ModuleSpecifier,
_maybe_referrer: Option<ModuleSpecifier>,
_is_dyn_import: bool,
) -> Pin<Box<ModuleSourceFuture>> {
unreachable!()
}
}
let loader = std::rc::Rc::new(ModsLoader::default());
let mut runtime = JsRuntime::new(RuntimeOptions {
module_loader: Some(loader),
will_snapshot: true,
..Default::default()
});
let specifier = crate::resolve_url("file:///main.js").unwrap();
let source_code = "Deno.core.print('hello\\n')".to_string();
let module_id = futures::executor::block_on(
runtime.load_main_module(&specifier, Some(source_code)),
)
.unwrap();
let _ = runtime.mod_evaluate(module_id);
futures::executor::block_on(runtime.run_event_loop(false)).unwrap();
let _snapshot = runtime.snapshot();
}
#[test]
fn test_error_without_stack() {
let mut runtime = JsRuntime::new(RuntimeOptions::default());
// SyntaxError
let result = runtime.execute_script(
"error_without_stack.js",
r#"
function main() {
console.log("asdf);
}
main();
"#,
);
let expected_error = r#"Uncaught SyntaxError: Invalid or unexpected token
at error_without_stack.js:3:15"#;
assert_eq!(result.unwrap_err().to_string(), expected_error);
}
#[test]
fn test_error_stack() {
let mut runtime = JsRuntime::new(RuntimeOptions::default());
let result = runtime.execute_script(
"error_stack.js",
r#"
function assert(cond) {
if (!cond) {
throw Error("assert");
}
}
function main() {
assert(false);
}
main();
"#,
);
let expected_error = r#"Error: assert
at assert (error_stack.js:4:11)
at main (error_stack.js:9:3)
at error_stack.js:12:1"#;
assert_eq!(result.unwrap_err().to_string(), expected_error);
}
#[test]
fn test_error_async_stack() {
run_in_task(|cx| {
let mut runtime = JsRuntime::new(RuntimeOptions::default());
runtime
.execute_script(
"error_async_stack.js",
r#"
(async () => {
const p = (async () => {
await Promise.resolve().then(() => {
throw new Error("async");
});
})();
try {
await p;
} catch (error) {
console.log(error.stack);
throw error;
}
})();"#,
)
.unwrap();
let expected_error = r#"Error: async
at error_async_stack.js:5:13
at async error_async_stack.js:4:5
at async error_async_stack.js:10:5"#;
match runtime.poll_event_loop(cx, false) {
Poll::Ready(Err(e)) => {
assert_eq!(e.to_string(), expected_error);
}
_ => panic!(),
};
})
}
#[test]
fn test_pump_message_loop() {
run_in_task(|cx| {
let mut runtime = JsRuntime::new(RuntimeOptions::default());
runtime
.execute_script(
"pump_message_loop.js",
r#"
function assertEquals(a, b) {
if (a === b) return;
throw a + " does not equal " + b;
}
const sab = new SharedArrayBuffer(16);
const i32a = new Int32Array(sab);
globalThis.resolved = false;
(function() {
const result = Atomics.waitAsync(i32a, 0, 0);
result.value.then(
(value) => { assertEquals("ok", value); globalThis.resolved = true; },
() => { assertUnreachable();
});
})();
const notify_return_value = Atomics.notify(i32a, 0, 1);
assertEquals(1, notify_return_value);
"#,
)
.unwrap();
match runtime.poll_event_loop(cx, false) {
Poll::Ready(Ok(())) => {}
_ => panic!(),
};
// noop script, will resolve promise from first script
runtime
.execute_script("pump_message_loop2.js", r#"assertEquals(1, 1);"#)
.unwrap();
// check that promise from `Atomics.waitAsync` has been resolved
runtime
.execute_script(
"pump_message_loop3.js",
r#"assertEquals(globalThis.resolved, true);"#,
)
.unwrap();
})
}
#[test]
fn test_core_js_stack_frame() {
let mut runtime = JsRuntime::new(RuntimeOptions::default());
// Call non-existent op so we get error from `core.js`
let error = runtime
.execute_script(
"core_js_stack_frame.js",
"Deno.core.opSync('non_existent');",
)
.unwrap_err();
let error_string = error.to_string();
// Test that the script specifier is a URL: `deno:<repo-relative path>`.
assert!(error_string.contains("deno:core/01_core.js"));
}
#[test]
fn test_v8_platform() {
let options = RuntimeOptions {
v8_platform: Some(v8::new_default_platform(0, false).make_shared()),
..Default::default()
};
let mut runtime = JsRuntime::new(options);
runtime.execute_script("<none>", "").unwrap();
}
#[test]
fn test_is_proxy() {
let mut runtime = JsRuntime::new(RuntimeOptions::default());
let all_true: v8::Global<v8::Value> = runtime
.execute_script(
"is_proxy.js",
r#"
(function () {
const o = { a: 1, b: 2};
const p = new Proxy(o, {});
return Deno.core.opSync("op_is_proxy", p) && !Deno.core.opSync("op_is_proxy", o) && !Deno.core.opSync("op_is_proxy", 42);
})()
"#,
)
.unwrap();
let mut scope = runtime.handle_scope();
let all_true = v8::Local::<v8::Value>::new(&mut scope, &all_true);
assert!(all_true.is_true());
}
#[tokio::test]
async fn test_async_opstate_borrow() {
struct InnerState(u64);
#[op]
async fn op_async_borrow(
op_state: Rc<RefCell<OpState>>,
) -> Result<(), Error> {
let n = {
let op_state = op_state.borrow();
let inner_state = op_state.borrow::<InnerState>();
inner_state.0
};
// Future must be Poll::Pending on first call
tokio::time::sleep(std::time::Duration::from_millis(1)).await;
if n != 42 {
unreachable!();
}
Ok(())
}
let extension = Extension::builder()
.ops(vec![op_async_borrow::decl()])
.state(|state| {
state.put(InnerState(42));
Ok(())
})
.build();
let mut runtime = JsRuntime::new(RuntimeOptions {
extensions: vec![extension],
..Default::default()
});
runtime
.execute_script(
"op_async_borrow.js",
"Deno.core.opAsync('op_async_borrow')",
)
.unwrap();
runtime.run_event_loop(false).await.unwrap();
}
#[tokio::test]
async fn test_set_macrotask_callback_set_next_tick_callback() {
#[op]
async fn op_async_sleep() -> Result<(), Error> {
// Future must be Poll::Pending on first call
tokio::time::sleep(std::time::Duration::from_millis(1)).await;
Ok(())
}
let extension = Extension::builder()
.ops(vec![op_async_sleep::decl()])
.build();
let mut runtime = JsRuntime::new(RuntimeOptions {
extensions: vec![extension],
..Default::default()
});
runtime
.execute_script(
"macrotasks_and_nextticks.js",
r#"
(async function () {
const results = [];
Deno.core.opSync("op_set_macrotask_callback", () => {
results.push("macrotask");
return true;
});
Deno.core.opSync("op_set_next_tick_callback", () => {
results.push("nextTick");
Deno.core.opSync("op_set_has_tick_scheduled", false);
});
Deno.core.opSync("op_set_has_tick_scheduled", true);
await Deno.core.opAsync('op_async_sleep');
if (results[0] != "nextTick") {
throw new Error(`expected nextTick, got: ${results[0]}`);
}
if (results[1] != "macrotask") {
throw new Error(`expected macrotask, got: ${results[1]}`);
}
})();
"#,
)
.unwrap();
runtime.run_event_loop(false).await.unwrap();
}
#[tokio::test]
async fn test_set_macrotask_callback_set_next_tick_callback_multiple() {
let mut runtime = JsRuntime::new(Default::default());
runtime
.execute_script(
"multiple_macrotasks_and_nextticks.js",
r#"
Deno.core.opSync("op_set_macrotask_callback", () => { return true; });
Deno.core.opSync("op_set_macrotask_callback", () => { return true; });
Deno.core.opSync("op_set_next_tick_callback", () => {});
Deno.core.opSync("op_set_next_tick_callback", () => {});
"#,
)
.unwrap();
let isolate = runtime.v8_isolate();
let state_rc = JsRuntime::state(isolate);
let state = state_rc.borrow();
assert_eq!(state.js_macrotask_cbs.len(), 2);
assert_eq!(state.js_nexttick_cbs.len(), 2);
}
#[test]
fn test_has_tick_scheduled() {
use futures::task::ArcWake;
static MACROTASK: AtomicUsize = AtomicUsize::new(0);
static NEXT_TICK: AtomicUsize = AtomicUsize::new(0);
#[op]
fn op_macrotask() -> Result<(), AnyError> {
MACROTASK.fetch_add(1, Ordering::Relaxed);
Ok(())
}
#[op]
fn op_next_tick() -> Result<(), AnyError> {
NEXT_TICK.fetch_add(1, Ordering::Relaxed);
Ok(())
}
let extension = Extension::builder()
.ops(vec![op_macrotask::decl(), op_next_tick::decl()])
.build();
let mut runtime = JsRuntime::new(RuntimeOptions {
extensions: vec![extension],
..Default::default()
});
runtime
.execute_script(
"has_tick_scheduled.js",
r#"
Deno.core.opSync("op_set_macrotask_callback", () => {
Deno.core.opSync("op_macrotask");
return true; // We're done.
});
Deno.core.opSync("op_set_next_tick_callback", () => Deno.core.opSync("op_next_tick"));
Deno.core.opSync("op_set_has_tick_scheduled", true);
"#,
)
.unwrap();
struct ArcWakeImpl(Arc<AtomicUsize>);
impl ArcWake for ArcWakeImpl {
fn wake_by_ref(arc_self: &Arc<Self>) {
arc_self.0.fetch_add(1, Ordering::Relaxed);
}
}
let awoken_times = Arc::new(AtomicUsize::new(0));
let waker =
futures::task::waker(Arc::new(ArcWakeImpl(awoken_times.clone())));
let cx = &mut Context::from_waker(&waker);
assert!(matches!(runtime.poll_event_loop(cx, false), Poll::Pending));
assert_eq!(1, MACROTASK.load(Ordering::Relaxed));
assert_eq!(1, NEXT_TICK.load(Ordering::Relaxed));
assert_eq!(awoken_times.swap(0, Ordering::Relaxed), 1);
assert!(matches!(runtime.poll_event_loop(cx, false), Poll::Pending));
assert_eq!(awoken_times.swap(0, Ordering::Relaxed), 1);
assert!(matches!(runtime.poll_event_loop(cx, false), Poll::Pending));
assert_eq!(awoken_times.swap(0, Ordering::Relaxed), 1);
assert!(matches!(runtime.poll_event_loop(cx, false), Poll::Pending));
assert_eq!(awoken_times.swap(0, Ordering::Relaxed), 1);
let state_rc = JsRuntime::state(runtime.v8_isolate());
state_rc.borrow_mut().has_tick_scheduled = false;
assert!(matches!(
runtime.poll_event_loop(cx, false),
Poll::Ready(Ok(()))
));
assert_eq!(awoken_times.load(Ordering::Relaxed), 0);
assert!(matches!(
runtime.poll_event_loop(cx, false),
Poll::Ready(Ok(()))
));
assert_eq!(awoken_times.load(Ordering::Relaxed), 0);
}
#[test]
fn terminate_during_module_eval() {
#[derive(Default)]
struct ModsLoader;
impl ModuleLoader for ModsLoader {
fn resolve(
&self,
specifier: &str,
referrer: &str,
_is_main: bool,
) -> Result<ModuleSpecifier, Error> {
assert_eq!(specifier, "file:///main.js");
assert_eq!(referrer, ".");
let s = crate::resolve_import(specifier, referrer).unwrap();
Ok(s)
}
fn load(
&self,
_module_specifier: &ModuleSpecifier,
_maybe_referrer: Option<ModuleSpecifier>,
_is_dyn_import: bool,
) -> Pin<Box<ModuleSourceFuture>> {
async move {
Ok(ModuleSource {
code: b"console.log('hello world');".to_vec().into_boxed_slice(),
module_url_specified: "file:///main.js".to_string(),
module_url_found: "file:///main.js".to_string(),
module_type: ModuleType::JavaScript,
})
}
.boxed_local()
}
}
let loader = std::rc::Rc::new(ModsLoader::default());
let mut runtime = JsRuntime::new(RuntimeOptions {
module_loader: Some(loader),
..Default::default()
});
let specifier = crate::resolve_url("file:///main.js").unwrap();
let source_code = "Deno.core.print('hello\\n')".to_string();
let module_id = futures::executor::block_on(
runtime.load_main_module(&specifier, Some(source_code)),
)
.unwrap();
runtime.v8_isolate().terminate_execution();
let mod_result =
futures::executor::block_on(runtime.mod_evaluate(module_id)).unwrap();
assert!(mod_result
.unwrap_err()
.to_string()
.contains("JavaScript execution has been terminated"));
}
#[tokio::test]
async fn test_set_promise_reject_callback() {
static PROMISE_REJECT: AtomicUsize = AtomicUsize::new(0);
static UNCAUGHT_EXCEPTION: AtomicUsize = AtomicUsize::new(0);
#[op]
fn op_promise_reject() -> Result<(), AnyError> {
PROMISE_REJECT.fetch_add(1, Ordering::Relaxed);
Ok(())
}
#[op]
fn op_uncaught_exception() -> Result<(), AnyError> {
UNCAUGHT_EXCEPTION.fetch_add(1, Ordering::Relaxed);
Ok(())
}
let extension = Extension::builder()
.ops(vec![
op_promise_reject::decl(),
op_uncaught_exception::decl(),
])
.build();
let mut runtime = JsRuntime::new(RuntimeOptions {
extensions: vec![extension],
..Default::default()
});
runtime
.execute_script(
"promise_reject_callback.js",
r#"
// Note: |promise| is not the promise created below, it's a child.
Deno.core.opSync("op_set_promise_reject_callback", (type, promise, reason) => {
if (type !== /* PromiseRejectWithNoHandler */ 0) {
throw Error("unexpected type: " + type);
}
if (reason.message !== "reject") {
throw Error("unexpected reason: " + reason);
}
Deno.core.opSync("op_promise_reject");
throw Error("promiseReject"); // Triggers uncaughtException handler.
});
Deno.core.opSync("op_set_uncaught_exception_callback", (err) => {
if (err.message !== "promiseReject") throw err;
Deno.core.opSync("op_uncaught_exception");
});
new Promise((_, reject) => reject(Error("reject")));
"#,
)
.unwrap();
runtime.run_event_loop(false).await.unwrap();
assert_eq!(1, PROMISE_REJECT.load(Ordering::Relaxed));
assert_eq!(1, UNCAUGHT_EXCEPTION.load(Ordering::Relaxed));
runtime
.execute_script(
"promise_reject_callback.js",
r#"
{
const prev = Deno.core.opSync("op_set_promise_reject_callback", (...args) => {
prev(...args);
});
}
{
const prev = Deno.core.opSync("op_set_uncaught_exception_callback", (...args) => {
prev(...args);
throw Error("fail");
});
}
new Promise((_, reject) => reject(Error("reject")));
"#,
)
.unwrap();
// Exception from uncaughtException handler doesn't bubble up but is
// printed to stderr.
runtime.run_event_loop(false).await.unwrap();
assert_eq!(2, PROMISE_REJECT.load(Ordering::Relaxed));
assert_eq!(2, UNCAUGHT_EXCEPTION.load(Ordering::Relaxed));
}
#[test]
fn test_op_return_serde_v8_error() {
#[op]
fn op_err() -> Result<std::collections::BTreeMap<u64, u64>, anyhow::Error> {
Ok([(1, 2), (3, 4)].into_iter().collect()) // Maps can't have non-string keys in serde_v8
}
let ext = Extension::builder().ops(vec![op_err::decl()]).build();
let mut runtime = JsRuntime::new(RuntimeOptions {
extensions: vec![ext],
..Default::default()
});
assert!(runtime
.execute_script(
"test_op_return_serde_v8_error.js",
"Deno.core.opSync('op_err')"
)
.is_err());
}
#[test]
fn test_op_high_arity() {
#[op]
fn op_add_4(
x1: i64,
x2: i64,
x3: i64,
x4: i64,
) -> Result<i64, anyhow::Error> {
Ok(x1 + x2 + x3 + x4)
}
let ext = Extension::builder().ops(vec![op_add_4::decl()]).build();
let mut runtime = JsRuntime::new(RuntimeOptions {
extensions: vec![ext],
..Default::default()
});
let r = runtime
.execute_script("test.js", "Deno.core.opSync('op_add_4', 1, 2, 3, 4)")
.unwrap();
let scope = &mut runtime.handle_scope();
assert_eq!(r.open(scope).integer_value(scope), Some(10));
}
#[test]
fn test_op_disabled() {
#[op]
fn op_foo() -> Result<i64, anyhow::Error> {
Ok(42)
}
let ext = Extension::builder()
.ops(vec![op_foo::decl().disable()])
.build();
let mut runtime = JsRuntime::new(RuntimeOptions {
extensions: vec![ext],
..Default::default()
});
let r = runtime
.execute_script("test.js", "Deno.core.opSync('op_foo')")
.unwrap();
let scope = &mut runtime.handle_scope();
assert!(r.open(scope).is_undefined());
}
#[test]
fn test_op_detached_buffer() {
use serde_v8::DetachedBuffer;
#[op]
fn op_sum_take(b: DetachedBuffer) -> Result<u64, anyhow::Error> {
Ok(b.as_ref().iter().clone().map(|x| *x as u64).sum())
}
#[op]
fn op_boomerang(
b: DetachedBuffer,
) -> Result<DetachedBuffer, anyhow::Error> {
Ok(b)
}
let ext = Extension::builder()
.ops(vec![op_sum_take::decl(), op_boomerang::decl()])
.build();
let mut runtime = JsRuntime::new(RuntimeOptions {
extensions: vec![ext],
..Default::default()
});
runtime
.execute_script(
"test.js",
r#"
const a1 = new Uint8Array([1,2,3]);
const a1b = a1.subarray(0, 3);
const a2 = new Uint8Array([5,10,15]);
const a2b = a2.subarray(0, 3);
if (!(a1.length > 0 && a1b.length > 0)) {
throw new Error("a1 & a1b should have a length");
}
let sum = Deno.core.opSync('op_sum_take', a1b);
if (sum !== 6) {
throw new Error(`Bad sum: ${sum}`);
}
if (a1.length > 0 || a1b.length > 0) {
throw new Error("expecting a1 & a1b to be detached");
}
const a3 = Deno.core.opSync('op_boomerang', a2b);
if (a3.byteLength != 3) {
throw new Error(`Expected a3.byteLength === 3, got ${a3.byteLength}`);
}
if (a3[0] !== 5 || a3[1] !== 10) {
throw new Error(`Invalid a3: ${a3[0]}, ${a3[1]}`);
}
if (a2.byteLength > 0 || a2b.byteLength > 0) {
throw new Error("expecting a2 & a2b to be detached, a3 re-attached");
}
const wmem = new WebAssembly.Memory({ initial: 1, maximum: 2 });
const w32 = new Uint32Array(wmem.buffer);
w32[0] = 1; w32[1] = 2; w32[2] = 3;
const assertWasmThrow = (() => {
try {
let sum = Deno.core.opSync('op_sum_take', w32.subarray(0, 2));
return false;
} catch(e) {
return e.message.includes('ExpectedDetachable');
}
});
if (!assertWasmThrow()) {
throw new Error("expected wasm mem to not be detachable");
}
"#,
)
.unwrap();
}
#[test]
fn test_op_unstable_disabling() {
#[op]
fn op_foo() -> Result<i64, anyhow::Error> {
Ok(42)
}
#[op(unstable)]
fn op_bar() -> Result<i64, anyhow::Error> {
Ok(42)
}
let ext = Extension::builder()
.ops(vec![op_foo::decl(), op_bar::decl()])
.middleware(|op| if op.is_unstable { op.disable() } else { op })
.build();
let mut runtime = JsRuntime::new(RuntimeOptions {
extensions: vec![ext],
..Default::default()
});
runtime
.execute_script(
"test.js",
r#"
if (Deno.core.opSync('op_foo') !== 42) {
throw new Error("Exptected op_foo() === 42");
}
if (Deno.core.opSync('op_bar') !== undefined) {
throw new Error("Expected op_bar to be disabled")
}
"#,
)
.unwrap();
}
#[test]
fn js_realm_simple() {
let mut runtime = JsRuntime::new(Default::default());
let main_context = runtime.global_context();
let main_global = {
let scope = &mut runtime.handle_scope();
let local_global = main_context.open(scope).global(scope);
v8::Global::new(scope, local_global)
};
let realm = runtime.create_realm().unwrap();
assert_ne!(realm.context(), &main_context);
assert_ne!(realm.global_object(&mut runtime), main_global);
let main_object = runtime.execute_script("", "Object").unwrap();
let realm_object =
realm.execute_script(&mut runtime, "", "Object").unwrap();
assert_ne!(main_object, realm_object);
}
#[test]
fn js_realm_init() {
#[op]
fn op_test() -> Result<String, Error> {
Ok(String::from("Test"))
}
let mut runtime = JsRuntime::new(RuntimeOptions {
extensions: vec![Extension::builder().ops(vec![op_test::decl()]).build()],
..Default::default()
});
let realm = runtime.create_realm().unwrap();
let ret = realm
.execute_script(&mut runtime, "", "Deno.core.opSync('op_test')")
.unwrap();
let scope = &mut realm.handle_scope(&mut runtime);
assert_eq!(ret, serde_v8::to_v8(scope, "Test").unwrap());
}
#[test]
fn js_realm_init_snapshot() {
let snapshot = {
let mut runtime = JsRuntime::new(RuntimeOptions {
will_snapshot: true,
..Default::default()
});
let snap: &[u8] = &*runtime.snapshot();
Vec::from(snap).into_boxed_slice()
};
#[op]
fn op_test() -> Result<String, Error> {
Ok(String::from("Test"))
}
let mut runtime = JsRuntime::new(RuntimeOptions {
startup_snapshot: Some(Snapshot::Boxed(snapshot)),
extensions: vec![Extension::builder().ops(vec![op_test::decl()]).build()],
..Default::default()
});
let realm = runtime.create_realm().unwrap();
let ret = realm
.execute_script(&mut runtime, "", "Deno.core.opSync('op_test')")
.unwrap();
let scope = &mut realm.handle_scope(&mut runtime);
assert_eq!(ret, serde_v8::to_v8(scope, "Test").unwrap());
}
#[test]
fn js_realm_sync_ops() {
// Test that returning a ZeroCopyBuf and throwing an exception from a sync
// op result in objects with prototypes from the right realm. Note that we
// don't test the result of returning structs, because they will be
// serialized to objects with null prototype.
#[op]
fn op_test(fail: bool) -> Result<ZeroCopyBuf, Error> {
if !fail {
Ok(ZeroCopyBuf::empty())
} else {
Err(crate::error::type_error("Test"))
}
}
let mut runtime = JsRuntime::new(RuntimeOptions {
extensions: vec![Extension::builder().ops(vec![op_test::decl()]).build()],
get_error_class_fn: Some(&|error| {
crate::error::get_custom_error_class(error).unwrap()
}),
..Default::default()
});
let new_realm = runtime.create_realm().unwrap();
// Test in both realms
for realm in [runtime.global_realm(), new_realm].into_iter() {
let ret = realm
.execute_script(
&mut runtime,
"",
r#"
const buf = Deno.core.opSync("op_test", false);
let err;
try {
Deno.core.opSync("op_test", true);
} catch(e) {
err = e;
}
buf instanceof Uint8Array && buf.byteLength === 0 &&
err instanceof TypeError && err.message === "Test"
"#,
)
.unwrap();
assert!(ret.open(runtime.v8_isolate()).is_true());
}
}
}